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We have modeled flux quanta propagation in two-dimensional square arrays of small Josephson junctions
when the motion is hampered by the presence of an effective barrier due to the superconducting loops. The
energy barriers have been estimated simulating the effect of thermal fluctuations and evaluating the barrier via
the Arrhenius factor. The results have been compared with a much simpler semianalytic method, showing that
the method is able to give an acceptable estimate. The strength of the fluxon-(anti)fluxon interaction as a
function of the loop inductance and the distance between the excitations has been also evaluated. It is reported
that the presence of a finite inductance substantially affects the interaction potential, and the contributions due
to mutual inductances are found to further change the behavior of the interaction.
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I. INTRODUCTION

Dissipation in superconductors can be ascribed to the mo-
tion of fluxons: the voltage due to the flux change causes the
quasiparticles to move and to absorb energy.'? This mecha-
nism would always appear in superconductors above the
maximum reversible magnetic field or the minimum field for
the entrance of fluxons unless some pinning mechanism oc-
cured in the superconductor to hamper the motion, keeping
the fluxons pinned for a sufficiently long time. In granular
superconductors, the stopping mechanism is believed to be
the cell of nonsuperconducting material surrounded by a su-
perconducting path broken with weak links.> On a general
ground, the pinning mechanism is explained by the breaking
of spatial translational invariance in discrete systems that
gives rise to the Peierls-Nabarro barrier.* The existence of a
barrier to flux motion in artificial Josephson junctions arrays’
(JJTA) has indeed been proven before the discovery of high T,
superconductors.® Lobb and co-workers have found that the
intrinsic inhomogeneity causes the system to show an energy
barrier to the motion of fluxons for all values of the physical
parameters. The same authors also found the minimum value
of the barrier, which is topology dependent. Thus, the mini-
mum energy reads AU,,;,,=0.2hl,/2¢ for square arrays and
AU,,;,=0.04%1,/2e for triangular arrays (I is the mean criti-
cal current of the individual Josephson junctions of the array
and %1/ 2e is the Josephson energy, or the energy necessary
to increase the current to the maximum Josephson current).
For a given geometry and critical current, the main param-
eter that governs the system and determines the energy bar-
riers is the self-inductance L of the smallest loops, combined
in the so-called superconducting quantum interference de-
vice (SQUID) parameter B; =2¢Lly/f. The minimum-energy
barrier is retrieved for 8;<<1, in which limit the model of
JJA can be approximated by the XY model.” The analysis of
the large B; limit leads to the Bean model of a critical state
pictures.*8

A more detailed comparison has been proposed for a one-
dimensional array case: a critical state model has been ana-
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lyzed by Parodi and Vaccarone® and by Fehrenbacher et al.'
A description of the critical state behavior in two-
dimensional JJA has also been proposed by Pace et al.'l
Majhofer et al.'> and Wolf and Majhofer!® have proposed a
model that for 8;> 1 retrieves the results of the Bean model.

A systematic study of the dependence of the energy bar-
riers on the external current and fields, varying the SQUID
parameter B3;, was proposed in Ref. 14. The basic idea is to
evaluate the energy barrier with a semianalitic approach to
avoid brute force simulation of the Langevin equation, as
proposed by Lobb et al.® In fact, the energy barrier AU for a
single degree of freedom is found by evaluating the differ-
ence between the minimum and maximum of the energy U:
AU=U™>-ym™n without solving the corresponding Lange-
vin equation (we have adopted here the obvious notation that
U™ is the saddle point corresponding to the maximum po-
tential, and correspondingly U™ is the stable minimum). For
a JJA with many degrees of freedom, the approach cannot be
used because the noise acts on all of them."

To circumvent these difficulties, it has been proposed'
that one can estimate the escape times by taking advantage
of a variation of a technique called the pseudopotential.'®
This technique is based on the minimum available noise en-
ergy, which deals with systems where there exist many tra-
jectories to leave a potential minimum, each with a different
activation energy. The principle states that the global escape
time is governed, for sufficiently weak noise, by the Arrhen-
ius factor exp(AU/kgT), where AU is the energy barrier cor-
responding to the minimum energy to be supplied by the
noise. It has been found'# that the energy barriers AU(B;)
exhibit at zero external field and applied current a monotone
growth, S shaped, which can be summarized by a heuristic
interpolating formula between the minimum-energy barrier
for B, <1 and the energy barrier of decoupled arrays (8,
> 1). Introducing the normalized energy e=U/(fily/2e) for
square arrays, the two energies read Ag(,=0.203 and Ae,,,,
=2, respectively (in excellent agreement with the findings of
Ref. 6).

