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We performed variational Monte Carlo simulations with a shadow wave function to study the effects of
vacancies on the structure of solid molecular p-H2. In a quantum crystal, vacancies tend to modify the local
order in the crystal. The main mechanism is due to the fact that molecules tend to occupy the empty space in
order to lower the kinetic energy. While this effect is expected to be more important at lower than at higher
densities, we find that in the latter case the local order is even more affected by the presence of a vacancy.
Results on the occurrence of quantum diffusion of the vacancy in the solid are also presented.
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I. INTRODUCTION

Vacancies in quantum crystals originate a number of in-
teresting effects which are absent in classical systems. Quan-
tum diffusion of vacancies through the crystal was consid-
ered to be the mechanism that would lead to a superfluid-like
behavior in solid 4He.1–3 But the presence of vacancies also
influences the local order in the system, giving rise to inter-
esting relaxation effects which are at the origin of the differ-
ence between the classical activation energy and the actual
experimentally observed activation energy in 4He.4,5 Solid
para-hydrogen is believed to have a behavior which is more
“classical” if compared with 4He, due to the much stronger
attraction among molecules, which, for instance, make
p-H2 to be solid at T=0 K, as opposed to He, even if quan-
tum delocalization has to be stronger due to the lighter mass.
Vacancies are also indicated to play an important role in
quantum diffusion of isotopic impurities embedded in a ma-
trix of p-H2.6,7

In this paper we want to address the effects of vacancies
in p-H2 crystals. Shadow wave functions8,9 �SWF� proved to
be a very efficient tool for the study of vacancies in quantum
crystals. Previous results obtained for 4He show, for instance,
how the estimate of formation energies is in good agreement
with recent results obtained by means of exact quantum
Monte Carlo projective methods and with experimental
data.4,5,10

The formation energy of a vacancy is usually schematized
as the sum of three terms.11 The leading contribution comes
from the kinetic and potential energy pertaining to the par-
ticle that has been removed from the crystal. This term is
essentially the vacancy formation energy in a classical rigid
solid. The expression of this contribution in the thermody-
namic limit is

�Evac
cl = −

�V�
N

+ Pv , �1�

where �V� /N is the expectation value of the potential energy
per particle in the system, P is the pressure and v the specific

volume. The difference with the measured value can be at-
tributed to relaxation effects in the crystal and to the diffu-
sion of the vacancy through the crystal. The fact that in 4He
the SWF estimate of the formation energy is well in agree-
ment with the experiment is an indication that such effects
are included in a realistic way. An analogous estimate of the
vacancy formation energy in p-H2 has been presented in a
previous work.12

It is commonly assumed that when pressure is increased
in a quantum crystal, its behavior becomes more and more
“classical.” Therefore, one might expect that at high densities
vacancies have a limited effect on the local order and that
mobility should be almost reduced to zero. The calculations
reported in this paper show instead that, at high pressure, the
local distortions in the crystal due to the presence of a va-
cancy become dramatic.

In the next section, a brief summary of the SWF method
is given. In Sec. III, results on the structural analysis and
delocalization of vacancies for different values of the crystal
density will be reported. Section IV is devoted to conclu-
sions.

II. METHODS

A. Shadow wave function

The model we assume for the description of solid p-H2 is
a set of N point particles in a periodic box interacting with
the Silvera-Goldman potential vSG.13 This model interaction
contains an effective two-body term which approximately
accounts for the triple-dipole interaction which is not negli-
gible in p-H2 due to the intrinsic nonspherically symmetric
character of the molecule. As shown in a previous paper,14

the truncation of the potential at the two-body level leads to
a slightly inaccurate description of the equation of state, but
seems not to have sizeable effects on the structural properties
such as the pair distribution function. The Hamiltonian of the
system is therefore
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Ĥ = −
�

2m
�
i=1

N

�i
2 + �

i�j
vSG�rij� . �2�

The properties of the system are described by means of the
variational Monte Carlo method. The estimate for the expec-

tation of an observable of interest Ô�R� is obtained by sam-
pling the square modulus of a trial solution for the time
independent Schrödinger equation �T�R� where R
= �r1 , . . . ,rN� are the coordinates of the N molecules in the
simulation cell. The approximate expectation value is given
by

