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In this work, we study an extended version of the t-J model. For special values of the hopping parameters
we obtain exactly the ground state of the model. We found that depending on the values of the system
parameters, the ground state may be superconducting, a charge ordered insulator, or a phase separated state. As
holes are added to the system, it may experience a transition from an insulator to a superconductor. The doping
dependence of the superfluid density and the complex symmetry of the superconducting parameter are in
agreement with the phenomenology of the cuprates.
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I. INTRODUCTION

In recent years, there has been great interest in theoretical
models for superconductivity in strongly correlated electron
systems �SCESs�.1,2 It is widely accepted that in many
SCESs such as heavy fermion systems or high-temperature
superconductors �HTSCs�, the electron pairing is caused by
other than the usual BCS mechanism. This picture is sup-
ported by the fact that the superconducting states possess
properties that cannot seem to be explained with the BCS
theory. These include the high anisotropy of the supercon-
ducting gap or the dependence with doping in the HTSC. To
describe the HTSC, the common starting point are the differ-
ent versions of the Hubbard model and the t-J model.2,3 The
t-J model is the strong coupling limit of the Hubbard model,
and it is believed that it could contain the basic physics of
the cuprates. It was proposed by Anderson that the ground
state of this Hamiltonian at half filling is a linear superposi-
tion of singlet states without long-range magnetic order3

�called resonating valence bond, or RVB, state�, which be-
comes superconducting in the presence of doping. Since
then, much work was devoted to study the t-J model using
both analytical and numerical methods.2 A rigorous confir-
mation of the above claim is still lacking, although it is
known that the RVB state is realized in some one- and two-
dimensional systems.4

It is now generally accepted that the electronic interac-
tions play a fundamental role in the formation of the electron
pairs in HTSC and heavy fermion systems, but the origin of
the pairing mechanism is still controversial. In part, this loss
of consensus is caused by the fact that approximate schemes
cannot give conclusive results when the interactions are
strong. As a consequence, rigorous results for SCES are very
valuable. Exact demonstrations of superconductivity driven
only by electronic interactions in SCES have been performed
for some few particular systems. These demonstrations are
usually based on the concept of off-diagonal long-range or-
der �ODLRO�, which is a property that implies the Meissner
effect and flux quantization.5,6 However, in many cases, the
theory used contains some unjustified assumptions. For in-
stance, in Refs. 7–9 exact results were obtained for exten-
sions of the Hubbard model including the so-called bond
charge interaction X. In all the cases, the superconducting
ground states were found, imposing the condition X= t

�where t is the hopping matrix element� and neglecting the
Coulomb repulsion between neighbor sites V. While the as-
sumption V=0 is, in principle, valid due to screening effects,
this implies that X / t must be very small,12 in contradiction
with the condition X= t. In other series of studies, ground
states with ODLRO of Hamiltonians that contain an infinite
range pair hopping term were obtained.13,14 Although these
results are rigorous, an infinite range hopping is, as a starting
point, very unrealistic. It is worth mentioning that Yang15

obtained exact eigenstates of a modified version of the Hub-
bard model having ODLRO, even though these eigenfunc-
tions are not ground states.

In the present work, we study a modified version of the
t-J model in dimensions d=1 and d=2. For a special relation
between the hopping parameters, we found exactly the
ground state of this Hamiltonian and show that it is super-
conducting if the coupling parameters satisfy some inequali-
ties. To obtain the ground states, we start by following the
method proposed by Brandt and Giesekus16–19 to derive ex-
act solutions for the Anderson and Hubbard models. We shall
show how superconducting solutions can be constructed with
this method.

II. HAMILTONIAN MODEL

We begin by considering a four-leg t-J ladder system,
whose Hamiltonian is

H = P�t �
iab�

a�b

�cia�
† cib� + H.c.� + t� �

iab�

�ij�

�cia�
† cjb� + H.c.��P

+ J �
iab

a�b

�Sia · Sib −
1

4
nianib	 + J��

iab

�ij�

�Sia · S jb −
1

4
nianjb	

+ V �
iab

a�b

nianib + V��
iab

�ij�

nianjb, �1�

where cia�
† �cia�� are the creation �destruction� operators for

electrons at the rung i and the leg a �a goes from 1 to 4� with
spin �, nia=��cia�

† cia� are the number operators, t and t� are
the hopping integrals between orbitals at the same rung and
at nearest-neighbor rungs, respectively, J and J� are the ex-
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change interactions, and V and V� are the Coulomb repulsion
between nearest-neighbor sites. Here, the operators P ex-
clude states with double occupation at any site.

