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Recent findings of superconductors that simultaneously exhibit multiple spontaneously broken symmetries,
such as ferromagnetic order or lack of an inversion center and even combinations of such broken symmetries,
have led to much theoretical and experimental research. We consider quantum transport in a junction consisting
of a ferromagnetic metal and a non-unitary ferromagnetic superconductor. It is shown that the conductance
spectra provide detailed information about the superconducting gaps, and are thus helpful in determining the
pairing symmetry of the Cooper pairs in ferromagnetic superconductors.
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I. INTRODUCTION

Spontaneous symmetry breaking in condensed-matter sys-
tems ranks among the most profound emergent phenomena
in many-body physics. Multiple spontaneously broken sym-
metries are not only of interest in terms of studying proper-
ties of specific condensed-matter systems but are also due to
the fact that it may provide clues for what could be expected
in other systems in vastly different areas of physics. An
attempt1 at describing the physics of magnetic spin-singlet
superconductors was made long ago, and the discovery of
ferromagnetic superconductors �FMSCs�,2,3 displaying coex-
isting superconductivity �SC� and ferromagnetism �FM� well
below the Curie temperature, has produced a realization of a
physically rich system that exhibits simultaneously broken
SU�2� and U�1� symmetries. Spontaneous breaking of sym-
metry is responsible for a wide range of physical phenom-
ena, such as the mass differences of elementary particles,
phase transitions in condensed-matter systems, and even
emergent phenomena in biology.4 In many cases, the phe-
nomena can, in fact, be described by the same equations.
Thus, a study of ferromagnetic superconductors is of interest
not only in terms of having an obvious potential for leading
to a different set of devices in, for instance, nanotechnology
and spintronics but also from a fundamental physics point of
view.

A successful model describing an FMSC demands that
two important issues be addressed: �i� the symmetry of the
pairing state and �ii� whether the superconducting and ferro-
magnetic order parameters are coexistent or phase separated
in space-time. Cooper pairs in conventional superconductors
�s wave� are spin singlets. Thus, s-wave pairing and uniform
FM are antagonists.5,6 Spin-triplet Cooper pairs, however,
can carry a net magnetic moment. Such Cooper pairs are
presently the prime candidate for explaining the coexistence
of FM and SC in, e.g., UGe2 and URhGe.2,3 In these mate-
rials, SC occurs deep within the ferromagnetic phase. It is
therefore natural to view the SC pairing as originating with
electrons that also contribute to FM. Thus, the electrons re-

sponsible for FM below the Curie temperature TM condense
into Cooper pairs with magnetic moments aligned along the
magnetization below the critical temperature Tc. While spin-
singlet superconductivity coexisting with uniform ferromag-
netism appears to be unlikely, it could coexist with helically
ordered magnets. Tunneling phenomena in such systems
have indeed been considered theoretically.7,8 This is, how-
ever, physically quite different from the case we will present
in this paper.

Bulk FMSCs are expected to display an unusual feature,
namely, the spontaneous formation of an Abrikosov vortex
lattice.9 Uniform superconducting phases have also been
investigated,10 but in a bulk system it seems reasonable to
assume that this must be associated with a nonuniform mag-
netic state.7,8 A key variable determining whether a vortex
lattice appears or not seems to be the strength of the internal
magnetization m.11 The current experimental data3 available
for URhGe apparently do not settle this issue unambigu-
ously, while uniform coexistence of FM and SC appears to
have been experimentally verified12 in UGe2. Moreover, a
bulk Meissner state in the FMSC RuSr2GdCu2O8 has been
reported.13 No consensus has so far been reached concerning
the correct pairing symmetry for the FMSCs, although theo-
retical considerations strongly suggest that a non-unitary
state is favored.14–16 In terms of the dk-vector formalism �see
below�, this means that the relation i�dk�dk

*��0 is satisfied,
which is equivalent to saying that the Cooper pairs carry a
net spin.17 The study of pairing symmetries in unconven-
tional superconductors has a long tradition18 where tunneling
currents have played a crucial role. For the case of spin-
triplet nonmagnetic superconductors, theoretical studies of
tunneling to a normal metal or ferromagnet have been sug-
gestive in terms of establishing the correct pairing symmetry
for the superconductor.19,20

In this paper, we consider quantum transport between two
thin films of a non-unitary FMSC and an easy-axis ferromag-
net, respectively. We demonstrate how the resulting conduc-
tance spectra can be exploited to obtain useful information
about the superconducting gaps. The SC and FM order pa-
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rameters are assumed not to be phase separated. Moreover,
the choice of a thin-film FMSC is motivated by the fact that
the pair-breaking orbital effect on Cooper pairs with an in-
plane magnetization is suppressed, and that one will avoid
vortices present in the compound if the thickness t of the film
is smaller than the diameter of a vortex,21 t��0��0. Here,
�0 is the coherence length �typical size of Cooper pairs�,
while �0 is the penetration depth �typical radius of vortex�. In
the cases2,3 of UGe2 and URhGe, this amounts to t�10 nm,
which is well within reach of current experimental tech-
niques.

