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The current-induced motion of a domain wall in a semicircle nanowire with applied Zeeman field is inves-
tigated. Starting from a micromagnetic model we derive an analytical solution which characterizes the domain-
wall motion as a harmonic oscillation. This solution relates the micromagnetic material parameters with the
dynamical characteristics of a harmonic oscillator: i.e., domain-wall mass, resonance frequency, damping
constant, and force acting on the wall. The time derivative of the current density greatly contributes to the force
on the domain wall. For wires with strong curvature the dipole moment of the wall as well as its geometry
influence the eigenmodes of the oscillator. Based on these results we suggest experiments for the determination
of material parameters which otherwise are difficult to access. Numerical calculations confirm our analytical
solution and show its limitations.
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I. INTRODUCTION

The field-driven dynamics of magnetic domain walls has
been intensely studied over the last decades.1,2 The topic has
recently regained interest by the discovery that spin-
polarized currents of high density can alter magnetization
configurations3–6 and move domain walls.7–11 Current-
induced magnetic switching is viewed as a promising solu-
tion for the realization of magnetic random access
memories,6,12,13 while current-induced domain-wall motion
has potential applications in spintronic data storage devices:
e.g., in the racetrack memory14 or data transfer schemes.15–17

Several models of current-driven magnetization dynamics
have been established to explain the electronic origin of
current-induced magnetization changes and to predict their
effects.3,4,18–21 At first it was assumed that for finite domain
walls the spins of the conduction electrons adiabatically fol-
low the local magnetic moments.18,22 Later the theoretical
model was extended to include a nonadiabatic mismatch be-
tween the polarization of the current and the direction of the
magnetization.19–21

The measured and calculated velocities of current-driven
magnetic domain walls in thin nanowires vary by several
orders of magnitude even for the same material.7,21,23–25

While it has been originally suggested that the discrepancy
could be due to thermal activation11,25–28 or surface
roughness,25 it has recently been found that the domain-wall
velocity depends on the type of the domain wall26,29 which
can be changed by a spin-polarized current.8,26,30,31 Recently
it has been observed that the velocity of field-driven domain-
wall motion32 can be altered by ±100 m/s by a pulsed spin-
polarized current33 and that the motion can even be halted
completely.34 It is now assumed that the adiabatic term is
largely responsible for the acceleration of the domain wall
while the nonadiabatic term will cause the wall to continu-
ally move.21

In this paper we use an alternating current to excite trans-
verse walls in thin narrow rings. From a micromagnetic de-

scription we derive a hitherto phenomenological harmonic
oscillator model which well describes the wall motion in this
geometry. Experimentally it has been shown that domain-
wall oscillations excited with an alternating current at their
resonance frequency require current densities one to two or-
ders of magnitude less �1010 A/m2; see Refs. 9 and 35� than
for pulsed excitations �1011–1012 A/m2; see Refs. 6, 7, 11,
and 26�. Our calculations show that the time derivative of the
current density greatly contributes to the force on the domain
wall which could be an explanation for this phenomenon.
Experimentally alternating current excitation is advantageous
because it allows for time-resolved imaging of the domain-
wall motion by its periodic return to the initial state.

This work is organized in two parts presenting an analyti-
cal model for the description of domain walls in curved
nanowires and a numerical investigation supporting the ana-
lytical model as well as showing its limitations. The analyti-
cal model used to describe the motion of a domain wall in a
nanowire is developed in the framework of the one-
dimensional �1D� approximation as done previously for
field-driven motion36 and direct-current-driven spin
torque.21,25,34 We here limit ourselves to the spin-transfer
torque. This approach is valid to describe ferromagnetic met-
als where the Fermi wavelength is much smaller than the
size of the magnet and the width of the domain wall.18 Solv-
ing analytically the Landau-Lifshitz-Gilbert equation ex-
tended by the current corrections due to Zhang and Li21 we
are able to express the properties of the driven oscillator by
the quantities determining the micromagnetic model. Fur-
thermore, we are able to include the influence of alternating
current excitation, i.e., the time derivative of the current den-
sity. A comparison of the numerical calculations with our
analytical solution confirms the importance of the geometry
due to the curved wires. Finally, we suggest experiments
which can determine the values of the nonadiabatic spin
torque and the Gilbert damping parameter from the phase of
the oscillation with respect to the exciting current.
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II. MODEL