We now introduce the operators defined as

�i,� = �i,� + �i+1,�, �2�

with

�i,� = �
a=1

4

cia�.

Using these operators, the first term of the Hamiltonian �1�
can be expressed as

Ht = P�t��
i�

�i�
† �i� − 2t�N̂	P , �3�

if the condition t�= 1
2 t is satisfied, where N̂ is the total num-

ber of particle operator. In the following, we shall assume
that this relation between t and t� holds, with t�0. As is well
known, the t-J model can be obtained from the Hubbard
model in the limit of strong interactions, in which case J
=4t2 /U, where U is the strength of the on-site Coulomb
repulsion of the Hubbard model. Since the value of t� is half
the value of t, it is consistent to assume that J� is in the order
of a quarter of the value of J. Thus, in a prime analysis we
shall omit the interactions J� and V� and will consider their
effects later. In order to obtain a ground state for the Hamil-
tonian �1�, we determine a lower bound for the ground-state
energy. We first note that the term t�i��i�

† �i� is semidefinite
positive, so that a lower bound for its expectation value is
zero. To obtain a lower bound for the other part of the Hamil-
tonian, we diagonalize the local Hamiltonian

Hi = V �
ab,a�b

nianib + J �
ab,a�b

�Sia · Sib −
1

4
nianib	 �4�

for different values of ni=�ania. As asserted by the varia-
tional principle of quantum mechanics, the value of �Hi� is
minimal in the ground state.10 This allows us to obtain a
lower bound for ��iHi�=�i�Hi� diagonalizing Hi.

11 The low-
est eigenvalues for each value of ni are shown in Table I. In
particular, for ni=2, the state that minimizes the energy are
the singlet states.

The values of ni that minimize the energy per particle are
ni=1 if V�J, ni=2 if J�V�J /4, and ni=4 if J /4�V.
Thus, for the case J�V�J /4, a lower bound for �i�Hi� is
1
2N�2, where N is the total number of particles. For simplicity
sake, we will assume here that N is even �in the thermody-

namic limit, the consideration of N or N+1 particles is irrel-
evant for our purpose�. Then, a lower bound for the ground-
state energy is given by

�l = − �2t� +
1

2
�J − V��N . �5�

Now we attempt to construct a wave function that satisfies
this lower bound. At this point, we define the operators

biab
† =

1

2

�cia↑
† cib↓

† − cia↓
† cib↑

† � , �6�

which create a singlet pair at the rung i with electrons at the
sites a and b �usually called bond operators�. Now let us
consider the wave function defined as

��� = �
C

�
i�C

�bi12
† + bi34

† − bi14
† − bi23

† ��0� , �7�

where i takes the values of a set C of 1
2N different natural

numbers pm, with pm	M +1, M being the number of rungs
of the ladder, and �0� is the vacuum state. The summation
extends over all the possible sets. We note that ��� is formed
by singlet local states, which minimize the energy of the
local Hamiltonian Hi in the case J�V�J /4. In addition, it is
easy to check that the following property holds:

� j,−�biab
† �0� =


ij


2
cia�

† �0� + cib�
† �0�� . �8�

In virtue of this property, it follows that �i����=0. Thus,
���H���=−2t�+ 1

2 �J−V��N. This value equals the lower
bound �l previously obtained. Then, no other wave function
can make �H� lower than ���. As a consequence, ��� is a
ground state of the Hamiltonian �1� �for J�V�J /4, J�
=V�=0�. Now we show that this state possesses ODLRO
and, consequently, is superconducting. A system exhibits
ODLRO if the off-diagonal matrix element

�lm��2�pq� =
���cl↑

† cm↓
† cp↑cq↓���
�����

�9�

approaches a nonzero value as the distance between the sites
l and p tends to infinity �here, l and p are at the neighbor-
hood of m and q, respectively, i.e., rl�rm ,rp�rq with
�rl−rp�→��.5