This paper is organized as follows. In Sec. II, we establish
the model and formalism which we will apply to the prob-
lem. Results are given in Sec. III, in addition to a discussion
of our findings. Concluding remarks are given in Sec. IV.

II. MODEL AND FORMULATION

Our model is illustrated in Fig. 1, where the supercon-
ducting pairing symmetry is equivalent to that of an A2
phase in 3He �see Ref. 17 and the discussion below Eq. �1��.

The Bogoliubov-de Gennes �BdG� equations for a FMSC
�Ref. 22� may be written in a compact matrix form as

�M̂k �̂k

�̂k
* − M̂k

��uk�

vk�
� = Ek��uk�

vk�
� , �1�

where we have introduced the 2�2 matrices

M̂k = 	k1̂ − �̂zUR�L�,

�̂k = ��01̂ + �̂ · dk�i�̂y , �2�

in addition to the vectors

uk� = �uk↑� , uk↓��T,

vk� = �vk↑� , vk↓��T. �3�

Here, 	k is a kinetic energy term, �̂= ��̂x , �̂y , �̂z� is a vector
containing the Pauli matrices, and UR�L� describes the mag-
netic exchange energy of right �left� part of the system.
Moreover, the dk vectors are given by

dk =
1

2
��k↓↓ − �k↑↑,− i��k↓↓ + �k↑↑�,2�k↑↓� , �4�

and �0 and �k
� are the superconducting spin-singlet and
spin-triplet order parameters, respectively. Finally, uk� and

vk� are the wave-function solutions with eigenvalue Ek�. In
the following, we set the k-independent singlet amplitude �0
to zero, as we do not consider the case of coexistent s-wave
SC and FM.16 Also, the opposite-spin triplet pairing giving
rise to the gap �k↑↓ is, in general, believed to be suppressed,
since it requires interband pairing of Zeeman-split electrons.3

Hence, our model is that of a non-unitary spin-triplet state
with equal-spin pairing, i.e., �k↑↓=0 and �k���0, equiva-
lent to the A2 phase in liquid 3He �see, e.g., Ref. 17� with a
nonvanishing magnetic moment associated with the Cooper
pairs.

As indicated in Fig. 1, the reflected and transmitted elec-
tronlike and holelike excitations feel different pairing poten-
tials due to the orbital symmetry of the superconducting
gaps. The angle into which they are scattered depends on the
spin � of the incident electron, since there is a magnetic
exchange energy UR present in the superconducting state. In
the following, we will consider the momentum of the quasi-
particles as fixed on the Fermi surface for spin � so that the
superconducting gaps correspondingly only depend on the
direction of momentum, i.e., �k��→����s

��, where �s
� is de-

fined in Fig. 1. Throughout this paper, we shall insert the
superconducting gap a priori instead of solving it self-
consistently in order to obtain analytical formulas. This is
justified by the fact that detailed calculations taking into ac-
count the modification of the pair potential near the barrier
demonstrate that no new qualitative features appear in the
conductance spectra compared to the case when the gap is
modeled by a step function at the interface.23 However, the
proximity effect at a FM/SC interface may cause two impor-
tant phenomena to occur: �i� induction of a SC order param-
eter �possible mixture of singlet and triplet� in the FM
region24 and �ii� the formation of midgap surface states on
the interface,25 leading to a suppression of the order param-
eter in the vicinity of the interface. The competition and
coexistence of these two phenomena have been studied in
Ref. 26. In this work, we will mainly be concerned with a SC
pairing symmetry analogous to the A2 phase in liquid 3He,
for which the latter of these effects is only present for a
specific trajectory of the incoming electrons. Thus, we be-
lieve that our results capture the essential qualitative features
of the conductance spectra, although a self-consistent ap-
proach would be required in order to obtain the entire pic-
ture.