�O� =
� dR	�*�R�	2Ô�R�

� dR	��R�	



1

M
�
l=1

M

O�Rl� , �3�

where M is the number of sampled configurations.
Shadow wave functions are a particular class of trial func-

tions which are written in integral form,

�T�R� =� K�R,S��S�S�dS , �4�

where S=s1 , . . . ,sN is a set of auxiliary variables, named
shadows. The kernel K�R ,S�, is the product of a many-body

wave function of the Jastrow type, and of a product of Gaus-
sians connecting the real and auxiliary degrees of freedom,

K�R,S� = �
i�j

exp�−
1

2
 b

rij
�5��

i=1

N

exp�− C�ri − si�2� . �5�

The function �s�S� is also a many-body function of the Ja-
strow type, built from a pseudopotential which is just the
rescaled Silvera-Goldman interaction

�s�S� = �
i�j

exp�− �vSG��sij�� . �6�

The parameters b, C, �, and � have been determined by
minimizing a combination of the expectation value of the

Hamiltonian Ĥ and of its variance �2�Ĥ�12 on a set of con-
figurations sampled from

	�R,S,S�� = K�R,S�K�R,S���S�S��S�S�� . �7�

The generalization of Eq. �3� for computing expectations of

an operator Ô�R� with a SWF is

FIG. 1. �Color online� One-body density 
�r� of the first and
second neighbors of a vacant �gray empty symbols� and a filled site
�full black symbols� for a hcp crystal. Solid lines are Gaussian fits
to first neighbors density of filled sites. Dashed curves are fitted on
the right side of the density of first neighbors of the vacant sites. �a�

=0.021 50 Å−3. �b� 
=0.026 00 Å−3.

FIG. 2. �Color online� One-body density of molecules 
�r� for
the first neighbors of a vacant �empty symbols� and a filled site �full
symbol� at density 
=0.043 00 Å−3 in the fcc �a� and hcp �b� lattice.
Different empty symbols refer to different MC runs. Solid lines are
the average density of first neighbors of a filled site.
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�O� =
� 	�R,S,S��Ô�R�dRdSdS�

� 	�R,S,S��dRdSdS�



1

M
�
l=1

M

O�Rl� . �8�

The most important features of SWF is that �i� it includes
effects of correlations at any order beyond two-body by
means of the auxiliary degrees of freedom, and �ii� crystal-
line order is stabilized without the need of one-body terms in
the wave function, i.e., with a wave function which is explic-
itly translationally invariant. The last property makes SWF
the ideal tool for studying properties of defective quantum
crystals. In fact, the local structure self-consistently adapt to
the variations in density. When using SWF, it is also possible
to define operators depending on the auxiliary degrees of
freedom S. Although such operators do not carry any real
significant meaning, they are useful for analyzing the struc-
ture of the quantum crystal. In fact, as widely discussed in
other works,8,9 the shadows act as heavier particles indicat-
ing an “average” position for the real quantum particles.
Therefore, operators depending on S can be used to deter-
mine the structure of the crystal effectively averaging most
of the quantum fluctuations.

B. Simulations

We performed several sets of simulations a different den-
sities �0.0215, 0.026, 0.043 Å−3� and for two different lat-
tices, hexagonal close packed �hcp� and face centered cubic
�fcc�. Simulation cells were set to accommodate 3�3�3
elementary cubic cells for fcc, with a total of Nl=108 lattice
sites, and 5�3�3 elementary cells for a total of Nl=180
lattice sites for hcp. The vacancy is obtained by filling the
cells with Nl−1 particles. The vacant site was chosen at ran-
dom at the beginning of the simulation.

Each simulation consisted of sampling M configuration of
the set �R ,S ,S��. In order to minimize the autocorrelation in
the sampled configurations due to the harmonic correlations
between particles and shadows, a new configuration is gen-
erated by displacing a trimer composed by a molecule and
the corresponding shadows. The sampling algorithm was de-
scribed in detail in Ref. 4.