Figure 1 shows a ferromagnetic semicircle nanowire with
a domain wall at its bottom placed in an external magnetic
field.37 The wall is excited by an oscillating current flowing
between the two contacts.9

The magnetization dynamics of a magnetic wire is well
described by the Landau-Lifshitz-Gilbert �LLG� equation.38

In the presence of a spin-polarized current density j�, the
interaction between the itinerant electrons and the magneti-

zation M� leads to an extension of the LLG equation. This
extension was derived from a quantum mechanical model by
Zhang and Li.21 Their semiclassical approximation results in
the extended LLG equation in Gilbert’s form

dM�

dt
= − �M� � H� eff +

�

Ms
M� �

dM�

dt

−
bj

Ms
2 M� � �M� � �j� · �� �M� � − �

bj

Ms
M� � �j� · �� �M� ,

�1�

with the gyromagnetic ratio �, the Gilbert damping param-
eter �, the saturation magnetization Ms, and the ratio be-
tween exchange relaxation time and spin-flip relaxation time
�=�ex/�sf. The effective magnetic field Heff includes the ex-
ternal as well as the internal fields. In this model the spin
current is sensitive to the spatial inhomogeneities of the mag-
netization with a coupling constant bj =

P�B

eMs�1+�2� where P de-

notes the spin polarization of the current and �B is the Bohr
magneton.

Since the saturation magnetization is constant for a given

material at fixed temperature, M� is perpendicular to dM�

dt and
Eq. �1� can be reformulated to an explicit equation of motion
for the magnetization

dM�

dt
= − ��M� � H� eff −

���

Ms
M� � �M� � H� eff�

−
bj�

Ms
2 �1 + ���M� � �M� � �j� · �� �M� �

−
bj�

Ms
�� − ��M� � �j� · �� �M� , �2�

with the abbreviations ��= �

1+�2 and bj�=
bj

1+�2 . This equation
is the starting point for the analytical as well as for the nu-
merical calculations presented in the following.

III. ANALYTICAL CALCULATIONS OF THE STRAIGHT
WIRE

For the analytical treatment of Eq. �2� we transform the
semicircle wire in a homogeneous Zeeman field to a straight
wire in a spatially varying field. For this we consider the
parallel component of the field. The perpendicular compo-
nent does not contribute to the domain-wall motion in a
straight wire and is included in the shape anisotropy. In Sec.
IV we will investigate the effect of the perpendicular com-
ponent of the field on the motion of the domain wall in the
curved wire and the increase of the exchange energy due to
the curvature.

The wire is directed along the x axis and the direction of

the magnetization is expressed in a polar spin basis M�

=Ms�cos � , sin � cos 	 , sin � sin 	�. In the absence of elec-
tric current and external magnetic field the energy of a do-
main wall within the wire is

E = S� �A� ���x�
�x

�2

+ K sin2 ��x�	dx , �3�

where � denotes the angle between the wire axis and the
magnetization. A and K denote the exchange and shape an-
isotropy constants. This functional can be minimized by the
well known Néel wall described by the angle

� = 
 − 2 arctan�e�x−X�/�� . �4�

The center of the wall is at position X, and the width of the
domain wall is �=
A /K. From Eq. �4� two expressions

cos � = tanh� x − X

�
�, sin � =

1

cosh� x − X

�
� �5�

can be derived which will be useful in our further calcula-
tions.

In the presence of an external field Hext the demagnetiza-
tion energy K� sin2 � sin2 	 caused by the rotation of the
wall around the wire axis can no longer be neglected. We
include the external field perpendicular to the wire into the
shape anisotropy K�. The energy functional in Eq. �3� has to
be extended to

E =� �K sin2 � + A� ��

�x
�2

+ A sin2���� �	

�x
�2	dV

+� �K� sin2 � sin2 	 − �0MsHext�x�cos ��dV . �6�

Here we have restricted ourselves to an external field parallel
to the wire. Also the crystalline anisotropy has been
neglected.39 From the energy functional in Eq. �6� we derive

the effective magnetic field through the relation H� eff=
− 1

�0

�E

�M�
.

