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We study the low-energy properties of the one-orbital quantum double-exchange model by using the slave
fermion formulation. We construct a mean-field theory which gives a simple explanation for the magnetic and
thermodynamic properties of the ferromagnetic metallic phase in manganites at low energy. The resulting
electron spectral function and tunneling density of states show an incoherent asymmetric peak with weak
temperature dependence, in addition to a quasiparticle peak. We also show that the gauge fluctuations in the
ferromagnetic metallic phase are completely screened due to the Anderson-Higgs mechanism. Therefore, the
mean-field state is robust against gauge fluctuations and exhibits spin-charge separation at low energy.
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I. INTRODUCTION

The phenomenon of colossal magnetoresistance �CMR� is
known to occur in various doped perovskite manganese ox-
ides with the chemical formula Re1−xAxMnO3, where Re is
the rare earth such as La or Nd and A is a divalent alkali such
as Sr or Ca.1 More recent studies revealed a complex phase
diagram and very rich physics.2 Therefore, it is of great the-
oretical interest to find a proper minimal model for these
CMR systems, which can account for the important common
features, such as the transport and magnetic properties,
shared by all these materials, while leaving out many non-
universal peculiarities due to crystal environment and atomic
structure of individual compounds.

One of the universally recognized common feature of
these CMR compounds is the sizable ferromagnetic �FM�
Hund’s rule coupling JH between the core spins and those of
the eg electrons. This gives the double-exchange �DE�
interaction3–7 which is believed to be a fundamental mecha-
nism in explaining many of the interesting features of the
CMR compounds. From this point of view, a usual starting
point to analyze the properties of the CMR material is the
standard DE Hamiltonian, supplemented with other terms,
such as the Hubbard repulsion U, the antiferromagnetic �AF�
superexchange interactions between core spins JAF, etc. For
the case of CMR manganites, band theory calculations8 sug-
gest the typical values of the hopping amplitude t
�0.3–0.5 eV, JH�2.5 eV, and U�6–8 eV.

Motivated by experimental findings, there has been sig-
nificant progress in the study of the DE Hamiltonian, notably
applying the Schwinger boson9,10 or 1 /Sc expansion.11,12

�Sc=3/2 is the core spin.� Most of these approaches lead to a
simple Fermi liquid �a doped band insulator� picture for the
ground state of the FM metallic phase, which cannot fully
explain the results of experiments, especially the optical con-
ductivity at low energy13,14 and the angle-resolved photo-
emission �ARPES� measurements.15–17 Recently, Golosov
tried to address parts of the discrepancy by including the
on-site Coulomb repulsion through the Hartree-Fock

approximation.18 Although some interesting results were
found, the Hartree-Fock approximation is still based on the
Fermi-liquid picture. To capture the low-energy physics for
large values of U and JH properly, a slave-fermion approach
has been proposed.10,19 A recent work by Hu20 along this
direction has shown that the massless fluctuations of the lon-
gitudinal part of the gauge fields arising from the slave-
fermion approach indeed dramatically change the behavior
of the spectral function of eg electrons at low energy.

The purpose of the present paper is to give a simple
mean-field description on the low-temperature properties of
the DE system in the large U ,JH limit. �For the implementa-
tion of the large U ,JH limit, see Sec. II.� Orbital fluctuations,
Jahn-Teller effect, and nanoscale phase separation, though
very interesting, make analysis difficult. Therefore, we shall
focus our attention on the region where the DE mechanism is
the dominant factor, namely, the region at the hole concen-
tration 0.2�x�0.5 and away from the critical temperature
Tc. We propose a mean-field theory based on the slave-
fermion scheme, which exhibits spin-charge separation at
low energy, and use it to calculate various low-energy prop-
erties in the FM metallic phase. Among them, the most im-
portant result is that the quasiparticle peak in the electron
spectral function is reduced at low temperatures and the
spectral weight is transferred to an asymmetric broad peak
away from the Fermi surface, which is a natural consequence
of the spin-charge separation in our theory. The other physi-
cal properties in the FM metallic phase we have studied are
as follows: �i� The magnon dispersion at the mean-field level
is similar to that of a simple cubic Heisenberg ferromagnet,
which has been verified by inelastic neutron scattering mea-
surements. �ii� The magnitudes of the spin stiffness at T=0
and the coefficients in the low-temperature specific heat, ob-
tained from the mean-field theory, are consistent with experi-
mental data. �iii� The structure of the optical conductivity at
low energy is of the form similar to that observed by experi-
ments, and the Drude weight is reduced.

We now briefly outline the structure of our paper. In Sec.
II, we will introduce the quantum double-exchange �QDE�
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model and develop a slave-fermion mean-field theory. The
results of the mean-field theory is presented in Sec. III. We
will show the stability of our mean-field state against the
gauge fluctuations in Sec. IV. The last section is devoted to a
conclusive discussion.

II. THE MODEL AND THE SLAVE-FERMION MEAN-
FIELD THEORY

We shall start with the quantum double-exchange �QDE�
model described by the following Hamiltonian:19

H = − t �
i,u,�

�c̄i+u�
† c̄i� + H.c.� − JH�

i
Si

c · si, �1�

where the first and second terms describe electronic hopping
and DE couplings, respectively. Here, Sc denotes the core
spin, s is the spin operator of eg electrons, u is a unit vector
connecting the nearest-neighbor sites around site i �for a
simple cubic lattice, u= x̂, ŷ, and ẑ�, and c̄i� is the annihila-
tion operator of eg electrons at site i with spin �. In Eq. �1�,
we have neglected the superexchange interactions between
core spins. This is because JAF�5–10 meV in manganites,
which is much smaller than t. Moreover, in the undoped
compounds, a Jahn-Teller distortion lifts the orbital degen-
eracy of the eg electrons with the energy scale EJT
�1–1.6 eV. Thus, to study the low-energy physics in the
hole-doped region �x�0.5�, one may in a first approximation
ignore the orbital degeneracy and apply the one-orbital
model. To take into account the fact that the on-site Coulomb
interactions between eg electrons is the largest energy scale
in manganites, we impose the no-double-occupancy �NDO�
condition on the eg electron operators,

ni � �
�

c̄i�
† c̄i� = 0,1. �2�

Therefore, c̄i� and c̄i�
† cannot obey the canonical anticommu-

tation relations, and Eq. �1� is valid for energies much lower
than U.