The results were obtained computing average over 104

configurations dumped during the VMC simulation. The
spacing among subsequent configurations is such that auto-
correlation effects are strongly reduced.

We stress the fact that the simulations refer to a crystal at
T=0, so no thermal effects are induced. The phenomenology
is completely due to the strong quantum nature of the sys-
tem.

FIG. 3. �Color online� Nearest neighbors one-body densities 
s�r� for shadows at 
=0.043 00 Å−3. �a� density around a empty site for fcc
crystal, �b� density around a empty site for hcp crystal, �c� density around a filled site for fcc crystal, �d� density around a filled site for hcp
crystal. Results for fcc crystal are averaged over several MC runs.
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C. Position of the vacancy

As already mentioned, one of the most interesting prop-
erties of SWF is the fact that the crystalline order is stable
even if the function is explicitly invariant under translations.
A consequence of this property is that molecules can diffuse
away from their original position in the lattice and exchange
positions with other molecules. While this process is rather
rare in the perfect crystal, the presence of a vacancy in-
creases its frequency, because molecules can hop into the
vacant site. We can interpret this hopping as delocalization of
the vacancy in the crystal. Given the quantum nature of the
system this phenomenon is expected to occur also at T=0.
We have, therefore, to face the problem of localizing the
vacancy in the crystal. If we divide the N-sites simulation
cell in Voronoi sub-cells, typically only N-1 will have unitary
occupancy, and one will be empty. The geometrical center of
the empty cell is defined as current the position of the va-
cancy. However, the large vibrations of the molecules, par-
ticularly at low densities, can lead to empty sub-cells which
are not representing a vacancy but rather a sort of interstitial
vacancy pair �IVP�. In this case, one of the nearest Voronoi
sub-cells must be double occupied. We can, therefore, easily
distinguish IVP from the real vacant site whenever they oc-
cur. Particular care must be taken in referring each configu-
ration to the same origin. It can be seen that in this case the
number of IVP can be made very small. The typical fraction
we observed is between 2 and 6%.

FIG. 4. �Color online� One body density of shadows in two 100
layers in a fcc crystal at density 
=0.043 Å−3. Triangles are the
lattice sites. Black and gray spots refer to two different layers.

FIG. 5. �Color online� Average distribution of angles between nearest neighbors of empty �gray symbols� and filled �black symbols� sites:
�a� fcc crystal at 
=0.026 00 Å−3. �b� hcp crystal at 
=0.026 00 Å−3. �c� fcc crystal at 
=0.043 00 Å−3. �d� hcp crystal at 

=0.043 00 Å−3.
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III. RESULTS

A. Structural analysis

The density distribution of the nearest neighbors and next-
nearest neighbors around occupied sites and vacancies for a

hcp lattice at 
=0.021 50 Å−3 and 
=0.026 00 Å−3 are plot-
ted in Fig. 1. All the results are averaged over ten indepen-
dent MC runs. In the figures, the origin of the x axis repre-
sents the center of either a filled or a vacant Voronoi sub-cell.
All the distributions calculated around the filled sites are
very accurately fitted by a single Gaussian and peak at the
expected distance of the first and second neighbors. More-
over, their integrals yield the correct number of neighbors.
The plotted curves are all normalized to one.

At low density 
=0.021 50 Å−3, the density of nearest-
neighbors clearly relaxes into the empty site. This is ex-
pected because of the gain in kinetic energy obtained by
broadening the wave function of the molecule. On the con-
trary, second neighbors are slightly shifted outwards. This
might be a consequence of the broadening of the density of
nearest neighbors which tend to subtract space to the second
neighbors. The outwards shift becomes, therefore, energeti-
cally favored. The sharp cutoff located at half the nearest
distance from the center of the vacancy is an artifact of the
method used for localizing the vacancy, which constrains us
to consider a site to be a vacancy only if the Voronoi cell is
completely empty. Therefore, if one of the neighboring mol-
ecules of the vacancy relaxes in the vacant sub-cell, this is
considered as a hop of the vacancy in another cell.

At the saturation density �
=0.026 00 Å−3� the one-body
density of nearest-neighbors around the empty site becomes
essentially Gaussian, and no strong asymmetry is observed.