A principal question about these results is whether or not
the assumptions can be checked against brute force numeri-
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cal simulations, at least in some selected points, to control if
the pseudopotential approach is able to estimate the energy
barrier with good approximation. This will be the first objec-
tive of the present work. We will prove that the pseudopo-
tential method is indeed acceptable, and we will therefore
take advantage of the simplicity of this approach to tackle
two problems that otherwise would be very challenging.

(a) The role of mutual inductances. An accurate de-
scription of a two-dimensional array requires not only inclu-
sion of the elementary geometrical self-inductances of the
smallest loops but also the mutual interactions of each loop
upon another loop.!” The resulting model is a global interac-
tion of each Josephson junction with another. We will deter-
mine the corrections to the pinning barriers when such mu-
tual inductance terms are included.

(b) The estimate of the vortex-vortex interaction po-
tential. In the continuous limit, the dipole interaction be-
tween vortices gives rise to a repulsive (attractive) potential
for homopolar (heteropolar) vortices. In the limit of negli-
gible inductances, the same potential applies to the Joseph-
son fluxons interactions. We will extend this calculation to
the case of finite self- and mutual inductances.

This paper is organized as follows. in Sec. II, we will
write the model equations for the JJA with inductances and
the method to compute the pinning energy both in pseudo-
potential approach and via the Langevin simulations; the lat-
ter will be employed in some selected points to check that
the simplified method is appropriate for the barrier estimate.
In Sec. III, we will discuss the effective vortex-vortex poten-
tial both in presence of self-inductance alone and with mu-
tual inductance terms. Finally, in Sec. IV we will summarize
the results.

II. MODEL AND NUMERICAL RESULTS
A. Models of JJA

A network of Josephson junctions can be modeled with
different degrees of accuracy. To include the magnetic field
produced by the screening currents in the model, one starts
writing the fluxoid quantization in a loop containing Joseph-
son junctions. In vector form for an n,,=N X M loops array,
this reads (we denote a vector with an arrow and a matrix
with a boldface character)

277—$ex'+27-r ;S+M_)—2’7T_) (1)
@ @, ¢

Here, <f)m is the vector of the external magnetic flux in all
the n,, loops of the array, ®y=#/2e is the magnetic quantum
flux, and ¢ is the phase vector of the Josephson junctions,
which is formed with the gauge invariant phase differences,
hereafter simply the junction phase, of all horizontal and
vertical junctions in the array branches. For an array consist-
ing of N horizontal rows and M vertical columns, we have
n,=NX(M+1)+M X (N+1) branches. M is the n,, X n, ma-
trix summing up the junction phases in each array loop and
finally, L is the full mutual inductance matrix between the
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FIG. 1. Schematic circuit model for a two-dimensional N X M
array (a). The screening currents appearing in Eq. (1) are the cur-
rents circulating in each loop, as shown in (b). Finally, each branch
is modeled as a lumped inductance (L) and a Josephson junction
consisting of an ideal element and a shunt resistor (c).

array loops and the screening current vector I°.!7 In doing so,
one includes mutual inductance terms that link the current
circulating in any loop to all other loops in Eq. (1); this
coupling leads to a model of considerable numerical
complexity.!” To explicitly write the dynamic equations, it is
convenient to normalize the time with respect to the inverse
characteristic frequency w;l =(2eRI,/h) and the current with
respect to the critical current /), so the following equations
for the phase can be deduced from Eq. (1) and current con-
servation at array nodes (see Fig. 1 for notation):

i - 1 - - 2
o+sing=—K, ¢+ y,+ 7, (2)
L

with
|
K; = ZM (L)™'M,

where 7, is a bias current vector, which is the external bias,
I;, as modified by the mutual inductances and which depends
on the bias current distribution over the array boundary. sin ¢
stands for sin ¢;1. One usually assumes that a uniform cur-
rent is fed to the array in the vertical direction (see Fig. 1),
and the appropriate boundary conditions determined by the

magnetic field at the edges. The current term ¢ is the
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Johnson noise current due to the resistors, which for the ge-
neric jth junction is assumed to have zero average and to be
Gaussian correlated with intensity 6,

(9;(n) =0, 3)

(0 9;(7)) =26,8(7—7'), (4)

where 6,=(K BT/RI(Z))wC is the normalized temperature. This
full model, which includes all mutual inductances and ran-
dom fluctuations, is numerically very heavy and has not been
actually employed in this work. Instead, we have made some
simplifications of the full mutual inductance model [Eq. (2)],
described in Sec. II B.