Because of the NDO condition �Eq. �2��, the system be-
comes a strongly correlated one. One popular way to solve
this kind of problems is to introduce a pair of slave fields to
rewrite the c̄ operator. Here we adopt the slave-fermion rep-
resentation,

c̄i� = f i
†bi�, �3�

where f i and f i
† satisfy the canonical anticommutation rela-

tions, and bi� and bi�
† satisfy the canonical commutation

relations.21 In this way, the charge and spin degrees of free-
dom of eg electrons are represented by f �holon� and b
�spinon� fields, respectively. In terms of f i and bi�, the NDO
condition becomes an identity

�
�

bi�
† bi� + f i

†f i = 1. �4�

In manganites, one may further simplify Eq. �1�. Since
JH�10t, at the energy scale much lower than JH, it suffices
to consider the Hilbert space in which the eg electron spin is
parallel to the core spin. One may introduce another

Schwinger bosons di� and di�
† to describe the total spin.

Within this subspace, it can be shown that the b field is
associated with the d field through the relation10,19

bi� =
1

�2S
di�, �5�

with S=2. Collecting the above results, in the limit JH / t
→ +�, Eq. �1� is reduced to the one

HDE = − t �
i,u,�

�c̄i+u�
† c̄i� + H.c.� , �6�

and the NDO condition becomes

�
�

di�
† di� + f i

†f i = 2S . �7�

We shall take Eq. �6� as a minimal model to describe the FM
metallic phase in manganites.22

To proceed, we turn into the path-integral formalism. The
partition function of the QDE model in the large JH limit can
be written as

Z =	 D�f†�D�f�D�d�
†�D�d��D���exp
− 	

0

�

d��
i

L� ,

�8�

where

L = �
�

di�
† ��� + �i�di� + f i

†��� + i�i − �0�f i

+
t

2S
�
u,�

�f i+u
† f idi�

† di+u� + H.c.� − 2iS�i,

�0 is the chemical potential of holes, and �i is the Lagrang-
ian multiplier to impose the NDO condition. To facilitate the
mean-field analysis, one may perform the Hubbard-
Stratonovich transformation to decouple the hopping term,
and the Lagrangian becomes

L = �
�

di�
† ��� + i�i�di� + f i

†��� + i�i − �0�f i

−
t

2S
�
u

�	i+u,i
† f i+u

† f i + H.c.� −
t

2S
�
u,�

�
i+u,i
† di+u�

† di� + H.c.�

−
t

S
�
u

�
i+u,i
† 	i+u,i + H.c.� − 2iS�i. �9�

We notice that there is a U�1� gauge structure in the slave-
fermion scheme, which is reflected in the invariance of L �up
to a total derivative in �� under the U�1� gauge transforma-
tion,

f i → f ie
−iwi, di� → di�e−iwi,

	i+u,i → 	i+u,ie
i�wi+u−wi�,


i+u,i → 
i+u,ie
i�wi+u−wi�,

�i → �i + ��wi. �10�
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Motivated by the DE mechanism, which allows the coher-
ent hopping of charge carriers in a FM background, we con-
sider the following mean-field ansatz:

	i+u,i = 	, 
i+u,i = 
, i�i = � , �11�

where 	, 
, and � are real. Inserting Eq. �11� into Eq. �9�, the
mean-field Lagrangian can be written as

Lmf = �
�

di�
† ��� + ��di� + f i

†��� + � − �0�f i

−
	t

2S
�
u

�f i+u
† f i + H.c.� −


t

2S
�
u,�

�di+u�
† di� + H.c.�

−
zt

S

	 − 2S� ,

where z=6 is the coordination number. Now Lmf becomes
quadratic in f and d�, and one may integrate them out to
obtain the mean-field grand potential. The mean-field equa-
tions are obtained through minimizing the mean-field grand
potential with respect to the mean-field parameters, yielding

1

N
�

k
nB��bk + �� = S −

x

2
, �12�

1

N
�

k
� fknF�� fk − � f� =

zt

S
	
 , �13�

1

N
�

k
�bknB��bk + �� =

zt

2S
	
 , �14�

where nF�x�= �e�x+1�−1 is the Fermi-Dirac distribution,
nB�x�= �e�x−1�−1 is the Bose-Einstein distribution, N is the
number of lattice points, � fk=− 	t

S �u cos�k ·u�, and �bk

=− 
t
S �u cos�k ·u�. The chemical potential of holons, � f =�0

−�, is associated with the hole concentration x through the
equation

1

N
�

k
nF�� fk − � f� = x . �15�

Equations �12�–�15� are the mean-field equations we want to
solve.

Before solving these mean-field equations numerically,
we may look into the physics revealed by them. Equation
�12� is nothing but the number equation of free bosons with
the average number of particles per site S−x /2 and the
chemical potential −�. In three dimensions, there exists a
critical temperature Tc0 so that �=�0 for T�Tc and �
�0 for TTc, where �0=
zt / �2S� is the bottom of the
spinon band �bk. When �=�0, the Bose-Einstein condensa-
tion �BEC� of the d bosons occurs, which corresponds to the
FM phase. On the other hand, it is the paramagnetic �PM�
phase for ��0. In this scenario, the PM to FM phase tran-
sition in manganites is associated with the BEC of the d
bosons, and Tc corresponds to the Curie temperature.