For the simplest model that illustrates the physics, we
have chosen a two-dimensional FM-FMSC junction with a
barrier modeled by the potential V�r�=V0
�z� and supercon-

FIG. 1. �Color online� Model system of an
FM-FMSC interface in a slab geometry in the
clean limit. Retroreflection symmetry is not bro-
ken since the hole carries the same spin as the
incident electron. We have sketched gaps corre-
sponding to the analog �Ref. 17� of the A2 phase
in liquid 3He.
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ducting gaps ����s
� ,r�=����s

����z�. Here, 
�z� and ��z�
represent the Kronecker delta and Heaviside functions, re-
spectively. Solving the BdG equations and applying the
Blonder-Tinkham-Klapwijk formalism,27 which has proven
to yield good consistency with experimental findings,28 one
finds that our system in Fig. 1 is described by the wave
functions for particles and holes with spin � in the ferromag-
net ���� and FMSC ���� sides of the barrier. Explicitly, the
total wave function

�tot
� �z� = ��− z����z� + ��z����z� �5�

then has the components

���z� = eik� sin �y��1

0
�eik� cos �z + re

��E,���1

0
�e−ik� cos �z

+ rh
��E,���0

1
�eik� cos �z	 ,

���z� = eiq� sin �y�te
��E,��� u���s+

� �
v���s+

� ���
*��s+

� �
�eiq� cos �s

�z

+ th
��E,���v���s−

� �����s−
� �

u���s−
� �

�e−iq� cos �s
�z	 , �6�

where �����=����� / 
�����
 and �s+
� =�s

�, �s−
� =�−�s

�. The
wave vectors read

k� = �2m�EF + �UL��1/2,

q� = �2m�EF + �UR��1/2, �7�

while the spin-generalized coherence factors are

u���s±
� � =

1

4
�1 + �1 − �
����s±

� �
/E�2
1/2,

v���s±
� � =

1

4
�1 − �1 − �
����s±

� �
/E�2
1/2. �8�

In writing down Eq. �6�, we have implicitly incorporated
conservation of group velocity and conservation of momen-
tum parallel to the barrier, i.e., k� sin �=q� sin �s

�. As seen
from the expressions of the wave vectors above, we have
taken the effective mass m and Fermi energy EF to be equal
on both sides of the junction. For the spin-unpolarized case,
i.e., normal/nonmagnetic superconductor junction, it suffices
to consider the interfacial parameter Z �given below� to ac-
count for the subgap conductance, since any Fermi wave-
vector mismatch corresponds to an increase in the effective
Z. However, when spin polarization comes into play, it was
shown in Ref. 29 that the subgap conductance could be en-
hanced due to the Fermi wave-vector mismatch. This effect
could not be reproduced by varying Z alone, hence implying
that the effect of different bandwidths due to different Fermi
energies should be taken into account upon comparison be-
tween experimental results and theoretical predictions. In our
model, we do not study the effect of Fermi wave-vector mis-
match, leaving this for future investigations.

III. RESULTS AND DISCUSSION

The normal- and Andreev-reflection coefficients can be
calculated by making use of the boundary conditions

�i� ���0� = ���0� ,

�ii� 2mV0���0� = �/�z
����z� − ���z��
z=0. �9�

Let us introduce Z=2mV0 /kF and

�±
� = q� cos �s

� ± k� cos � ± ikFZ , �10�

while P�
L�R�= �EF+�UL�R�� /2EF denotes the spin polarization

on the left �right� side of the junction. Our calculations then
lead to the explicit expressions for the Andreev- and normal-
reflection coefficients for this FM-FMSC junction, namely,

re
� = − 1 + 2k� cos ��u���s+

� �u���s−
� ���+

��*

+ v���s−
� �v���s+

� �����s−
� ���

*��s+
� ���−

��*�/D�,

rh
� = 4k� cos �q� cos �s

�v���s+
� �u���s−

� ���
*��s+

� �/D�, �11�

upon defining the quantity

D� = u���s+
� �u���s−

� �
�+
�
2

− v���s−
� �v���s+

� �����s−
� ���

*��s+
� � � 
�−

�
2. �12�

In the limit of weak FM where all quasiparticle momenta
equal kF, our results are found to be consistent with a spin-
generalized augmentation of the equations in Ref. 31, where
the reflection coefficients for a normal-anisotropic supercon-
ductor junction were derived. Tanaka and Kashiwaya put
forth a natural explanation for the observed zero-bias con-
ductance peaks �ZBCPs� as a result of the different phases
felt by the scattered electronlike and holelike quasiparticles
in the superconductor. In their general form, the coefficients
in Eq. �11� are results that include the effect of magnetism on
the superconducting side of the barrier. As demanded by
consistency, one obtains total reflection 
re