B. Approximated inductances models

Different models correspond to different approximations
of the matrix L. The simplest level is to assume negligible
inductance, a model which would lead to the XY model. The
physical approximation is that the screening currents I°
would not produce any magnetic field trapped in the loops.'8
So the XY approximation assumes that the magnetic flux is

only due to the external flux and that LI*=0. Therefore, it is
believed to be a good approximation of arrays where L=0.”
Here, we want to investigate the properties of the array as a
function of the inductance matrix itself, so the XY model is
not appropriate. We have, therefore, assumed in Eq. (1) that
the matrix L is diagonal; i.e., only the loop self-inductance is
retained. Such degree of approximation leads to the
Nakajima-Sawada (NS) model."”

In the NS case,!” the matrix L=L1, so K;=M’'M. This
matrix is local; i.e., each phase ®; is coupled to the nearest
six phases of the neighbor junctions for any array size. Thus,
the algorithm complexity for the numerical solution is O(n,,)
rather than O(ni), and the associated Langevin equations re-
quire a moderate effort. This is the model utilized in the
simulations of the Langevin equations.

The NS approximation'® can be improved to include the

magnetic field produced by the current I° also in the other
cells of the array.'” Here, we use an approximated model
which is able to include the relevant part of mutual induc-
tance coupling in the array?® with minimal memory require-
ments. Practically, we have developed a method to include
all the mutual coupling in a radius equivalent to the distance
of the fluxon from the array boundary, so the method works
well for relatively large arrays with fluxons nearly at the
array center [we successfully tested it for ~100X 100
arrays,”” notwithstanding, the method is nevertheless O(nlz,)
(Ref. 21)]. The mutual coupling model (MC) leads to a
modification of the fluxon shape, but the pseudopotential
method described in Sec. I C can be implemented including
such mutual inductance effects without modification. On the
other hand, the direct use of Langevin equations for the MC
model is numerically very heavy being O(ni), so we do not
use this approach in the MC model in connection with
Langevin simulations but only in connection with the
pseudopotential approach described in Sec. II C.
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C. Pseudopotential approach

In the pseudopotential approach, one tries to reconstruct
the energy barrier for a multidimensional system to retrieve
an effective activation energy.'® The pseudopotential as-
sumption states that the effective energy that will dominate
the escape rate for the transition between two states will be
the energy barrier corresponding to the lowest barrier over
all possible trajectories. Put it another way, one can say that
the escape time depends only marginally on trajectories
which correspond to energy variations larger than the small-
est variation. This is justified by the fact that if one has the
competition between many different escape times 7;, the av-
erage escape rate 7! is given by

l — E l — E l_eAi/kBT. (5)
CENPR FE 1)

1

The exponential dependence of the escape rates on the en-
ergy barrier guarantees that even small changes in the energy
will result in significant changes of the escape rates. There-
fore, just the lower energy barrier is a good estimate of 7 in
Eq. (5).

To find the minimal trajectory without searching among
all possible trajectories, we have made some further assump-
tions.

(1) To retrieve the minimal energy barrier, one can just
move a single junction along a predetermined trajectory and
let the other junctions relax in the equilibrium position. This
would physically correspond to activating the noise term of
one Josephson junction, while the other junctions just follow
the deterministic trajectory. The idea behind this is that, at
least in the limit of long escape times (the exponential part of
the Kramer theory), a transition happens only when fluctua-
tions will occur in an unusually strong intensity in a site, and
it is unlikely that the other fluctuations will achieve in the
same time a significant size. However, this leaves the ques-
tion of which junction will cause the trajectory.

(2) Thus, we further assume that the noise term is effec-
tive only on the central junction which undergoes the maxi-
mum phase change. In fact, in Ref. 22 the energy barrier
contributions due to junctions which do not undergo the
maximum phase change have been computed, and it has
been proven that the lowest barrier always corresponds to the
central junction, such barrier being at least some 30% lower
than the next barrier. The actual trajectory will be the one
corresponding to the minimal energy variations, as stated by
the pseudopotential approach.

The simplicity of the pseudopotential or adiabatic ap-
proach is particularly useful in exploring large arrays (the
size scale of the escape phenomenon is dictated by the pa-
rameter 3;, whose inverse gives the number of cells over
which the fluxon is spread) or the multidimensional param-
eter space (we recall that the relevant parameters are the
driving current, the SQUID parameter, and the externally
applied magnetic field).