For the sake of simplicity, we will calculate the value of

�abcd =
���biab

† bjcd���
�����

. �10�

If the value of �abcd is nonvanishing in the limit
�ri−r j�→�, �lm��2�pq� will not vanish in this limit. The
value of �abcd is obtained from the expression of ��� with the
result

�abcd = f
�2M − N�N

16M�M − 1�
, �11�

where f is given by

TABLE I. Lowest eigenvalues of Hi.

ni Ei

0 0

1 0

2 −J+V

3 −3J /2+3V

4 −3J+6V
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f = −
1

4
�− 1��a+b+c+d�/21 − �− 1�a+b�1 − �− 1�c+d� , �12�

so that the value of �abcd may be positive, negative, or zero,
depending on the indices the relation �12� is not general but
it is valid for the wave function �7��. This reveals the com-
plex symmetry of the order parameter. For instance, if the
correlation �11� is calculated with a=c, b=d �i.e., involving
only two legs�, its value is positive. However, it can be nega-
tive or zero if the correlation involves more than two legs. At
this point, we note that in Bose-Einstein condensates, the
value of the off-diagonal elements of the reduced matrix den-
sity of order 1, �1, represents the condensate fraction.5 Since
the superfluid density is proportional to the density of super-
conducting electrons �i.e., the fraction of superconducting
pairs�,20 it is natural to interpret here that the average of the
module of �abcd is a measure of the superfluid density ��s

 ��abcd��. On the other hand, there is a phenomenological
relation between the superfluid density and the critical tem-
perature, known as the Uemura relation, which establishes
that these two properties are proportional. For some systems,
this relation is not accurate,20 but we can use it to roughly
estimate the dependence of the critical temperature with dop-
ing. From Eq. �11�, the superfluid density can be expressed in
the thermodynamic limit as �s=const� �1−x��x− 1

2
�, where

x=1−n and n=N /Ns, with Ns being the number of sites
�Ns=4M�. Thus, the system exhibits a parabolic dependence
of �s and Tc, as is typically observed in the HTCS.

III. NONLOCAL INTERACTIONS

Now we shall consider the effect of V� and J� on the
properties of the system. For this purpose, we shall obtain a
lower bound for the ground-state energy of the Hamiltonian
�1�. For convenience sake, we rewrite the Hamiltonian �1� as
H=Ht+�iHij with

Hij =
J

2 �
ab

a�b

�Sia · Sib + S ja · S jb� + J�Si · S j

+
1

2
�V −

J

4
	 �

ab

a�b

�nianib + njanjb� + �V� −
J�

4
	ninj ,

�13�

where Si=�aSia �notice the 1
2 factor in J and V�. If J is the

dominant interaction �as we assume that is the case with
J�� 1

4J�, the energy is minimized when the electrons form
local singlets, which, in turn, makes the magnetic interaction
between neighbor rungs null. We verify this by diagonalizing
the local Hamiltonian Hij. We shall denote as Enm and �nm the
energies and the corresponding energies per particle for
ni=n, nj =m. The lowest ground-state energies in each case
are shown in Table II. Consideration of other values of
ni ,nj than those showed in Table II gives upper values of
Enm. Whether or not �ni ,nj�= �2,0� is the configuration that
minimizes the energy per particle depends on the values of
V� and J�. We shall now consider the case V��

1
4J�. In

this instance, the lower energy per particle is �20 if
J /4	V	J+2�V�−J�� �with J�J��. So, a lower bound for
��iHij�=�i�Hij� is equal to �= �N /2��V−J�. As previously
obtained, a minimal value for �Ht� is −2t�N. Then, a lower
bound for �H� is �l=−2t�N− 1

2 �J−V�N, for the conditions

J

4
	 V 	 J + 2�V� + J��,V� �

J�

4
. �14�

Now let us show that Eq. �1� has ground states with
ODLRO.