�
2=1 when
��arcsin�q� /k��. Having obtained the above quantities, one
may calculate the conductance G�E� of the setup �in units of
the normal conductance, i.e., �����→0�. We find that it is
given by

G�E� = �
�

G��E���
�

F�, �13�

where we have defined the quantities

G��E� = �
−�/2

�/2

d� cos �g��E,��P�
LP�

R,

g��E,�� = 1 + 
rh
��E,��
2 − 
re

��E,��
2,

F� = �
−�/2

�/2

d� cos �f����P�
LP�

R,

f���� = 1 − 
1 − 2k� cos �/�+
�
2. �14�

We next demonstrate how the conductance spectra yield use-
ful information about the superconducting gaps upon varying
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the relative orientation of the gaps, their magnitude, and the
strength of the magnetic exchange energy on each side of the
junction. To be specific, we first consider the analog of the
A2 phase in liquid 3He, such that the gaps may be written
as30

�↑��s±
� � = − �↑,0ei��s±

� −
�, �↓��s±
� � = �↓,0ei��s±

� −��, �15�

as illustrated in Fig. 1. We stress that �s±
� is not the global

broken U�1� superconducting phase, but rather an internal
phase originating with the odd symmetry of the p-wave gaps
�see Fig. 1�. The exchange energy of the FMSC will be kept
fixed at UR=0.05EF. In Fig. 2, we have plotted the conduc-
tance spectra for a FM/FMSC junction for three distinct
cases. We have defined the ratio between magnitude of the
superconducting gaps as R�=�↑,0 /�↓,0. Introducing the di-
mensionless barrier strength Z=2mV0 /kF, where kF is the
Fermi momentum, we consider �i� the metallic contact case
with no barrier �Z=0�, �ii� the intermediate case with a mod-
erate barrier �Z=3�, and �iii� the tunneling limit with an in-
sulator in the junction �Z→��. For each case, we have al-
lowed the magnetic exchange energy UL to vary from weak,
favoring ↑-spins �U=0.05EF� to strong, favoring ↑-spins in
one case �U=0.5EF� and ↓-spins in the other case �U=
−0.5EF�. These are shown in descending order in each col-
umn. We have also considered the conductance G�E� for
several values of �
 ,�
. For the gaps chosen above, we find
that the G�E� did not depend on different choices of these
parameters. This can be understood by observing that the
angular averaging over G��E ,�� allows for factors e−i
��� to
be separated on equal footing as the factor corresponding to
the globally broken U�1� symmetry, whose value does not
affect the conductance spectra. This will, however, not be the
case for other possible triplet symmetries, as discussed be-
low.

An important, and obvious, feature of the conductance
spectra is a characteristic behavior occurring at voltages cor-

responding to E=��,0, �= ↑ ,↓, where peaks are displayed.
This offers the opportunity to utilize the conductance spectra
to reap explicit information on the size of the superconduct-
ing gaps in the FMSC. From Fig. 2, it is seen that the effect
of increasing the exchange energy on the ferromagnetic side
to UL= ±0.5EF is a sharpening of the peaks located at
E=��,0, where � is the spin species energetically favored by
UL. Concomitantly, the peak located at E=�−�,0 is sup-
pressed. Such a response is consistent with what one would
expect, since increased �decreased� spin polarization on the
ferromagnetic side enhances �suppresses� the conductance of
the corresponding spin component. In the tunneling limit
�large Z�, we see that the conductance spectra exhibit sharp
transitions at E=��,0, corresponding to the sudden appear-
ance of a tunneling current as the voltage exceeds the mag-
nitude of the gaps. We have also considered G�E� in the case
of vanishing FM on the left side, i.e., a N/FMSC junction.
The results we find are very similar to the case of weak FM
displayed in the upper row of Fig. 2, and are therefore not
displayed.

For the gaps in Eq. �15�, the conductance was found to be
insensitive to �
 ,�
. However, in general this is different,
and the orientation of the gaps relative to the barrier is es-
sential in determining the conductance spectrum. We illus-
trate this with a somewhat different choice of anisotropic
gaps. When the superconducting gap is oriented in a fashion
that leaves it invariant under inversion of the component of
momentum perpendicular to the junction, kz→−kz in this
case �equivalently, �→�−��, no ZBCP should be expected
as there is no formation of current-carrying zero energy
states.25 However, when the gap changes sign under such an
inversion of momentum, ZBCPs appear.31 Since the
momentum perpendicular to the junction of the holelike ex-
citation in the anisotropic superconductor is reversed com-
pared to the electronlike excitation, a gap that satisfies
����������−�� will cause the hole to feel a pairing poten-
tial different from that of the electronlike excitation. This is