FIG. 1. Scheme of the semicircle nanowire with radius r in a
magnetic field H. The static magnetization in the absence of a cur-
rent is indicated by small arrows. The two rectangles under angles

= ±45° are the electrical contacts.
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We can then write the extended LLG equation �2� in the
polar spin basis

�̇ = −
��

�0Ms sin���
�E

�	
−

���

�0Ms

�E

��
+ bj��1 + ���j� · �� �

+ bj��� − ��sin���j� · �� 	 �7�

and

	̇ sin � =
��

�0Ms

�E

��
−

���

�0Ms sin���
�E

�	

+ sin���bj��1 + ���j� · �� 	 − bj��� − ��j� · �� � . �8�

Assuming that the moving wall stays a Néel wall �see
Sec. VI� we can describe its motion, following the descrip-
tion of Schryer and Walker2 by two dynamical variables: the
position of its center X and its angle around the wire axis
	�x�=	, which is uniform along the wire. With Eqs. �5� and
�6� we get from Eqs. �7� and �8�

sin���
�

Ẋ = −
2K���

�0Ms
sin���sin�	�cos�	� − ��� sin���Hext�x�

−
bj�

�
sin����1 + ���j

−
2K����

�0Ms
sin���cos���sin2�	� �9�

and

	̇ sin � = sin�����Hext�x� + sin���
bj��� − ��j

�

− 2 sin������K� sin�	�cos�	�
1

�0Ms

+
2K���

�0Ms
sin���cos���sin2�	� , �10�

with the wall width �=
 A
K+K� sin2 	

�
A
K .40 Note that X and

	 depend on the position x along the wire. In the following
we show that a solution consistent with our initial assump-
tions exists for small exitations.2 Note that this condition
holds for realistic current densities.

Assuming that Hext�x� varies slowly on the length scale of
the domain-wall width �=
A /K, sin � is replaced by a
�-function 
���x−X� in view of Eq. �5�. Also we neglect
terms which are nonlinear in 	. This approximation holds for
angles 	 smaller than about 10°.

The equations of motion for the domain wall then become

Ẋ = − �2��K�	
1

�0Ms
− ����Hext�X� − bj��1 + ���j

�11�

and

	̇ = ��Hext�X� − 2���K�	
1

�0Ms
+

bj��� − ��j

�
. �12�

These equations are general equations of motion with a time-
dependent current density j. In the limit of a steady current
and a homogeneous magnetic field one can calculate the ini-
tial velocity of the wall by setting 	=0, the initial condition

of the Néel wall. This leads to the initial velocity Ẋi=
−����Hext−bj��1+���j which is exactly the value obtained

by Zhang and Li.21 The terminal velocity Ẋf =−���Hext

+bj�j� /� is calculated by setting 	̇=0, i.e., stationary mo-
tion. This velocity is also identical to the one calculated by
Zhang and Li. Similar relations have recently been found by
Dugaev et al.41

The domain-wall mass is obtained by comparing the
	-dependent part of the wall energy in Eq. �6� to the energy
E of the domain-wall quasiparticle:

1

2
mẊ2 = E = S� dxK� sin2����Ẋ

�0Ms

�2��K�

�2

=
1

2

S�0
2Ms

2

���2K�

Ẋ2.

�13�

Here we used

	 = − Ẋ
�0Ms

2���K�

, �14�

derived from Eq. �11� for stationary motion and in the ab-
sence of electric currents and external fields. We arrive at the
domain-wall mass

m =
S�0

2Ms
2

���2K�

. �15�

Note that this result relates the phenomenological domain-
wall mass of a Néel wall to the micromagnetic material pa-
rameters.

In the case of a curved wire the projection of a uniform
external field along the wire is given by Hext�x�
=H0 sin�x /r�. Transferring this to our straight wire model, at
small displacements of the domain wall �X�r� the wall is
exposed to the external field Hext�H0X /r. Then the equa-
tions of motion become a system of two coupled linear dif-
ferential equations of first order:

�Ẋ

	̇
� = ���− ��H0

1

r
− �2K�

1

�0Ms

H0
1

r
− 2�K�

1

�0Ms


�X

	
�

+ bj�j�− �1 + ���
�� − ��

�

 . �16�

Except for the nonvanishing first matrix element −��H0 /r
these equations are equivalent to those of a driven harmonic
oscillator. For a time-dependent current density of the form
j0ei�t the general solution
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�X�t�
	�t�

� = �X+

	+
�e−�t+i�ft + �X−

	−
�e−�t−i�ft +

1

�r
2 − �2 + 2i��

F�

m

�17�

consists of an exponentially damped starting configuration
with the initial conditions described by X± and 	± and a

current-driven oscillation with the driving force F� . The
damping constant

� = �����H0

2r
+

K�

�0Ms
� �18�

depends on the ratio of applied magnetic field and ring ra-
dius. It represents the restoring force acting on the domain
wall. This dependence of the damping constant on the restor-
ing force expresses that the damping is spatially dependent.
This also leads to a second term in the frequency of the free
oscillation,

� f =
2��2H0�K�

�0Msr
− �2��2� K�

�0Ms
−

�H0

2r
�2

, �19�

which is different from �. Hence the resonance frequency

�r = 
� f
2 + �2 =
2��2H0�K�

�0Msr
�1 + �2� �20�

depends explicitly on the Gilbert damping parameter � and
differs from the resonance frequency of a normal harmonic
oscillator,

�0 =
D

m
=
2��2H0�K�

�0Msr
, �21�

by the factor 
1+�2. The constant D is given by D=FH /X
where FH is the force on the domain wall due to the external
magnetic field. The force

F� = − mbjj0ei�t�2��K��

�0Ms
+

1 + ��

1 + �2 i��e�X

− mbjj0ei�t���H0
1

r
−

� − �

1 + �2

i�

�
�e�	, �22�

induced by the current, depends on the frequency � of the
applied current. The terms in Eq. �22� can be understood as
direct forces due to the spin torque and the precessions of the
magnetization in the external and anisotropy fields depicted
in Fig. 2. The terms proportional to i� express the current-
induced spin torque. They are the time derivatives of the

inhomogenities in Eq. �16�. The H0-dependent term is a re-
sult of the precession of the magnetization in the external
field which causes a rotation of the wall around the wire axis.
The precession in the anisotropy field, described by the K�

term in Eq. �22�, causes a change of the wall velocity.
Except that the force depends on the frequency � of the

applied current the result for the domain-wall displacement
�Eq. �17�� is equal to the one in a harmonic oscillator. With
increasing � the force increases and its phase shifts up to
90°. In the absence of a nonadiabatic spin torque ��=0�,
current and domain-wall displacement at resonance have op-
posite sign. In case of a nonadiabatic torque the phase at
resonance frequency between the current and the magnetiza-
tion in the z direction is 90° when the ratio � of exchange and
spin-flip relaxation time equals the Gilbert damping param-
eter ��=��. The phase can be used to find out whether a
nonadiabatic spin torque exists and to determine the value of
� in comparison to the damping parameter �.

The influence of the adiabatic torque on the position of
the wall is obtained by setting �=0 in Eq. �22�. The x com-

ponent of the force F� due to the adiabatic torque is propor-
tional to the time derivative of the current density. Therefore,
the adiabatic torque does not accelerate the wall when the
current does not change in time. This explains the observa-
tion of Zhang and Li21 that without a nonadiabatic spin
torque a domain wall subjected to a steady current stops
moving. In contrast the nonadiabatic contributions to the
force are proportional to the current density as well as to its
derivative.

In Eq. �17� the starting configuration depends on 	± and
X±. The equation that follows from decoupling of Eq. �16�,

	± = � �

2�
−

�H0�0Ms

4rK�

� i
� f�0Ms

2���K�

�X±, �23�

connects 	± with X±. Hence we have two parameters left for
our starting configuration as expected for an oscillation.

With the above analytical model—i.e., Eqs. �15� and
�17�–�22�—we are able to derive the hitherto phenomeno-
logical oscillator model9 and to express its characteristics by
the micromagnetic material parameters. Likewise, the mea-
surement of the domain-wall motion allows the determina-
tion of micromagnetic quantities.