With the above understanding in mind, we can see that
deep inside the FM phase, without loss of generality, one
may choose the direction of magnetization to be the z axis

and set �di↑=�2S−x and �di↓=0 in terms of a proper spin
SU�2� rotation. �This parametrization for d bosons is consis-
tent with the experiment which shows the complete spin po-
larization of conduction electrons in manganites.23� Further,
for T�Tc, one may neglect the amplitude fluctuations of di↑.
As for the phase fluctuations of di↑, it can be absorbed into
di↓ and f i by choosing a particular gauge or performing a
proper U�1� gauge transformation with the help of the U�1�
gauge invariance of L. Thus, to obtain the low-energy effec-
tive Hamiltonian in the FM phase, it suffices to set

di↑ = �2S − x, di↓ = bi, �16�

in Lmf. On account of the condensation of the d bosons, it
turns out that the gauge fluctuations acquire a finite energy
gap through the Anderson-Higgs mechanism, so that the
mean-field state is stable against the gauge fluctuations. As a
result, the physics in the FM phase at energies much lower
than the gap of gauge bosons, Eg, can be described by the
following effective Hamiltonian in the grand canonical en-
semble:

HFM = �
k

���k − � f�fk
†fk + �kbk

†bk� , �17�

where f i=
1

�N
�keik·ifk and bi=

1
�N

�keik·ibk. �For the details of
the derivation, see Sec. IV.� The f field describes the spinless
charged excitations—holons, with the dispersion relation

�k = �1 −
x

4
�t�

u
cos�k · u� , �18�

and we shall see that the b field describes the FM spin
waves—magnons, with the dispersion relation

�k =

t

2 �3 − �
u

cos�k · u�� . �19�

In Eq. �17�, we have neglected the interactions between ho-
lons and magnons, which are irrelevant operators in the
sense of the renormalization group �RG�. Equation �17� in-
dicates that there is spin-charge separation at low energy in
the FM metallic phase. �We will come back to this point in
Sec. IV.� Further, we shall see later that the bandwidth of
holons is of the order of t, while that of magnons is of the
order of 0.1t.

III. RESULTS IN THE FERROMAGNETIC METALLIC
PHASE

A. Magnetic properties

(a) Magnon dispersion. We shall first employ our mean-
field theory to calculate the transverse spin-spin correlation
function, which is defined as

iS��t,x� � ��t���Si
+�t�,Sj

−�0�� , �20�

where Si
±=Si

x± iSi
y and x= i− j. In the large JH limit, S± can be

expressed by the d bosons

Si
+ = di↑

† di↓, Si
− = di↓

† di↑. �21�

The Fourier transform of S��t ,x�, denoted by S��� ,q�, can
be obtained from the corresponding Matsubara function
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through analytical continuation. In the FM phase, S��� ,q�
can be related to the two-point correlation function of the b
field within the mean-field theory,

S���,q� � xd�T�ST��,q� , �22�

where xd�T�= �di↑
† di↑ is the average number of d bosons in

the condensate per site at temperature T and ST�� ,q� is the
Fourier transform of the retarded Green function of the b
field. In view of Eq. �22�, one may identify the excitations
corresponding to the b field as the magnons.

We notice that the form of the magnon dispersion we
obtained �Eq. �19�� is identical to that given by the FM
Heisenberg model on a simple cubic lattice with nearest-
neighbor interactions only. This result is similar to that pre-
dicted by previous studies on the DE model.3–7 However,
within the present framework, the Heisenberg-type behavior
for the magnon dispersion is a mean-field result. By taking
into account the so far ignored irrelevant �in the sense of the
RG� interactions between magnons, a deviation from the
Heisenberg spectrum is expected. On the general ground of
the RG, we expect that the deviation from the mean-field
result �the Heisenberg spectrum� will become more notice-
able away from the zone center. Furthermore, the small val-
ues of the spin stiffness at T=0 in the regions x→0 and x
→1 �see Fig. 1� suggest that the mean-field results may re-
ceive considerable corrections in these regions. On the other
hand, for the physically interested doping regime 0.2�x
�0.5, the mean-field results should be robust. Recent works
on the DE model, such as the spin-wave theory based on the
large Sc expansion11,12 and an exact calculation on a finite
ring24 in the limit JH / t�1, have revealed a deviation of the
magnon dispersion from the Heisenberg spectrum in the DE
model. The deviation is prominent at large momenta,11,24 and
the overall deviation is very small in the doping range 0.2
�x�0.6.24 Our theory is consistent with these results.

A Heisenberg-type behavior for the magnon dispersion
may provide a reasonably accurate picture for manganese
oxides with large values of Tc.