FIG. 6. �Color online� Mean positions of the first shell of shad-
ows particles around a vacancy. Darker colors correspond to bigger
distance from the central vacant site �empty circle�. �a� fcc crystal at

=0.026 00 Å−3. �b� hcp crystal at 
=0.026 00 Å−3. �c� fcc crystal
at 
=0.043 00 Å−3. �d� hcp crystal at 
=0.043 00 Å−3.

FIG. 7. The normalized frequency of occurrence of the vacancy for each lattice site. �a� 
=0.021 50 Å−3 �fcc crystal�; �b� 

=0.021 50 Å−3 �hcp crystal�; �c� 
=0.043 00 Å−3 �fcc crystal�; �d� 
=0.043 00 Å−3 �hcp crystal�. Analyzed configurations at 

=0.021 50 Å−3 are consecutive; configurations at 
=0.043 00 Å−3 are saved every 2000 MC steps.
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Relaxation effects are still observed in the shift of the peak
and in the broadening of the Gaussian with respect to the
density found around filled sites. A slight shift outwards of
the next-near neighbors is also visible. In both cases, results
for the fcc crystal were found to be nearly the same as for
hcp.

In Fig. 2 we display the one-body densities for a higher
density crystal �
=0.043 00 Å−3� for several different MC
runs. While it is classically expected that relaxation effects
are less significant at higher densities, all the curves show
that the nearest neighbors distribution tends again to shift
drastically into the vacant site. The shape of the computed
densities varies very strongly from run to run, but in nearly
all the cases it is no longer Gaussian, both in the hcp and in
the fcc crystal.

Some simulations in the fcc lattice show also a density
with a marked new peak closer to the minimum neighbors
distance, giving an indication of a possible appearance in the
simulated system of a different ordered structure around the
vacant site. A clearer picture of the deformation of the crystal
around an empty site can be obtained by looking at the be-
havior of the shadow degrees of freedom. As already men-
tioned, shadows behave as markers of the average position of
the real particles, which are highly delocalized due to quan-
tum fluctuations. The analysis of the density of shadows
around the vacant site allows for having a cleaner picture of

the ordered structure underlying the motion of the molecules.
This is particularly useful at high density, in order to inves-
tigate if distortions of the lattice structure occur.

In Fig. 3 we show the density of shadows which are near-
est neighbors of filled sites �in the crystal with no vacancies�
and of the vacancy for simulations in both fcc and hcp crys-
tals.

An interesting feature that can be observed is the forma-
tion of multiple peaks in the density of nearest neighbors of
the filled site in the fcc crystal, to be compared with the
almost perfect Gaussian density observed in the hcp. This
behavior is always reproduced. In order to understand its
origin, we investigated the one-body density of shadows by
plotting their positions dumped from a simulation segment of
1000 steps and looking at �100� layers in the crystal. An
example of our results is given in Fig. 4, where it can be
clearly seen that the �100� layers appear to be strained. A
reason for this behavior might be the tendency of the system
to evolve towards a packing of �111� layers �which do not fit
in our cubic simulation box�, indicating that the fcc order is
unstable at this density. The distortion of the planes is com-
patible with the appearance of multiple peaks in the nearest
neighbors density. As expected, no distortions have been
found in the hcp crystal, which is known to be stable in this
range of densities.

In general, it can be noticed that the density of shadows
around filled sites is much more peaked than the correspond-