The results for pseudopotential approach with self-
inductances (NS model) and mutual inductances (MC model)
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FIG. 2. Normalized pinning barriers as function of S; for an
unbiased two-dimensional array. Circles represent the results of the
adiabatic approach with the NS approximation, while the data com-
puted including mutual inductance terms are shown as triangles.
The solid line is the interpolating approximate equation [Eq. (7)]
and the dashed curve is the estimate via the Frenkel-Kontorova
approach (Ref. 23) for discrete one-dimensional array of JJ. Square
symbols represent the energy barrier evaluated via simulations of
the Langevin equations Eq. (2), reported together with the standard
deviation. The barriers have been evaluated at the center of the
array.

are reported in Fig. 2 circles and triangles, respectively). The
findings for the MC model are consistent with previous cal-
culations of barrier by Phillips et al.'” Thus, this is not a new
result, but it is a useful test of the mutual inductance algo-
rithm, which is very involved even for the simple pseudopo-
tential approach. In Sec. II D, we will further comment on
these results in comparison with escape rates calculated by
direct numerical simulations of Eq. (2) for the NS model.

D. Numerically computed escape rates

To compute the activation energy, we have chosen as ini-
tial conditions a fluxon trapped in the central cell of the
array. The array size is varied through simulations to ensure
that the results are independent of the size (i.e., to avoid edge
effects). For the lowest values of the inductance parameter
B, we have simulated arrays of size O(100%). It is worth
underscoring that the effort to compute numerically a single
value of the barrier height is considerable, especially for low
values of the screen parameter where the characteristic size
requires simulations of large arrays.

The system evolves in time because of the presence of the

random current term 6 in Eq. (2). The question we ask is
how long will the fluxon be trapped in the same cell? This
corresponds to numerically computing the escape time 7. As-
suming that some energy barrier prevents the fluxon form
jumping, we expect the escape time to have the functional
form

= TOeAU/AUOHO — TOeAe/HO (6)

(here, AUy=%1y/2e is the normalizing energy). This is in-
deed what can be observed in Fig. 3, where we have plotted
the average escape time (7) (on a logarithmic scale) versus
the inverse normalized temperature. It is evident that the
functional behavior is of the type of behavior in Eq. (6).
From the slope of the linear part (small escape rates), one can
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FIG. 3. Typical average escape time (on a logarithmic scale) as
a function of the inverse normalized temperature. Symbols refer to
the numerically evaluated average escape times, and error bars de-
note the standard deviation over realizations (10 in this example).
The solid line is the interpolating linear fit from which the energy
barrier is estimated using the last six points. The parameters of the
simulations are B;=0.5, y=0, and N=8.

retrieve the normalized energy barrier to be compared with
the estimate of the approximate method.'* The normalized
barrier Ae=AU/AU, will be a function of the parameters 3;
and v. In Fig. 2, we show the dependence on the SQUID
parameter B3; (symbols) together with the results from the
pseudopotential method (circles for NS model) and the the-
oretical estimate for a discrete one-dimensional array of JJ
via the Frenkel-Kontorova approach.?® It is clear that the
energy for two-dimensional arrays tends to be constant for
very low B;. The agreement between the Langevin simula-
tions and the adiabatic method seems quite good, as can be
checked by assuming the pseudopotential estimate to be “ex-
act,” and then using the x’ test to estimate if the energy
barriers (and the associated standard deviations) evaluated
with the Arrhenius formula are compatible with the pseudo-
potential method. The result for the data in Fig. 2 is that the
likelihood that the barriers retrieved with the two methods
are drawn from the same underlying model is above 10%,
which is acceptable for a comparison without free param-
eters.

The data presented in Fig. 2 can also be summarized by
the heuristic interpolating formula,

B
Ae = AS(’)’z O’:BL) = Asmax_ (Aemax - A“:J‘O)Q—L
L+ BL

(7)

(we recall that for a square array in these normalized units,
Ag,,,=2 and Ag(,=0.203). The value ,6’2 can be found by the
least-squares method that yields ,82:5.710.3 for the data
estimated with Langevin simulations, and 8;=5.43+0.01 for
the data obtained via the adiabatic approach. The physical
interpretation of the parameter 32 is that it corresponds to the
inductance at which the energy barrier is half of the maxi-
mum value.