IV. CURVED WIRES

For curved wires in a homogeneous magnetic field its
component perpendicular to the wire has to be taken into
account. Also the change of the magnetization due to the
curvature becomes important. To include the perpendicular
field we calculate the force on the domain wall as the spatial
derivative of its Zeeman energy. The total magnetic moments
parallel to the wire,

m� =� Ms cos���x��dV = − 2MsSX , �24�

and perpendicular to the wire,

FIG. 2. �Color online� Schematic illustration of the magnetiza-
tion in the Néel wall �solid red arrows� in a straight wire of width w
and thickness t. H� and Ha are the parallel components of the ex-
ternal field and the anisotropy field, respectively.
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m� =� Ms sin���x��dV = 
MsS� , �25�

are volume integrals over its magnetization that are readily
calculated using the relations in Eq. �5�. Note that m� is the
magnetic moment of an abrupt domain wall. With the mag-
netic field H0 in the y direction the Zeeman energy can be
written as

E� = �0MsHt�
r−w/2

r+w/2

r���
−
/2


0

sin�
�d


− �

0


/2

sin�
�d
	dr�, �26�

where 
0= X
r is the angle of the position of the domain wall

�see Fig. 1� and r, w, and t are the radius, the width, and the
thickness of the wire. We get

E� = − 2�0MsSrH cos�
0� = 2�0MsSHY , �27�

with the cross section S=wt. One recognizes that the energy
is equivalent to the energy of a monopole with magnetic
charge QM =2�0MsS. For small domain-wall displacements
we can write the cosine in Eq. �27� as a Taylor series up to
second order in X and get

E� � − 2�0MsSrH�1 −
X2

2r2� . �28�

The monopole has been included in the calculations in Sec.
III as well as in the calculations of Saitoh et al.9 The perpen-
dicular magnetization contributes to the Zeeman energy by a
term

E� = − �0m�H cos�X

r
� � − PMH�1 −

X2

2r2� , �29�

which can be interpreted as the energy of a magnetic dipole
with moment PM =�0
MsS�. The potential E=E� +E� is
parabolic like for the straight wire.9,34 However, the reso-
nance frequency is higher. The Zeeman energy of the perpen-
dicular magnetization has previously not been included in
the magnetic energy. It gives a correction to the magnetic
force on the domain wall,

Fx = −
dE

dX
� −

2�0MsSH

r
X −


�0MsS�H

r2 X

= −
QMH

r
X −

PMH

r2 X = −
QM

r
XH�1 +


�

2r
� . �30�

Thus, we include the action of a field component perpendicu-
lar to the wire by replacing the field in Eq. �17� by an effec-
tive field

He = H�1 +

�

2r
� . �31�

For example, a ring with a width of 370 nm �Ref. 42� and
radius of 500 nm experiences an increase in the effective
field of approximately 31%.

We now take into acount the curvature of the wire. With
decreasing ring radius the angle between neighboring spins
in the domain wall shrinks. This leads to an additional con-
tribution to the exchange energy of the wall when its mag-
netization points out of the wire plane.

To calculate the new exchange energy we change the spin
basis to Cartesian coordinates. To distinguish the spin basis
from the basis in space we introduce the coordinates �
=cos �, �=sin � cos 	, and �=sin � sin 	. Moving along the
wire the magnetization performs a rotation in the −� direc-
tion due to the domain wall as well as a rotation around the
� axis due to the curvature. For small rotations �� and �

the Cartesian coordinates are given by

� = cos��
�cos�� + ��� − sin��
�sin�� + ���cos�	� ,

� = cos��
�sin�� + ���cos�	� + sin��
�cos�� + ��� ,

� = sin�� + ���sin�	� . �32�

The exchange energy density is given by

Wex = A�� ��

�x
�2

+ � ��

�x
�2

+ � ��

�x
�2	 . �33�

From Eq. �32� we obtain

Wex = A� ��

�x
�2

+ 2A
��

�x

1

r
cos 	 − A

1

r2 sin2 � sin2 	 +
A

r2 .

�34�

The first term is equal to the exchange energy density of the
straight wire. The last term is constant and does not depend
on the magnetization. In the approximation for small 	 the
other two terms can be rewritten:

�Wex = A
��

�x

1

r
�2 − 	2� − A�	

r
�2

sin2 � . �35�

Integration leads to the contribution

� dV�Wex = �AS


r
−

AS2�

r2 �	2 −
2AS


r
�36�

of the curvature to the anisotropy energy. The last term is a
constant which depends neither on X nor on 	. The perpen-
dicular anisotropy energy can be written as

� dVWa� =� dVK� sin2 � sin2 	 = K�S2�	2. �37�

Comparing Eqs. �36� and �37� one can see that the additional
exchange energy due to the curvature can be included into
the perpendicular anisotropy by defining an effective aniso-
tropy constant