25 However, recent experi-
ments indicate deviations from this canonical behavior in
compounds with lower values of Tc. In particular, the soft-

ening of the mangon dispersion near the boundary of the
Brillouin zone is observed.26 Such an issue clearly depends
on the details of the short-distance physics, and is beyond the
scope of the present work. A systematic calculation which
incorporates the magnon-magnon and magnon-holon interac-
tions, such as those given by Eq. �47�, may be helpful.27

However, for a complete comparison with experimental data,
additional ingredients, such as orbital fluctuations and
orbital-lattice couplings, may also need to be taken into
account.10

A finite damping rate of magnons at T=0 in the DE model
has been pointed out in Refs. 11, 12, and 28. To address this
problem within the slave-fermion theory, we must go beyond
the mean-field results. In fact, the magnon acquires a finite
lifetime, even at T=0, at the two-loop order of the magnon
self-energy diagrams by taking into account the interactions
between holons and magnons. �The leading terms of these
interactions are given by Eq. �47�.� The physical origin of a
nonvanishing T=0 damping rate of magnons can be easily
understood based on our spin-charge separated mean-field
state: Because the magnon dispersion, which is proportional
to k2 near the zone center, is definitely immersed into the
“particle-hole” continuum of holons in three dimensions, the
magnon can decay by exciting a single “particle-hole” pair
and another magnon, which is similar to the physics of Lan-
dau damping in the Fermi liquids.29 Since the interactions
between holons and magnons are irrelevant operators in the
sense of the RG, we expect that the damping rate of the
magnon near the zone center �k=0� is, at least, proportional
to k� with ��4 in three dimensions by the power counting
usually employed in the momentum-space RG. �Additional
on-shell constraints may further increase the value of �.� The
spin-wave theory in the JH / t→ +� limit predicts that the
damping rate of the magnon near the zone center is propor-
tional to k6 in three dimensions,11,12 which implies that it is
indeed due to the irrelevant interactions. A full calculation by
incorporating these irrelevant operators is beyond the scope
of this paper, and their effects within the present framework
are reserved for further studies.

(b) Doping dependence of the spin stiffness at T=0. From
Eq. �19�, the magnon dispersion in the long wavelength limit
k→0 is given by �k�D0k2 where

D0 =

tl2

2S
, �23�

is the spin stiffness at T=0 and l is the lattice constant. Thus,
the doping dependence of D0 can be extracted from that of 
.
The result is shown in Fig. 1.

Our theory predicts that D0 is symmetric in x with respect
to the quarter-filling x=0.5. This result is similar to that pre-
dicted by the spin-wave theory of the DE model in the limits
JH / t→ +� and Sc→ +�,11 except that the magnitude of
D0�x� around x=0.5 we obtained is smaller. The values of D0

we obtained are D0 / �tl2�=0.0144,0.018,0.0202 for x=0.2,
0.3,0.4. Using the relation D0=JSeffl

2, where Seff=2−x /2 is
the average spin for each site and J denotes the effective
exchange coupling between spins, one may get J=0.0076t ,
0.0097t ,0.0112t for x=0.2,0.3,0.4, which correspond to J

FIG. 1. �Color online� The doping dependence of the spin stiff-
ness at T=0. Here we set the lattice constant l=1.
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=2.28,2.91,3.36 meV if we use t=0.3 eV, J�1.9,2.4 meV
found in La0.8Sr0.2MnO3 �Ref. 25� and La0.7Pb0.3MnO3,31 re-
spectively. We see that the values of J we obtained are con-
sistent with those extracted from experimental data. To sum
up, for the magnon dispersion relation, the difference be-
tween our mean-field theory and the spin-wave theory of the
DE model in the doping range 0.2�x�0.5 mainly lies at the
doping dependence of the spin stiffness at T=0 and its mag-
nitude.

Finally, we mention that the low-temperature magnetiza-
tion in the FM phase can be easily calculated within the
present mean-field theory, and it is

M�T� = M0�1 −
��3/2�

M0
� T

4�D0
�3/2

+ ¯ � , �24�

which is identical to that predicted by the simple-cubic
Heisenberg ferromagnet, where M0= �2−x /2�l−3 is the mag-
netization at T=0.

B. Estimation of Tc

Next, we would like to estimate Tc within our mean-field
theory, which can be obtained from the mean-field equations
�Eqs. �12�–�15�� numerically by setting �=�0. The numeri-
cal results are shown in Fig. 2. A few points about our results
should be discussed. First of all, Tc is asymmetric in x with
respect to the point x=0.5 though 
�Tc� is still symmetric in
x with respect to x=0.5. This is in contrast to D0. This asym-
metry suggests that the FM phase is more robust at x�0.5 by
including strong on-site Coulomb repulsions and Hund’s rule
couplings properly. Next, the previous work based on the
dynamical mean-field theory gives an estimate of Tc for
JH / t�1: Tc / t=0.146 at x=0.3.7 Our mean-field theory pre-
dicts Tc / t=0.1454 at x=0.3, which is quite close to the value
obtained from the dynamical mean-field theory. Finally, the
maximum of Tc / t is reached at x=0.458 with the value
Tc / t=0.1575, which corresponds to Tc�548 K for t
�0.3 eV. This value is about 2 times of that obtained by

experiments. As usual, the fluctuations will reduce the mean-
field value. Nevertheless, the difference between the mean-
field result and experimental data may still not be explained
even if we include the fluctuations. This may not be surpris-
ing since, after all, Tc is a nonuniversal quantity and the
above result simply indicates that to have a good estimation
of Tc a few ingredients that are ignored in the QDE model,
such as the AF superexchange interactions between core
spins, orbital fluctuations, and electron-phonon interactions,
must be included. In fact, experiments on the oxygen-isotope
substitution show that phonons are important in the determi-
nation of Tc.

30

C. The low-temperature specific heat

Low-temperature �T�10 K� heat-capacity measurements
provide information regarding the bulk properties of solids.
For a magnetic solid, the low-temperature specific heat is
composed of numerous contributions and it is typically given
by

cv = celec + chyp + clat + cmag. �25�

Here celec is the electronic contribution, which takes the form
celec=�T, chyp arises from the hyperfine field of the nuclear
moment, clat is the contribution of phonons, and cmag is the
contribution from the magnetic spin waves, which is usually
estimated as the form �nBnTn.