Consider the following wave function:

���� = �
C�

�
i�C�

�bi12
† + bi34

† − bi14
† − bi23

† ��0� , �15�

where now C� is a set of N /2 odd natural numbers pm, such
that pm	M +1. In this wave function, the singlet pairs are
located only at rungs with even indices. Since ���� does not
have electrons at neighbor sites, it is made up of local sin-
glets and ��i�

† �i�����=0, the expectation value ����H����
equals the lower bound �l. Then, ���� is a ground state of Eq.
�13�. In similar form to that done for ���, it is easy to show
that ���� is superconducting, with

�abcd = f
�M − N�N

4M�M − 2�
,

where f is that defined in Eq. �12�.
The wave function �15� is not the most general ground

state of Eq. �1�. It is contained in the ground state ����
=PC��� where ��� was defined in Eq. �7��. Here, PC sets out
all the states that contain at least two electrons at neighbor
rungs. It is not difficult to show that ���� possesses ODLRO
and, thus, it is superconducting.

For N=M �x= 3
4

�, the ground state ���� is not supercon-
ducting but it is a charge ordered insulator, with a two sub-
chain configuration. In each site of one subchain, there are
two electrons and no electrons in the other subchain. For this
number of electrons, ���� and ���� coincide. If holes are
added to the system, in order to make 0	N	M, the system
becomes superconducting.

To complement the above discussion, valid for the case
J /4	V	J+2�V�−J�� ,V��J� /4, we now consider that
J /4	V	J+2�V�−J�� but V�	J� /4. In this case, the energy
is lowered if the electron pairs are located at neighbor sites;
i.e., �ni ,nj�= �2,2� is the configuration that reduces the en-
ergy per particle, and the ground-state exhibits phase separa-
tion instead of superconductivity. A corresponding lower

TABLE II. Lowest eigenvalues of Hij.

nm Enm

10 0

11 V�−J�
20 �V−J� /2

22 V+4V�−J−J�
40 3V−3J /2
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bound for the ground-state energy is �l�=−2t�N− 1
2 J−V

+4�J� /4−V���N. The exact ground state that satisfies this
lower bound is

��ps� = �
k=1

M−N/2

�
i=k

k+N/2−1

�bi12
† + bi34

† − bi14
† − bi23

† ��0� . �16�

At this point, it is interesting to compare our results with
those obtained in previous works. The four-leg t-J ladder
was investigated by White and Scalapino21 using density-
matrix renormalization-group techniques. They found similar
phases that were obtained here, namely, phase separation,
superconductivity �singlet pairs�, and charge ordered phases.

Analogous results were also obtained by Ledermann et al.
for the four-leg Hubbard model using bosonization
techniques.22 The latter authors showed that at low doping
and small values of the coupling U, the ground state of the
four-leg Hubbard ladder is C1S0 type �a phase with m gap-
less charge modes and n charge modes is denoted as CmSn�.
These authors also found, in accordance with the results of
Ref. 21, that for small values of the coupling J / t, the singlets
form with more probability in the top and bottom legs.

In order to compare with these results, we will examine
the presence of gaps in the charge and spin modes. Introduc-
ing the creation operators in k space, ck�

† , defined as

ck�
† = �

j

cj�
† eikrj ,

the noninteracting Hamiltonian Ht may be expressed as

Ht = �
k�

− 8t�B1k�
† B1k� + B2k�

† B2k� + B3k�
† B3k��

+ 8�3t + �k�B4k�
† B4k�, �17�

where �k=2t cos k and the Bak�
† are fermionic operators de-

fined as

B1k�
† =

1

2
�c1k�

† + c2k�
† − c3k�

† − c4k�
† � ,

B2k�
† =

1

2
�c1k�

† − c2k�
† + c3k�

† − c4k�
† � ,

B3k�
† =

1

2
�c1k�

† − c2k�
† − c3k�

† + c4k�
† � ,

B4k�
† =

1

2
�c1k�

† + c2k�
† + c3k�

† + c4k�
† � . �18�

These are similar to the band operators obtained in Ref. 18.
The real space representation of the operators Bak�

† are B1i�
†

= 1
2 �c1i�

† +c2i�
† −c3i�

† −c4i�
† �, B2i�

† = 1
2 �c1i�

† −c2i�
† +c3i�

† −c4i�
† �,

B3i�
† = 1

2 �c1i�
† −c2i�

† −c3i�
† +c4i�

† �, and B4i�
† = 1

2 �c1i�
† +c2i�

† +c3i�
†

+c4i�
† �. Thus, B4i�

† =�†, where � was already defined. We
note that many different ground states similar to those in Eq.
�15� can be constructed. Consider the wave function