For the determination of the electrical properties of a su-
perconductor, the behavior of dissipation in the presence of a
bias current is of crucial importance. The resulting Lorentz
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FIG. 4. Normalized pinning barriers as a function of bias cur-
rent. The thin solid line is the curve obtained by interpolating the
results of the adiabatic approach and the symbols represent the en-
ergy barrier evaluated via simulations of the Langevin equations
[Eq. (2)] reported together with the standard deviation. The dashed
line represents the interpolating approximation equations [Eq. (8)].

force between the bias and the flux quanta results in a ten-
dency of the vortices to move, thus determining the effective
critical current.”* We have, therefore, estimated the energy
barrier behavior as a function of the bias current by direct
numerical simulations of Eq. (2) (see Fig. 4). Using a for-
mula to extrapolate from y=0 to finite values of the current
(without further parameters), the energy barriers read'*??

Ae(y,Br) = [Ae(0,B)V1 — ¥ — (=2 sin™'(y)]. (8)

Also in this case the x? test has been applied to verify the
compatibility of the pseudopotential method with the Lange-
vin equation estimates, obtaining a significant agreement
without additional free parameters (the likelihood of the x*
test being above 5%).

To summarize this section, the parameter 3; affects the
pinning energy Ae of an isolated vortex, lowering the value
of an isolated junction Ae=2 (corresponding to 3; =) to the
limit of the XY model Ae=0.203 (corresponding to B;=0)
with an approximated behavior given by Eq. (7). For each
value of the screening parameter, the bias current lowers the
energy barrier, with a functional form closely reproduced by
Eq. (8). The results obtained for the NS model with the
Langevin simulations and the adiabatic method are consis-
tent.

III. FLUXON INTERACTIONS

Fluxons interact; the effective potential of a fluxon in an
array is not only due to the interaction with the network but
also with other fluxons. In the simplest case, let us assume
that there are just two fluxons at a distance of d cells. In this
case, the energy to move a fluxon will depend on the super-
position of the interactions of the fluxon with the grid and the
fluxon-fluxon (F-F) potential. With the quasistatic method
employed for the single fluxon, we have evaluated the energy
to move two excitations apart from a cell, the results for NS
model being reported in Figs. 5(a) and 5(b). The fluxon-
fluxon Aej'i(d) and the fluxon-antifluxon (F-AF) Aepsx(d)
interaction potentials, which are a function of the distance d,
can be estimated from the data. In general, the barrier should
be increased by the attractive potential between two vortices
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FIG. 5. Normalized pinning barriers for two excitations: (a)
fluxon-fluxon and (b) fluxon-antifluxon pairs as a function of the
distance between the excitations for various values of B; (B, takes
the values, of 100, 10, 5, 2, 1, 0.5, 0.2, and 0.1, from the top to the
bottom). (c) describes the behavior of the interaction energy as a
function of B; at a distance of five cells (d=5), and the dashed line
is the interpolation formula [Eq. (7)]. (d) represents the comparison
of the NS simulations (filled symbols) with mutual inductances
(open symbols) for B;=0.5 in the case of fluxon-fluxon (circles)
and fluxon-antifluxon (triangles) interactions.

with different polarities if the vortices are moved apart, and
should be decreased by the same potential when vortices,
again with opposite polarities, are moved closer. The con-
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verse is true for vortices of the same polarity. The example
reported in Fig. 5(a) refers to two vortices moved apart. For
instance, the result for 8;=100 at d=2 reports the energy
barrier to move a fluxon from the distance of two cells to a
distance of three cells. For F-AF pairs [Fig. 5(b)], the barri-
ers are at a maximum when the vortices are closest, and tend
towards the energy barrier of isolated vortices at an infinite
distance. Thus, we expect that the energy barrier,

Aep ar(d) = Ae(Br) + Asiﬁw(d), 9

has the obvious limit Aep_sp(0)=Ae(B.), as in Eq. (7). An-
other limit is that the attractive or repulsive potentials should
always be smaller than the pinning potential; otherwise, the
two vortices would either attract and annihilate each other, or
move to the next cell even without noise. Since the pinning
potential decreases when [; decreases, the minimum dis-
tance for the existence of static F-AF pairs increases when
B, decreases. For instance, the minimum distance for a
stable pair reads three cells for 8;=0.5, and increases up to
six cells for 8;=0.1. The minimum distance could therefore
be interpreted as the unbinding length, or the minimal dis-
tance to have isolated vortex-antivortex pairs.