In our theory, celec is primarily given by the holon sector
due to the spin-charge separation at low energy, yielding

� =
��kB�2

3
g��F� ,

away from the van Hove singularities, where kB is the Bolt-
zmann constant, and g��F� is the density of states �DOS� of
holons at the Fermi energy.

Figure 3 shows the values of � in the doping range 0.2
�x�0.5 with t=0.3 eV �solid line� and t=0.2 eV �dashed
line�. The magnitudes of � we obtained are consistent with

FIG. 2. �Color online� �a� Tc / t vs x; �b� � f / t vs x at T=Tc; �c� 

vs x at T=Tc; �d� 	 vs x at T=Tc.

FIG. 3. �Color online� �=celec /T, in unit of mJ/mol K2, in the
doping range 0.2�x�0.5.
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the experimental data. Furthermore, the mean-field theory
predicts a very weak doping dependence of �, which is ap-
proximately given by

� �
1

1 − x/4
. �26�

Such a weak doping dependence of � may not contradict to
the experimental data at x=0.2 and 0.3, where the measured
values of � ��3.3 mJ/mol K2� appear to be nearly a constant
in the FM metallic phase.31 More detailed experiments is
warranted to resolve this issue.

As for cmag, the magnon contribution to the low-
temperature specific heat is similar to that in the simple-
cubic Heisenberg ferromagnet and takes the form

cmag = B3/2T3/2,

with

B3/2 =
15��5/2�kB

5/2

32��D0�3/2 .

The values of B3/2 in the doping range 0.2�x�0.5 are
shown in Fig. 4 with t=0.3 eV �solid line� and t=0.4 eV
�dotted line�. The values of B3/2 we obtained are close to the
experimental data31 �B3/2=1.1802 mJ/K5/2 mol for x=0.2
and B3/2=0.956 72 mJ/K5/2 mol for x=0.3� if we use t
=0.4 eV.

To sum up, the consistency of the magnitudes of � and
B3/2 in the doping range 0.2�x�0.5 evaluated in terms of
the mean-field theory suggests that the low-temperature ther-
modynamics of the FM metallic phase can be well-described
by the one-orbital QDE model, and this result can be viewed
as an indirect evidence of spin-charge separation at low en-
ergy in the FM metallic phase.

D. Optical conductivity at low energy

One of the consequences of the spin-charge separation in
our theory is that the optical conductivity at low frequency
���Eg� is mainly contributed by free holons, where Eg de-

notes the gap of gauge fluctuations. Especially, the Drude
weight is completely determined by free holons, which is
given by

D = −
�e2

2l
K , �27�

where K is the average kinetic energy of holons per site and
l�3.9 Å is the lattice constant. Following experiments, one
may measure the Drude weight in unit of �e2 / �2mel

3�, de-
noted by DW, where me is the electron mass. Within our
mean-field theory, DW at T=0 is

DW =
6metl

2


�2 �1 −
x

4
� , �28�

where � is the Planck constant. The doping dependence for
DW, given by Eq. �28�, is shown in Fig. 5 with t=0.3 eV
�solid line� and t=0.2 eV �dotted line�. From it, we see that,
in the doping range 0.2�x�0.5, DW�0.19–0.26 for t
=0.3 eV, and DW�0.13–0.18 for t=0.2 eV. Since the
Drude peak at T=0 does not carry 100% of the weight, this
result implies that some spectral weight must be transferred
to higher energies ���Eg� due to the optical conductivity
sum rule, so that the Drude weight is suppressed compared
with normal metals.

Optical conductivity spectra have been investigated for
single crystals of La1−xSrxMnO3 with 0�x�0.3.13 The pe-
culiar behaviors observed in the low-energy optical spectra
���0.1 eV� in the FM metallic phase at low temperature,
which cannot be explained by the simple Fermi-liquid pic-
ture, are as follows: �i� The low-energy spectra are composed
mostly of the incoherent part and lightly of the Drude re-
sponse �about 20%–30% in fraction�. �ii� The Drude part is
discernible below 0.04 eV, but with an anomalously small
spectral weight. For example, the value of DW is as small as
0.012 even for the lowest temperature spectra for both x
=0.175 and 0.3. Further optical studies on La0.7Ca0.3MnO3
�Ref. 14� confirm that, in the FM metallic phase at very low
temperatures, the low-energy optical conductivity spectra
���0.5 eV� show two types of absorption features: a sharp
Drude peak with little weight �about 33% in fraction or

FIG. 4. �Color online� B3/2=cmag/T3/2, in unit of mJ/mol K5/2,
in the doping range 0.2�x�0.5.

FIG. 5. �Color online� DW as a function of x.
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DW�0.02� superimposed to the broad incoherent absorption
band. Our analysis indicates that in the FM metallic phase
the optical conductivity spectra of the QDE model at low
energy ���JH� indeed consists of two parts,

�1��� � �c��� + �inc��� ,

where �c��� is the coherent �Drude� part, which is mainly
contributed by holons, and �inc��� represents the incoherent
part with most of its weight in the region ��Eg, which
arises from the strong scattering between gauge fields and
holons. Thus, according to our theory, the energy scale below
which the Drude part is discernible can be regarded as the
lower bound of Eg. A rough estimate of the value of Eg �Eg
�0.038–0.071 eV in the doping range 0.15�x�0.5 for t
�0.3 eV� is consistent with the experiment. �See Sec. IV.�
This picture is consistent with the observed optical spectra at
low energy. However, the values of DW we obtained are
larger than the experimental data by an order of magnitude.
Since our mean-field theory is supposed to be accurate at low
energy, the quantitative discrepancy between our results and
the experimental data indicates that to explain the optical
spectra of manganites, other ingredients beyond the one-
orbital QDE model must be taken into account. Some pos-
sible scenarios, such as orbital fluctuations32 or electron-
phonon conplings,33,34 have been proposed. Applying our
method to these “extended” QDE models is an interesting
problem.