��3� = �
C�

�
i�C�

A�bi12
† + bi34

† − bi14
† − bi23

† �

+ B�bi14
† + bi23

† − bi13
† − bi24

† �

+ C�bi13
† + bi24

† − bi12
† − bi34

† ���0� , �19�

where C� was already defined and A ,B ,C are arbitrary coef-
ficients. This wave function is also a ground state of Eq. �1�
for the conditions �14�. We note that the following relations
hold:

B1i↑
† B1i↓

† =

2

4
�bi12

† + bi34
† − bi13

† − bi14
† − bi23

† − bi24
† � ,

B2i↑
† B2i↓

† =

2

4
�bi13

† + bi24
† − bi12

† − bi14
† − bi23

† − bi34
† � ,

B3i↑
† B3i↓

† =

2

4
�bi14

† + bi23
† − bi13

† − bi12
† − bi34

† − bi24
† � . �20�

Using the above relations and Eq. �8�, we can immediately
evaluate the correlations

��3�B1j↓
† B1j↑

† B1i↑B1i↓��3�

=
�A − C�2

2��A − C�2 + �B − A�2 + �C − B�2�
�M − N�N

4M�M − 2�
,

��3�B2j↓
† B2j↑

† B2i↑B2i↓��3�

=
�C − B�2

2��A − C�2 + �B − A�2 + �C − B�2�
�M − N�N

4M�M − 2�
,

��3�B3j↓
† B3j↑

† B3i↑B3i↓��3�

=
�A − B�2

2��A − C�2 + �B − A�2 + �C − B�2�
�M − N�N

4M�M − 2�
,

��3�B4j↓
† B4j↑

† B4i↑B4i↓��3� = 0. �21�

These results show that there is pair charge transport in
the modes m=1,2 ,3. However, there is no type of charge
transport in the mode m=4. Then, the ground state has three
gapless charge modes. On the other hand, the absence of spin
triplets in the ground states indicates that there is a gap be-
tween the singlet and triplet states. As a consequence, all the
spin modes are gapped. Then, ��3� is of C3S0 type. As al-
ready mentioned, the ground state of the four-leg Hubbard
ladder is C2S0. The difference between the ground states of
the models is probably due to the following reason. In Ref.
22, it was shown by renormalization-group method that the
four-leg Hubbard ladder may be represented as two two-leg
Hubbard ladders. At low energies, the two inner legs become
decoupled from the two other legs. However, in the present
model, all the legs are equivalent �a permutation of the leg
indices makes no modification in the Hamiltonian�, which
probably avoids this decoupling.

In addition, for the model considered here, the supercon-
ducting phase arises when a minimal repulsive interaction is
present, in order to satisfy the condition J�V�J /4. In fact,
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it is the value of J /V that determines the phase, independent
of the value of J / t. A consequence of this is that the super-
conducting states may exist for arbitrarily small values of
J / t. This is in contrast to what occurs in the conventional t-J
and Hubbard models studied in Refs. 21 and 22, where, at
fixed doping, it is the value of J / t that determines the phase.
This is probably caused by the fact that the exchange inter-
actions are distinct in each case. In the model considered
here, the exchange interactions between two electrons at the
same rung are the same for any two given legs. This en-
hances the effects of the exchange interactions, which could
increase the tendency of phase separation. This trend is
avoided if a sufficiently strong Coulomb repulsion is present.
The condition for superconductivity J /4	V	J means that
V must be sufficiently large to avoid phase separation, but
not too large to break the singlet pairs. This result is similar
to those obtained in Refs. 23 and 24 for the one-dimensional
t-J model including intersite Coulomb repulsion. In these
studies, it was found that the interaction V suppresses phase
separation and enhances the superconducting correlations, in
agreement with our results.

The tendency to form singlets with more probability in
some legs is also not observed in the ground state ���� Eq.
�15��. This difference is explained by the fact that, as already
mentioned, in the present model all legs are equivalent.