In Fig. 5(c), the behavior of the barrier at a fixed distance
(d=5) is reported as a function of the coupling for the attrac-
tive (F-AF) and repulsive (F-F) cases. A nontrivial behavior
of the energy barrier as a function of the coupling parameter
B is observed at relatively short distances for the opposite
polarity case: the barrier first decreases when the SQUID
parameter is lowered, and then reaches a minimum at f3;
=(.5 to increase again for 8;<<0.5. This behavior can be
understood noting that 3, affects the interaction in two op-
posite ways: it increases the pinning energy Ae [see Eq. (7)],
but it decreases the attractive potential Aej’sr. The latter
effect can be understood, at least qualitatively, following the
argument (borrowed from Tinkham?*) that the interaction po-
tential is due to field cancellation: since the higher the
screening current, the lower the cancellation, one expects
that the effect of 8, on the interaction is to decrease the
interaction energy, as also demonstrated in Ref. 25.

The same argument also gives the dependence of the en-
ergy on the distance between the excitations. Consider a vor-
tex in a square array when the elementary cell size is a. Let
us assume that in Eq. (1), the screening currents I* are so
negligible (8, — 0) that there is no external applied field and
n=1 (this corresponds just to a single trapped vortex),

> goj=NLAgD*=27T. (10)

je€ loop

Here, N; is the number of junctions in a loop of radius r and
A¢" is the phase difference assumed constant for each junc-
tion in the loop. One can estimate N; =2r/a and conse-
quently, Ap*=a/r=1/d (we recall that d is the number of
cells). The estimate can be inserted into the energy of an
isolated junction e=1-cos ¢. Moreover, one can assume for
large r that A" is small enough to approximate the cosine
with 1-(A¢")?/2, so finally, the total energy over a circle of
radius R from the vortex center is
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SCEENDS ¢f212<§)2N = (9>2@.

L=
r<R je loop 2 r<R 2 r<R\T a

(1)

Approximating the last sum with the integral, one gets the
logarithmic divergence,

s(R)z%f (Zﬂ)d—’EEvlog(d). (12)
r<R r a

The constant Ey, summarizes the numerical factors, including
the corrections at small distances where approximations such
as Eq. (10) are poor. If just a vortex is present, d can be as
large as the array; however, if within a distance d, another
excitation of opposite polarity is present and the sum of the
phases including a fluxon and an antifluxon is zero, so A"
vanishes for distances larger than the F-AF distance. Put an-
other way, the energy of a pair F-AF is given by Eq. (12),
where d is the distance with the nearest excitation of the
opposite polarity, if the distance is large enough to ensure
that the approximation [Eq. (10)] is acceptable. With this
interpretation, one retrieves that two excitations interact with
a logarithmic potential, or with a force that decreases with
the inverse of the distance. One can argue that the same
argument implies that 3; decreases the interaction energy. In
fact, increasing f3, i.e., in the presence of a finite inductance,
the approximation [Eq. (10)] should be replaced by the more
complex Eq. (1), solving consistently for the phases and the
screening currents. However, by simple inspection of the
equations, one obtains the result that the phases A¢" should
be smaller in the case of finite inductance because of the
additional screening due to the currents on the right-hand
side, and therefore the energy [Eq. (12)] is lowered when 3;
increases. Another way to see this is to notice that if the
junctions are interacting more weakly (i.e., when B; gets
higher) and if the vortices are kept at a fixed distance, the
phases tend to zero more quickly, and therefore the vortex
interaction also is weaker.

In the case of two excitations of the same polarity, assum-
ing that the profile of the second fluxon is the same as the
reverse sign, the interaction potential reverses: so it keeps the
same behavior, but becomes repulsive. Therefore, for the F-F
interaction if B, decreases, both contributions (the array bar-
rier and the interaction energy) decrease, and no minimum is
observed as a function of the distance. Moreover, in Fig. 5(c)
a slight asymmetry between the F-F and the F-AF interac-
tions is evident for very low f3;.

In Fig. 5(d), the energy barrier is shown for the two mod-
els (NS and MC). It is clear that the mutual inductance terms
affect little the pinning barriers as a whole, because the pin-
ning energy due to the loops is essentially unchanged, while
the interaction energy is strongly affected by mutual induc-
tance terms. An analytic insight is possible for the
asymptotic behavior at large distance,” and if just self-
inductances are retained, it has been predicted that the poten-
tial should decay exponentially,
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FIG. 6. Normalized pinning barriers for a fluxon-antifluxon pair
as a function of the distance for (a) B;=2 (circles), 1 (squares), and
0.5 (triangles) with the N'S model (the solid lines represent the fitted
exponential behavior [Eq. (15)] and (b) B;=0.5 for both the NS
approach (open triangles) and the MC approach (filled triangles).
The solid line through the mutual inductance values has been ob-
tained with a power-law function [see Eq. (16)]. Scales on the hori-
zontal axis in (a) and (b) are linear and logarithmic, respectively.