E. The electron spectral function and tunneling density of
states

The most important result in our mean-field theory is the
spin-charge separation at low energy. A direct examination of
this phenomenon is to study the behavior of the electron
spectral function at low temperatures, which can be mea-
sured by the ARPES experiments. The electron spectral func-
tion is defined as

A��,q� � − 2 Im�G�i�n → �,k�� . �29�

Here Im�¯� means the imaginary part of ¯, and G�K� with
K= �i�n ,k� is the Fourier transform of the electron Green
function, which is defined by

G�X� � − �T�c̄i����c̄j�
† �0�� = −

1

2S
�T�f i

†���di����dj�
† �0�f j�0�� ,

�30�

where X= �� , i− j�.
At the mean-field level, holons and magnons are decou-

pled from one another and di↑ is treated as a c number, in-
stead of an operator. As a result, the electron Green function
can be approximated as

G�X� �
1

2S
�T�f j�0�f i

†�����di↑
† di↑

+
1

2S
�T�f j�0�f i

†�����T�di↓���dj↓
† �0��

= −
xd�T�

2S
G�− X� +

1

2S
G�− X�S�X� , �31�

where xd�T� is determined by the equation

xd�T� +
1

N
�

k
nB��k� = 2S − x , �32�

and

G�X� = − �T�f i���f j
†�0�� ,

S�X� = − �T�bi���bj
†�0�� ,

are the propagators of holons and magnons, respectively. In
terms of Eq. �31�, the electron spectral function is given by35

A��,k� = Z�x,T���� + �k − � f� + a��,k� , �33�

where Z�x ,T�=�xd�T� /S and

a��,k� =
�

SN
�

q
�nB��k+q� + nF��q − � f��

� ��� + �q − � f − �k+q� .

Equation �33� indicates that the electron spectral function
at low energy consists of two parts: a sharp quasiparticle
peak, following the holon dispersion, superimposed to a
broad incoherent part given by a�� ,k�. The spectral weight
of the quasiparticle peak is given by Z�x ,T�, which is asso-
ciated with the condensate of the d bosons. At T�Tc, it is
given by

Z�x,T� � 2��1 −
x

4
−

��3/2�
4

� Tl2

4�D0
�3/2� . �34�

By taking into account impurity scattering and the interac-
tions between holons and magnons, the �-function peak will
be broadened, and the width 1/� is given by 1/�
=max�1/�0 ,kBT� where �0 is the lifetime due to impurity
scattering. The low-temperature behavior of a�� ,kF� at the
hole concentration x=0.4 is shown in Fig. 6, where kF
�0.74��1,1 ,0� and 0.54��1,1 ,1� in Figs. 6�a� and 6�b�,
respectively. Figure 7 shows a�� ,k� along the direction from
�0,0,0� to �� ,� ,0�, at the temperature T / t=1/174 and the
hole concentration �a� x=0.4 and �b� x=0.3. A common fea-
ture of a�� ,k� is that it exhibits a broad asymmetric peak at
low temperature with the width �t, and the peak position is
at ��0.5t and 0.21t for x=0.4 and 0.3, respectively. Further-
more, at low temperature, the peak position and its width are
insensitive to the variations of temperatures. This asymmet-
ric peak implies the violation of the particle-hole symmetry.
As raising the temperature, we can see a transfer of the spec-
tral weight from the quasiparticle peak to the incoherent part.
Such a trend persists until at the critical temperature where
the coherent part disappears completely, i.e., Z�x ,Tc�=0. The
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presence of such a broad asymmetric peak at low tempera-
ture reflects the composite nature of electrons at low energy
in the large U, JH limit, i.e., a manifestation of the spin-
charge separation at low energy, which can be observed in
the photoemission experiment.

A similar form for the electron spectral function �Eq. �33��
was also obtained by a mean-field approximation to the DE
model in the limit JH / t→ +�.9 There, the FM phase also
corresponds to the condensed phase of the Schwinger
bosons. However, the doping dependence of the mean-field
parameters in that approach is different from ours, especially
the bandwidth of holons. This results in distinct doping de-

pendence for various physical quantities, such as the spin
stiffness at T=0 and the Drude weight. Moreover, quadratic
approximations for the dispersion relations of holons and
magnons were used to calculate the electron spectral func-
tion, which leads to a weak logarithmic singularity in the
incoherent part a�� ,k� with the width being of the order of
the maximum magnon energy. We do not see such a singu-
larity, as can be seen in Figs. 6 and 7. Further, the width of
the broad peak we obtained is much larger, which is consis-
tent with the ARPES measurements.

Another quantity which is related to A�� ,k� is the tunnel-
ing DOS,

N��� =
1

N
�

k
A��,k� �35�

which can be measured by the scanning tunneling spectros-
copy �STS�. Within the mean-field theory, N��� can be writ-
ten as

N��� =
Z�x,T�

t�1 − x/4�
N3� �̄

1 − x/4
� +

1

N
�

k
a��,k� , �36�

where N3���� 1
N�k���−�u cos�k ·u�� and �̄= ��−� f� / t. Fig-

ure 8 shows N��� as a function of �̄ at two temperatures
T / t=1/174 and 25/1088 with the hole concentration �a� x
=0.4 and �b� x=0.3. A few salient features about the low-
temperature behavior of the tunneling DOS are as follows:
�i� N��� consists of two parts: One is proportional to the
DOS for a tight-binding model on a simple cubic lattice,
which is contributed by the quasiparticle peak of the electron
spectral function, and the other exhibits an asymmetric peak,
which results from the incoherent part of the electron spec-
tral function. �ii� The position of the asymmetric peak is at
�−� f �	�T=0�t, the renormalized hopping amplitude of ho-
lons. �iii� The value of N��� is insensitive to the variation of

FIG. 6. �Color online� The electron spectral function, with the
subtraction of the quasiparticle peak, at the hole concentration x
=0.4. kF denotes the Fermi momentum. The temperatures we con-
sider are T / t=1/174 �dashed line� and 25/1088 �solid line�, which
correspond to T=20,80 K, respectively, for t=0.3 eV.