FIG. 2. �Color online� Plot of the conductance G�E� for a FM/FMSC junction in the case of a metallic contact, the tunneling limit, and
an intermediate case. The gaps are given by Eq. �15� in this case, for which G�E� is found to be insensitive to �
 ,�
. In the above, �
 ,�
=0.
The columns for each case provide the spectrum for UL=0.05EF, UL=0.5EF, and UL=−0.5EF, in descending order. For each figure, we have
plotted several ratios between the magnitude of the superconducting gaps. These are given by R�= �2,3 ,4 ,5
, represented by the magenta
�thick, full-drawn�, blue �thick, dashed�, green �thin, full-drawn�, and red lines �thin, dashed�, respectively.
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the fundamental reason for the appearance of a ZBCP. How-
ever, in the present case of p-wave superconducting gaps
analogous to the A2 phase in 3He, both gaps are asymmetric
under the operation �→�−� regardless of the value of
�
 ,�
 except for the single value �=0. Therefore, a small
contribution to zero energy current-carrying states, i.e.,
G�0��0, will occur, as shown in Fig. 2. However, this con-
tribution does not lead to a ZBCP, for which all values of �
contribute to the formation of zero energy states due to the
asymmetry of the gaps. In a model where the p-wave gaps
are represented by the odd-symmetry analog of dx2−y2-wave
gaps, i.e.,

�↑��� = �↑,0 cos�� − 
�, �↓��� = �↓,0 cos�� − �� ,

�16�

the formation of ZBCP will then be predictable from the
orientation of the gaps as these can now display symmetry/
antisymmetry/asymmetry when �→�−�, depending on
�
 ,�
 �see Fig. 1�. Indeed, insertion of the above gaps into
our model produces conductance spectra that display a
ZBCP for, e.g., 
=�=0, as can be seen in Fig. 3. In this
case, as in Fig. 2, the conductance spectra also allow for the
magnitude of the superconducting gaps to be read out, al-
though the features are not as clear as those seen in Fig. 2.

From the results of Figs. 2 and 3, it is clear that the con-
ductance spectra G�E� exhibit strong dependence on the ex-
change energy, while the relative orientation of the gaps is
insignificant for the superconducting gaps �Eq. �15��. Thus,
our results will shed light on the magnitude of the various
components of the superconducting gaps and their relative
orientations in k space if the gaps display symmetry/
antisymmetry under �→�−� for some orientation. More-
over, we are dealing with an easily observable effect, since
distinguishing between the peaks occurring for various val-
ues of R� requires a resolution of order O�10−1�↑,0�, which
typically corresponds to 0.1–1 meV. These structures should
be then readily resolved with present-day scanning tunneling
microscopy technology. However, it should be pointed out

that a challenge with respect to tunneling junctions is dealing
with nonidealities at the interface, which may affect the con-
ductance spectrum. Also, the importance of spin-flip pro-
cesses in the vicinity of the interface �if such are indeed
present� has recently been pointed out.32,33 Finally, we stress
the fact that multiple conductance measurements for several
interface orientations are, in general, required to unambigu-
ously determine the pairing symmetry of the superconduct-
ing condensate, a point underlined by recent findings that
show how both chiral p-wave and d-wave pairing may ac-
count for the superconducting properties of strontium
ruthenate.34

IV. CONCLUSION

In summary, we have studied the conductance spectra
G�E� for systems consisting of a ferromagnetic metal sepa-
rated from a non-unitary p-wave FMSC by a thin, insulating
barrier. We have considered the cases of weak, intermediate,
and strong barriers and considered three different strengths
of the ferromagnetic exchange energy. We have considered
two classes of anisotropic spin-triplet superconducting gaps,
with results given in Figs. 2 and 3. Our results show how the
magnitude of the superconducting gaps ��, �= ↑ ,↓ may be
inferred from the conductance spectra. Moreover, the class of
superconducting gaps given in Eq. �15� renders G�E� insen-
sitive to �
 ,�
; the results are shown in Fig. 2 for �
 ,�

=0. Conversely, for the orientations of the p-wave gaps mod-
eled by Eq. �16�, specific values of �
 ,�
 are essential to the
formation of ZBCPs in G�E� in Fig. 3 and the characteristic
behavior at E=��,0, �= ↑ ,↓. These results should provide
useful insights in determining the relative orientation be-
tween the superconducting gaps as well as their magnitude in
ferromagnetic spin-triplet superconductors.
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