Ud> 1) x e L, (13)

This makes good physical sense because the screening cur-
rents should have an effect over a distance of =1/3;,!719%
since B, plays the role of the Ax? in the discrete approxima-
tion of the second spatial derivative in Egs. (2). Thus, the
screening would change the potential with respect to the XY
limit [Eq. (12)]. However, an algebraic dependence should
be recovered if the effects of mutual inductance terms are
considered to all orders as in Eq. (2), and should read®’

Uld> l)ocL. (14)
Brd
These analytic predictions are only valid for the asymptotic
behavior and, to our knowledge, have never been checked
against numerical simulations. To estimate how the interac-
tion is modified by the presence of inductances, we have
simulated the energy barrier for a fluxon and an antifluxon
for the case B;,=0.5, 1 and 2, as shown in Fig. 6. On the
vertical axis, the interaction potential —Agf", (d)=Ae
—Agp_ sp(d) [see Eq. (9)] is plotted as a function of the dis-
tance d. The fit gives an exponential behavior,

— Asl" o(d) = Ae™4, (15)

with dy=1.35 for 8,=0.5, dy=0.95 for B,=1, and dy=0.70
for B,=2, in agreement with Eq. (13). To obtain the data
shown in Fig. 6(a), we have made sure that the energy barrier
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FIG. 7. Normalized pinning barriers for two fluxons as a func-
tion of the bias current for various distances (d=3, filled triangles;
d=5, open triangles; and d=7, circles) between the fluxons and for
an array with B;=1.

has been computed with an accuracy of 107, The main dif-
ficulty is to simulate arrays whose size is large enough to
ensure that the energy barrier does not depend on border
effects. We have found that the results stabilize with the de-
sired accuracy only for arrays of about 100 X 100. For such
arrays, we have not been able to validate the energy barriers
with Langevin simulations as accurately as required by the
exponential behavior.

When mutual inductance effects are added, the interaction
potential appears to approach zero more slowly, as in Fig.
6(b), where we display the interaction potential for 8;,=0.5
[notice that because of the slower dependence, we have used
in Fig. 6(b) logarithmic horizontal scale, rather than the lin-
ear scale, as in Fig. 6(a)]. In particular, using our approxi-
mate mutual inductance matrix, we are able to show that the
behavior tends to be algebraic rather than exponential, as can
be made evident in Fig. 6(b), comparing the logarithmic plot
of numerical data with exponential and power-law behaviors.
It is clear from the figure that the power law offers a better
approximation of the numerical data. The fit of power law
gives

- Aef" ((d) = Ad™*, (16)

with @=3.1 and A=3. The accuracy of this result is not
critically dependent on array dimension because energies are
larger, and the above fits have been obtained using smaller
arrays of about 75 X 25. On the other hand, the use of smaller
arrays will introduce finite size effects which imply that the
exponent is not near to 1, as in Eq. (14), but is higher. Also
in this case the calculation of barriers uses the pseudopoten-
tial method because Langevin simulations would be much
heavier when mutual inductance terms are included.

We have also investigated the effect of the bias current
with the same technique, as reported in Fig. 7. When com-
pared with the results of Fig. 4, the effect of the bias current
on a couple seems similar to the effect observed on a single
fluxon.

To summarize, when a fluxon-(anti)fluxon pair is present,
the interaction energy, defined by Eq. (9), depends on B; and
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decreases when 3; increases. In the F-AF case, the overall
behavior of the pinning barriers shows a minimum for S3;
=(.5 at d=5. The minimum tends to move towards lower
values of the inductances for larger distances; for instance, it
reads for B;=0.2 at d=9. The interaction potential [Eq. (9)]
is a function of the distance, and for finite inductances (as
low as we have been able to simulate, 8;=0.5) it vanishes
exponentially over a distance of ~1/,. This is in contrast
with the zero inductance limit (XY model) where a power-
law behavior is expected. When mutual inductances are in-
serted into the model, they give a power-law dependence of
~d=3, instead of the d~! prediction for moderate distances
(d<<100).