FIG. 7. �Color online� The electron spectral function, with the
subtraction of the quasiparticle peak, at the temperature T / t
=1/174 and hole concentration �a� x=0.4 and �b� x=0.3. Here k
=k0� �� ,� ,0� with k0=0.5,0.6,0.7,0.8,0.9 from bottom to top.

FIG. 8. �Color online� The tunneling DOS at the temperatures
T / t=1/174 �solid line� and 25/1088 ��� with the hole concentra-
tion �a� x=0.4 and �b� x=0.3. We have set t=1.
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temperatures. Again, this structure of N��� is a natural con-
sequence of spin-charge separation.

Variable temperature STS studies on single crystals of
La0.7Pb0,3MnO3 have been done in the temperature range
100–375 K.36 Experimental data show that N��F� grows rap-
idly below Tc and reaches a temperature independent value,
where �F is the Fermi energy. Furthermore, N��� near �F is
flat in the scale of T below Tc. Further STS studies on single
crystals of La0.7Ca0,3MnO3 �Ref. 37� confirm these results.
Our prediction about the behavior of N��� near the Fermi
energy is consistent with experimental results. Further STS
studies at low temperatures must be performed to verify our
mean-field theory. Especially, an observation of the asym-
metric peak away from the Fermi energy in the tunneling
DOS at low temperatures will be solid confirmation of the
slave-fermion theory.

IV. GAUGE FLUCTUATIONS AND THE STABILITY OF
THE MEAN-FIELD STATE

In order to study the role of gauge fluctuations and to
derive the low-energy effective theory, we can start with Eq.
�9�, and parametrize the Hubbard-Stratonovich fields as

	i+u,i = 	e−i�i,u, 
i+u,i = 
e−i�̃i,u. �37�

One may further decompose �i,u and �̃i,u by

�i,u = Ai,u + Bi,u, �̃i,u = Ai,u − Bi,u. �38�

Such a decomposition becomes transparent once we realize
that under the U�1� gauge transformation, Ai,u transforms
like a gauge field, while Bi,u is gauge invariant. Simple ma-
nipulations show that the Bi,u field acquires a finite energy
gap. Furthermore, the amplitude fluctuations of 	i+u,i and

i+u,i are also gapped. For the energy below these mass gaps,
one may integrate out the massive fields and take the con-
tinuum limit

f i → ld/2h�X�, di� → ld/2d��X� ,

Ai,u → u · a�X�, �i → ��X� , �39�

where X= �� ,x�. After doing so, we arrive at the following
continuum Lagrangian within the effective-mass approxima-
tion

L = �
�

d�
†��� + i��d� + h†��� + i� − �0�h − 2iM�

+
1

2mf
���− ia�h�2 + �

�

1

2mb
���− ia�d��2, �40�

where M =Sl−3. In view of Eq. �40�, the Lagrangian multi-
plier � plays the role of the time component of the gauge
fields.

In the FM phase, without loss of generality, one may pa-
rametrize d� in the following way:

d↑ = �nd + �ei�, d↓ = b , �41�

on account of the BEC of the Schwinger bosons, where nd
= �2S−x�l−3 is the average density of d bosons, and � and �
describe the amplitude and phase fluctuations of d↑, respec-
tively. That is, we choose the direction of the order parameter
�magnetization� to be the z axis. Inserting Eq. �41� into Eq.
�40� gives rise to

LFM = b†��� + i��b + h†��� + i� − �0�h − in�

+
1

2mf
���− ia�h�2 +

1

2mb
���− ia�b�2 +

1

8mbnd
����2

+
nd

2mb
��� − a�2 +

1

2mb
���� − a�2 + i��� + ���� .

The U�1� gauge structure of LFM now reads

h → he−iw, b → be−iw,

� → �, � → � − w ,

a → a − �w, � → � + ��w . �42�

With an eye on the gauge invariance of LFM, one may choose
the gauge w=�. This amounts to redefining the h, b, a, and
� as follows:

h̃ = he−i�, b̃ = be−i�,

ã = a − ��, �̃ = � + ��� . �43�

We notice that h̃, b̃, ã, and �̃ are all gauge invariant. In terms
of Eq. �43�, LFM becomes

LFM = b̃†��� + i�̃�b̃ + h̃†��� + i�̃ − �0�h̃ + i�� − n��̃

+
1

2mf
���− iã�h̃�2 +

1

2mb
���− iã�b̃�2

+
1

8mbnd
����2 +

1

2mb
�nd + ��ã2.