FIG. 8. �Color online� The mean-square displacement of a vacancy as a function of the number of MC accepted moves in the system.
Graph �a� shows results of individual runs for a fcc crystal at 
=0.021 50 Å−3. Different runs generated data with a fairly spread of values
for the distance traveled. The average over these run is shown as a black dashed curve. In the other graphs are plotted the averaged
mean-square displacement in the hcp �solid line� and in the fcc �dashed line� crystal at densities 
=0.021 50 Å−3 �b�, 
=0.026 00 Å−3 �c�,
and 
=0.043 00 Å−3 �d�. Filled circles and diamonds indicate the squared distance of the nearest and the next-nearest neighbors, respectively.
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ing density of particles. This well illustrates the more “clas-
sical” character of the auxiliary degrees of freedom. The den-
sity around the vacancy clearly shows a series of peaks
which have little to do with the expected single-Gaussian
distribution. In particular, in both cases it is possible to ob-
serve a splitting of the average position of the shadows
among multiple peaks at different distance from the lattice
site. In the simulations of the hcp crystal, different MC runs
converging to the same energy value yield different density
profiles �Fig. 3�b�� for molecules surrounding the vacant
sites. However, all profiles are characterized by the same
series of peaks. The distribution of the density among the
peaks varying from run to run can probably be interpreted as
an indication that the nearest neighbors shell of a vacant site
can be found in more than one energetically equivalent struc-
ture. A consistent behavior is shown by the mean distribu-
tions of angles between nearest neighbors of empty and filled
sites �Fig. 5� defined as

��cos��� =��
�nn�

�cos�� −
ri · r j

rirj
�� . �9�

At equilibrium density no substantial differences are found
between empty and filled WS cells. At higher densities these
differences become substantial. In the simulations of the hcp
crystal, the positions and the heights of the peaks of the
angular distribution of nearest neighbors of filled sites are
consistent with the structure of the lattice. On the contrary,
the peaks are only minimally reproduced by the angular dis-
tribution computed around empty sites, giving a further indi-
cation that the structure of the WS cell containing a vacancy
is no longer preserved. In the case of the fcc crystal, the
peaks in the angular distribution computed around filled sites
are no longer well-defined, probably due the observed strain-
ing of the �100� planes of the lattice, while shadows sur-
rounding empty cells seem to arrange in a well-defined struc-
ture different from the fcc one. In order to visualize the such
differences between angular distributions around empty and
filled Voronoi cells, we computed the mean position of
neighbors of a fixed vacant site throughout the simulation
and compared them with averaged positions of neighbors of
filled sites. Pictures in Fig. 6 show mean positions of nearest
neighbors of a vacant site calculated using shadows coordi-
nates.

At 
=0.026 00 Å−3 the arrangement of the molecules is
perfectly consistent with the lattice structure analyzed. The
same result was obtained using the coordinates of the mol-
ecules instead of those of the shadows. At 
=0.043 00 Å−3

the deformation of the geometry of molecules surrounding
the empty cells becomes evident, in particular when consid-
ering shadows coordinates. It looks like the nearest neigh-
bors tend to be squeezed into the vacancy to gain more room
and lowering, therefore, their kinetic energy. In the case of
fcc lattice, the new structure formed around the empty site by
the shadows is well defined, forming two penetrating tetra-
hedral shells, with the remaining four molecules occupying
the remaining interstitials. It should be noted that the fact
that the fcc lattice is unstable might interfere with the local
distortions induced by the vacancy, and may favor the for-

mation of the well-defined structure surrounding it. From this
point of view the physically meaning result is given by the
presence of the same distortions in the simulations of the hcp
crystal, although, in this case, the structure around the empty
site appears to be not as well defined as in the case of the fcc
lattice.

B. Delocalization of vacancies

Since we are able to track the position of the vacancy
throughout a MC run, we can count how many times the
vacancy is localized on each lattice site during the run �Fig.
7�. We also computed the mean-square distance “traveled”
by the vacancy in our simulations as function of the number
of MC configurations sampled �Fig. 8�. Clearly such motion
has no direct physical meaning, but rather as an indication of
the fact that the vacancy can be displaced from the initial
position as an effect of the quantum fluctuations present in
the system. Therefore, it is misleading to think of subsequent
positions sampled for the vacancy as an effective trajectory
in time. Nevertheless, the motion we observe in our MC
simulations can be suggestive of some properties of the va-
cancies in fcc and hcp lattices. The amount of displacement
varied somewhat from run to run. We could obtain accurate
data by averaging across several independent runs for each
studied density value. The long linear portion of all curves
shows that after a certain number of accepted MC steps, the
displacement of the vacancy follows a diffusive regime. The
values of the fitted diffusion coefficients are shown in Table
I. These values decrease drastically by incrementing the den-
sity, due the stronger localization of the molecules close the
lattice sites. Nevertheless, in all the simulations performed
we could observe that the vacancy moved from initial posi-
tion beyond the first shell of neighbors, and such delocaliza-
tion of the vacancy still remained at high density both for
hcp and fcc lattices, as shown also by Fig. 7. At low density
�
=0.021 50 Å−3� results of the MC diffusion coefficient for
fcc and hcp are almost the same. At higher densities instead,
the diffusion coefficient in the simulations for the hcp lattice
is more than 30% smaller than that obtained for fcc lattice,
and a strong difference in the initial portion of the curves is
seen. This means that the average amount of sampled con-
figurations needed in order to find the vacancy in a nearest
neighbor site is two to four times smaller for the strained fcc
lattice. The latter structure seems to allow a bigger vacancies
mobility at high densities than the hcp one. This observation
is in agreement with the analysis of the density profiles dis-
cussed in the previous section. As shown in Fig. 2, the den-
sity near the empty cell boundary is much higher in the fcc
crystal than in the hcp. Therefore, a surrounding molecule is