IV. CONCLUSIONS AND DISCUSSIONS

The effect of noise on fluxon propagation in two-
dimensional arrays of Josephson junctions has been investi-
gated by simulating the Langevin equation associated with
the array. From the Arrhenius-like escape time, we have
evaluated the energy barrier and the dependence of the bar-
rier on the inductance and the externally applied current. The
results have been compared with a much simpler adiabatic
method.'*!® It has been found that the approximated model
represents a fairly accurate estimate of the energy barrier that
reproduces the main features of the system. On the basis of
such test, one could also expect the approximate model to be
accurate at values of the parameters that are difficult to ex-
plore numerically via the Langevin equations [Egs. (2)]. In
particular, the role of mutual inductance and the strength of
the fluxon interactions in the presence of finite inductances,
which would require a major computational effort, have been
simulated with the semianalytical method by using an ap-
proximate expression for the mutual inductance coupling.
The main findings are as follows.

(1) There is an interpolation formula for the pinning en-
ergy as a function of the screening parameter f3;
=2mLl,/®,, confirmed both by the Langevin simulations
and the adiabatic method.

(2) There is validation with Langevin simulations of the
interpolation formula for the pinning energy as a function of
the bias current.'*

(3) The pinning barriers for fluxon-(anti)fluxon pairs as a
function of the screening parameter (3; have been obtained
with both Langevin simulations and the adiabatic method.
The pinning barrier shows a minimum for 8, =0.5 at d=5.

(4) The interaction force between two excitations should
be less than the pinning force to have a static pair. Since the
interaction decreases when the distance increases, this trans-
lates into a minimum distance to have a stable pair. Such
distance increases when the SQUID parameter B; decreases.

(5) The fluxon-(anti)fluxon interaction energy as a func-
tion of the separation between the excitations is obtained
with the adiabatic method. This energy shows an exponential
behavior over five decades for 3; as low as 0.5. This is in
striking contrast with the logarithmic behavior expected for
very low inductances.?*

(6) When mutual inductance is considered, the interac-
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tion potential vanishes much more slowly and its asymptotic
behavior changes from an exponential to an algebraic law
that for d<<100 exhibits an exponent of —3 rather than the
expected exponent —1 of the asymptotic behavior.?

We regard the last two results as the most relevant. They
suffer the obvious drawback that they have only been found
with the adiabatic method. However, the method has proven
very reliable in reproducing the correct energy barriers in
one fluxon case (see Fig. 2). Thus, we believe that the extent
of the results to the fluxon-antifluxon interaction is legiti-
mate. We conclude that to observe the logarithmic behavior
of the interaction, one cannot just retain the first-order effect
of the inductance matrix, the NS approximation,!® for it re-
sults in a completely different behavior.

The results presented here have been derived under a
number of approximations that are worth recalling.

(1) The role of disorder has been neglected. We have im-
posed both uniformity through the parameters of the array
(essentially uniform critical current and dissipation) and
through the geometry. Parameter disorder has been exten-
sively investigated in connection with synchronization
issues,”®?” but to our knowledge there is little knowledge of
its effect on flux escape phenomena, besides topological dis-
order that has been investigated by removing one or more
junctions from an otherwise regular array.?®

(2) Quantum fluctuations have been neglected. The role
of quantum fluctuations might be neglected as far as Aw
< kpT. For higher frequencies, one should replace the quan-
tum equivalent of the correlator [Eq. (4)] in the classical
Langevin equation of type of Eq. (2) or replace it by a more
refined theory.?

(3) Quantum effects have been neglected. When the ca-
pacitative energy due to a single electron exceeds the Joseph-
son energy (i.e., e2/2C>#hl,/2e¢), the system is described by
a quantum Hamiltonian. Although many interesting effects
have been predicted,? also in this context an escape process
from potential can occur by means of quantum processes
involving fluxons, as tunneling across the above derived
barriers’! and fluxon creation because of quantum fluctua-
tions. While only an indirect evidence that this may be the
case for one-dimensional arrays exists,>> we must mention
that quantum effects involving the tunneling of fluxons have
been observed both in Josephson systems®} and for Pearl
vortices in (ultra)thin films.’*3 We remark that Pearl vorti-
ces present the same algebraic behavior of fluxons in mutual
inductance coupled array.'’

We remark that the knowledge of energy barriers can help
to derive an effective action for the tunneling process. This in
turn can be used to predict tunneling rates.
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