In the above, the higher order terms in �, i.e., the self-
interactions of �, have been neglected. This is because they

only generate irrelevant operators. Integrating out �̃ gives
rise to the constraint

b̃†b̃ + h̃†h̃ + � = n , �44�

which is nothing but the continuum version of the NDO
condition �Eq. �7��. Using Eq. �44�, one may further integrate
out the � field, yielding

LFM = h̃†��� − �0�h̃ +
1

2mf
��h̃�2 + b̃†��b̃ + D0��b̃�2

+
1

2
maã2 + ¯ ,

where ¯ represents the interactions between h̃, b̃, and ã,
D0= �2mb�−1 is the FM spin stiffness at T=0, and ma= �2M
− �1−mb /mf�n� /mb.
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We see that in the FM phase the gauge fields acquire a
“mass” term through the Anderson-Higgs mechanism. In
other words, the excitations corresponding to ã acquire a
finite energy gap Eg�ma /kF, up to a multiplicative constant
of order one, where kF is the Fermi momentum of holons.
Using the mean-field parameters, mf can be estimated as
mf

−1= �1−x /4�tl2, and we have

Eg

t
�

4�2D0/�tl2�
�3 + W/f�x�


1 −
x

4
�1 − f�x�� tl2

2D0
��� , �45�

where W=�F / t and f�x�=1−x /4. Equation �45� gives rise to
the values Eg / t=0.1273–0.2381 in the doping range 0.15
�x�0.5. For t�0.3 eV, this corresponds to Eg
�0.038–0.071 eV, which is about the same order of Tc.

When the energy is much lower than Eg, one may further
integrate out ã, the resulting effective Lagrangian can be
written as LFM=L0+Lint where

L0 = h̃†��� − � f�h̃ +
1

2mf
��h̃�2 + b̃†��b̃ + D0��b̃�2 �46�

and

Lint =
g1

2
�jh + jb�2 +

g2

2
���h + ��b�2. �47�

In Eq. �47�, we only keep the most relevant operators around
the FM fixed point, described by L0, in the sense of RG, and
jh�jb� and �h��b� are the current and density operators for the

h̃�b̃� fields, respectively.
Since Lint is irrelevant around the fixed point described by

L0, our low-energy effective theory shows clearly that the
FM phase of the QDE model exhibits the phenomenon of
spin-charge separation. That is, the low-energy excitations

are holons described by the h̃ field, which carry charge e and
spin zero, and the FM spin waves �magnons� described by

the b̃ field, which are charge neutral and carry spin-1. This is
very different from the usual itinerant ferromagnets, where
the elementary excitations are the dressed electrons, which
carry charge −e and spin-1 /2, and the magnons, which are
collective excitations in the particle-hole channel.

V. CONCLUSION AND DISCUSSIONS

To summarize, we have studied the low-energy physics of
the QDE model based on the slave-fermion formulation. The
most important feature of this approach is that the effects of
large values of U and JH are taken into account right from
the beginning. �For the one-orbital model, the large U, JH
limit is implemented by the NDO condition.� This results in
a non-Fermi-liquid ground state, in contrast to most of the
previous studies on the DE model. A direct consequence fol-
lowing it is that the electron spectral function exhibits a
broad asymmetric peak away from the Fermi surface, in ad-
dition to the quasiparticle peak. Both our results about the
low-energy magnetic properties and low-temperature ther-
modynamics are also consistent with experimental data in
the FM metallic phase. On the other hand, our prediction for

the optical conductivity at low energy is only qualitatively
consistent with experiments. Quantitatively, the Drude
weight we obtained is larger than that actually observed. This
indicates that to have a good quantitative description for the
low-frequency optical spectra of manganties, some extra
ingredients beyond the one-orbital QDE model must be
taken into account. However, we should emphasize that, for
such a scenario to be valid, the inclusion of these new ingre-
dients should not affect the low-temperature thermodynamics
and low-energy magnetic properties predicted by the one-
orbital QDE model in any drastic way because the one-
orbital model already gives rise to reasonable results on
them.

We have also studied the role of gauge fluctuations and
derived a low-energy continuum effective theory. A previous
study in terms of the slave-fermion gauge theory claimed
that the gapless longitudinal gauge fluctuations play a domi-
nant role on the electronic spectral properties.20 However, the
longitudinal component of gauge fields is gauge dependent
and physics should be independent of the gauge choice.
Moreover, both the time and longitudinal components of
gauge fields are screened in the metallic phase, which cannot
affect low-energy physics dramatically. What we do in Sec.
IV is to explicitly show that the gauge fluctuations in the FM
phase, both the transverse and longitudinal components, are
completely screened due to the Anderson-Higgs mechanism.
The resulting electron spectral function in the FM metallic
phase consists of two parts: one the sharp quasiparticle peak
at the Fermi energy and the other an asymmetric broad peak
away from the Fermi energy, instead of a broad quasiparticle
peak at the Fermi energy. These predictions can be observed
from the ARPES or STS measurements.

From the theoretical point of view, the slave-fermion for-
mulation also gives a clear picture of the apparently observed
Fermi-liquid behavior and its possible deviations. Within this
framework, the Fermi-liquid-like behaviors, such as a small
value of the Drude weight in the optical spectra and a small
coherent quasiparticle peak in the electron spectral function,
are consequences of the Bose condensation of the spinon
field. Therefore, the spectral weight is directly related to the
magnitude of the condensate. Based on the similar reasoning,
we expect that in low dimensional or layered materials where
the quantum fluctuations tend to kill the Bose condensate,
the coherent quasiparticle peak will either disappear com-
pletely or be greatly reduced in comparison with the three-
dimensional results we obtained here.28,38 This is actually
observed in the ARPES measurements for layered
compounds.15,16 Another minimal extension of the one-
orbital QDE model, which has the potential to reduce the
quasiparticle peak or the Drude weight, is to include the
orbital degrees of freedom. In this case, we have two slave
boson fields: one describing the spin fluctuations and the
other describing the orbital fluctuations. If only the spin
slave field condenses at low temperature, the strong orbital
fluctuations will also tend to reduce the coherent parts in the
optical conductivity and the electron spectral function. Re-
searches along these directions are in progress.
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