Now we consider the possible relevance of the present
solution to the superconducting cuprates. We notice that the
t-J model must be regarded as an effective model for the
cuprates, where the values of t and J must be calculated from
the parameters of the three-band Hubbard model.25 The same
also holds for the interaction V. As noted before, the solution
obtained here is valid for any value of J / t. However, to sta-
bilize the superconducting state, the condition J /4	V	J
must be satisfied �if we consider nonlocal interactions V� and
J�, with V��V /4 and J��J /4, the condition is the same�.
Recently, Neudert et al.26 obtained that the value of V may
be estimated as V=0.125Vpd, where Vpd is the Coulomb re-
pulsion between O and Cu neighbor sites �this estimation
agrees with the results of Feiner et al.27 for the two-
dimensional model�. Using the value of Vpd=2 eV for
Sr2CuO3,26 we obtain V=0.25 eV. On the other hand, Neud-
ert et al. also calculated the value of J in Sr2CuO3 using
different methods, with an average result of J=300 meV
�Table II of Ref. 26�. These values satisfy the conditions for
the validity of the superconducting solution, suggesting that
these impositions may be attained in physically realizable
systems. On the other hand, the present model cannot be
viewed as an accurate description of the cuprates due to the
type of hoppings that we assumed.

IV. TWO-DIMENSIONAL MODEL

Now we consider the two-dimensional version of the
model, whose Hamiltonian is

H = Ht + J �
iab

a�b

�Sia · Sib −
1

4
nianib	 + V �

iab

a�b

nianib, �22�

where

Ht = P�t �
iab�

a�b

�cia�
† cib� + H.c.� + t� �

iab�

�ij�

�cia�
† cjb� + H.c.�

+ t� �
iab�

��ij��

�cia�
† cjb� + H.c.��P . �23�

Here, we assume that around any site of a square lattice,
there are four basis sites. The operator cia�

† creates an elec-
tron on a basis site a of the lattice site i and t, t�, and t� are
the hoppings between basis sites at the same, nearest-
neighbor, and next-nearest-neighbor lattice sites. For sim-
plicity, we shall not consider here nonlocal exchange inter-
actions.

A ground state for this Hamiltonian can be constructed in
similar form to those done for the one-dimensional model.
Using the � operators, the Hamiltonian �23� can be ex-
pressed as

Ht = P�t��
i�

�i�
† �i� − 4t�N̂	P , �24�

if the conditions t�= 1
2 t and t�= 1

4 t are satisfied. Then, since
the first term of Ht is semidefinite positive, a lower bound for
�Ht� is �t=−4t�N. We note that the other part of the Hamil-
tonian �22�, containing the local interactions J and V, is a
sum of the local Hamiltonians Hi defined in Sec. II. Thus, a
lower bound for the expectation value of this term is equal to
the one obtained for the one-dimensional case. Therefore, a
lower bound for �H� is �2=−4t�N− 1

2 �J−V�N, if J�V�J /4.
Consider now the wave function

��2� = �
C

�
i�C

�bi12
† + bi34

† − bi14
† − bi23

† ��0� . �25�

where i takes the values of a set C of N /2 numbers that label
the sites of the bidimensional lattice. The expectation value
��2�H��2�=−4t�N− 1

2 �J−V�N. Thus, ��2� is a ground state of
the Hamiltonian �22�, if J�V�J /4. Since ��2� has the same
formal structure as ���, it follows that it is also superconduct-
ing, with the same �abcd given in Eq. �11�. Similar supercon-
ducting ground states can be easily obtained for d=3 or
higher dimensions. Clearly, as the dimension increases, the
conditions involving the hopping integrals also increase.

V. CONCLUSIONS

In summary, the aim of the present work was twofold. In
first place, we presented a procedure to construct supercon-
ducting ground states for SCES based on the method of
Brandt and Giesekus. In second place, using this method, we
derived exactly the ground state of an extended t-J model
and showed that it is superconducting. In order to do that, we
had to assume a particular relationship between the hopping
integrals. Special values of the interactions J and V are not
required but some inequalities must be satisfied in order to
stabilize the different phases. The superconducting ground
states may exist for arbitrarily small values of J / t. These are
spin singlets without magnetic long-range order, with similar
structure to that of the RVB state proposed by Anderson.3
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The model cannot be viewed as an accurate description of
the cuprates due to the restrictions involving the hoppings
that were assumed. Nevertheless, the doping dependence of
the superfluid density and the complex symmetry of the su-
perconducting order parameter are in qualitative agreement
with the phenomenology of the HTSC.