TABLE I. MC diffusion coefficients in Å−2 as function of den-
sity for fcc and hcp lattice.


 fcc hcp

0.021 50 7.7097�10−2 8.0341�10−2

0.026 00 1.3913�10−4 1.0154�10−4

0.043 00 9.0731�10−6 6.8424�10−6
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more likely to cross over the boundary filling the empty site
and moving the vacancy out.

IV. CONCLUSIONS

We have performed a systematic analysis of the effects of
a presence of a vacancy in a p-H2 crystal by means of varia-
tional Monte Carlo simulations based on shadow wave func-
tions. Vacancies at low densities appear to be quite delocal-
ized. The corresponding distortion of the lattice structure is
limited to a relaxation of the nearest neighbors into the va-
cant site, as already predicted by simulations in 4He. The
results at high densities are instead partly unexpected. While

the vacancy becomes more localized due to the increased
rigidity of the crystal, it gives rise to a strong deformation of
the structure of the nearest neighbors, which loose com-
pletely the icosahedral symmetry and tend shift into the va-
cancy.

ACKNOWLEDGMENTS

We thank G. Galli, M. H. Kalos, and G. V. Chester for
useful discussions. This work was performed in part on the
computational facilities at CINECA under an INFM-ICP
grant, and in part on the cluster at ECT* as an approved
supercomputing research project.

1 D. E. Galli, M. Buzzacchi, and L. Reatto, J. Chem. Phys. 115,
10239 �2001�.

2 D. Galli and L. Reatto, Phys. Rev. Lett. 96, 165301 �2006�.
3 M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof’ev, B. V.

Svistunov, and M. Troyer, Phys. Rev. Lett. 97, 080401 �2006�.
4 F. Pederiva, G. V. Chester, S. Fantoni, and L. Reatto, Phys. Rev.

B 56, 5909 �1997�.
5 B. Chaudhuri, F. Pederiva, and G. V. Chester, Phys. Rev. B 60,

3271 �1999�.
6 D. Zhou, C. M. Edwards, and N. S. Sullivan, Phys. Rev. Lett. 62,

1528 �1989�.

7 M. Rall, D. Zhou, E. G. Kisvarsanyi, and N. S. Sullivan, Phys.
Rev. B 45, 2800 �1992�.

8 S. Vitiello, K. Runge, and M. H. Kalos, Phys. Rev. Lett. 60, 1970
�1988�.

9 L. Reatto and G. L. Masserini, Phys. Rev. B 38, 4516 �1988�.
10 D. E. Galli and L. Reatto, J. Low Temp. Phys. 134, 121 �2004�.
11 R. A. Guyer, J. Low Temp. Phys. 8, 427 �1972�.
12 F. Operetto and F. Pederiva, Phys. Rev. B 69, 024203 �2004�.
13 I. F. Silvera and V. V. Goldman, J. Chem. Phys. 69, 4209 �1978�.
14 F. Operetto and F. Pederiva, Phys. Rev. B 73, 184124 �2006�.

FRANCESCO OPERETTO AND FRANCESCO PEDERIVA PHYSICAL REVIEW B 75, 064201 �2007�

064201-8