We would like to remark that the ground state was con-
structed taking advantage of the fact that, for the special
hoppings integrals that were assumed, the ground states are a
tensorial product of local wave packets. The possibility of
that this can be a property of the ground states of the HTSC
cannot be excluded. In particular, the fact that the size of the

wave packets is of same order as the lattice constant explains
why the HTSCs are superconductors with short coherence
length. Thus, the present solution confirms that an extended
t-J model can possess superconducting ground states, and
that much of the physics of the cuprates is contained in this
model. In addition, it suggests to us a hypothesis about the
ground states of the HTSCs.

ACKNOWLEDGMENTS

I thank the Programa de Desarrollo de las Ciencias Bási-
cas �PEDECIBA�, Uruguay, for partial financial support.

*Email address: sarasua@fisica.edu.uy
1 R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys.

62, 113 �1990�.
2 E. Dagotto, Rev. Mod. Phys. 66, 763 �1994�.
3 P. W. Anderson, Science 235, 1196 �1987�.
4 K. Affleck, T. Lieb, and H. Tasaki, Commun. Math. Phys. 115,

477 �1988�; A. Laüchli and D. Poilblanc, Phys. Rev. Lett. 92,
236404 �2004�.

5 C. N. Yang, Rev. Mod. Phys. 34, 694 �1962�; W. Kohn and D.
Sherrington, ibid. 42, 1 �1970�.

6 G. L. Sewell, J. Stat. Phys. 61, 415 �1990�.
7 F. H. L. Essler, V. E. Korepin, and K. Schoutens, Phys. Rev. Lett.

70, 73 �1993�.
8 L. Arrachea and A. A. Aligia, Phys. Rev. Lett. 73, 2240 �1994�.
9 J. de Boer, V. E. Korepin, and A. Schadschneider, Phys. Rev.

Lett. 74, 789 �1995�.
10 A. Messiah, Quantum Mechanics �North Holland, Amsterdam,

1986�.
11 J. de Boer and A. Schadschneider, Phys. Rev. Lett. 75, 4298

�1995�.
12 D. K. Campbell, J. T. Gammel, and E. Y. Loh, Phys. Rev. B 38,

12043 �1988�.
13 H. R. Krishnamurthy and B. Shastry, Phys. Rev. Lett. 84, 4918

�2000�.
14 J. Dukelsky, C. Esebbag, and P. Schuck, Phys. Rev. Lett. 87,

066403 �2001�.
15 C. N. Yang, Phys. Rev. Lett. 63, 2144 �1989�.
16 U. Brandt and A. Giesekus, Phys. Rev. Lett. 68, 2648 �1992�.
17 R. Strack, Phys. Rev. Lett. 70, 833 �1993�.
18 P. Gurin and Z. Gulacsi, Phys. Rev. B 64, 045118 �2001�; Z.

Gulacsi and D. Vollhardt, Phys. Rev. Lett. 91, 186401 �2003�.
19 L. G. Sarasua and M. A. Continentino, Phys. Rev. B 65, 233107

�2002�; 69, 073103 �2004�.
20 J. L. Tallon, J. W. Loram, J. R. Cooper, C. Panagopoulos, and C.

Bernhard, Phys. Rev. B 68, 180501�R� �2003�.
21 S. R. White and D. J. Scalapino, Phys. Rev. B 55, R14701

�1997�.
22 U. Ledermann, K. Le Hur, and T. M. Rice, Phys. Rev. B 62,

16383 �2000�.
23 E. Dagotto and J. Riera, Phys. Rev. B 46, 12084 �1992�.
24 M. Troyer, H. Tsunetsugu, T. M. Rice, J. Riera, and E. Dagotto,

Phys. Rev. B 48, 4002 �1993�.
25 F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 �1988�.
26 R. Neudert et al., Phys. Rev. B 62, 10752 �2000�.
27 L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. B 53,

8751 �1996�.

L. G. SARASUA PHYSICAL REVIEW B 75, 054504 �2007�

054504-6