K�eff = K� +
A


2�r
−

A

r2 . �38�

By this equation and Eq. �31� for the effective field we
have shown that the modifications result in a higher reso-
nance frequency, higher damping constant, and in a lower
domain-wall mass in comparison to the straight wire.
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V. NUMERICAL CALCULATIONS

To check the applicability of the approximations made in
our analytical model—i.e., the form invariance of the domain
wall at small displacements—we have performed micromag-
netic simulations. We have modeled current-induced domain-
wall oscillations in curved nanowires as described in Sec. II.
The current contacts are arranged under an angle of 90° to
have sufficient distance to the domain wall as well as to the
ends of the wire �see Fig. 1�.

We extended the implementation of the Landau-Lifshitz-
Gilbert equation in the object-oriented micromagnetic
framework43 �OOMMF� by the additional current-dependent
terms of Eq. �2� and implemented Runge-Kutta and Adams-
Bashforth-Moulton algorithms of higher order to speed up
the calculations. The calculations presented here have been
performed using the explicit embedded Runge-Kutta 5�4� al-
gorithm by Cash and Karp.44 The current density is calcu-
lated by locally solving Ohm’s law, thus taking the curvature
of the wire and the contacts into account. For the spatial
discretization a cell size of 1 nm in the x and y directions and
10 nm in the z direction was chosen. Numerical calculations
were performed for radii of 45 nm, 55 nm, 65 nm, 70 nm,
85 nm, and 95 nm with different polarized current densities
jp= jP. Small radii are chosen so that the corrections from
Sec. IV become pronounced. We use the material parameters
of Permalloy: i.e., the exchange constant A=13�10−12 J /m
and the saturation magnetization Ms=8�105 A/m. All
wires have a quadratical cross section S=wt=100 nm2. The
applied field in the y direction was chosen to be 125 mT to
increase the resonance frequency �see Eq. �20�� and thus to
reduce the simulation time necessary for the domain wall to
perform several oscillations. Due to the small width of the
wire, this high field has virtually no effect on the ground
state �H=0� of the magnetization. In the ground state we
obtain a domain-wall width of �=9.25 nm. The difference in
the magnetization orientation � between the analytical de-
scription of the Néel wall and the micromagnetic ground
state in the curved wire is less than 5°.

We have determined the eigenmodes of the magnetization
in the wire by applying a magnetic � pulse in the z direction
�see Fig. 1�, thus exciting all frequencies with equal ampli-
tude. To mimic an applied current, the magnetic field pulse
has been chosen to point in the z direction so that the torque
of the field points in the same direction as the torque of the
applied current �see Eq. �2��. After this excitation the system
performs damped free oscillations. The eigenmodes of the
wire are found by spatially resolved discrete Fourier trans-
formation �see Fig. 3�.45,46 The higher harmonics and the
standing spin waves in the wire are neglected in the analyti-
cal description. The resonance of the ground mode is ob-
served at a frequency of �=15.7 GHz. The higher modes are
also indicated in Fig. 3. However, in the following we focus
on the ground mode.

We simulated an alternating current with frequencies
close to the resonance frequency of the domain wall for dif-
ferent radii r and Gilbert damping parameters �. Figure 4
shows the numerically obtained amplitudes for different radii
at fixed �=0.05 and �=0.01. For each radius the position and
the width of the resonance curve have been fitted to the ana-

lytical model, Eq. �17�, to determine the parameters F�r�,
�r�r�, and ��r�. Note that all resonance curves are in excel-
lent agreement with the harmonic-oscillator model. The fre-
quencies �r�r� and the damping constants ��r� have been
summarized in Fig. 5 where they are compared to the ana-
lytical expressions in Eqs. �18� and �20�. The results coincide
if we assume K�eff=K�+ A


2�r − A
r2 with K�=60 000 J /m3 for

the perpendicular anisotropy �see Eq. �38��. The dependence
of the resonance frequency �r on the radius r according to
the phenomenological model of Saitoh et al.9 is also shown.
It is visible from Fig. 5 that the analytical model and the
phenomenological oscillator model yield the same eigenfre-

FIG. 3. �Color online� Fourier transform M��� of the simulated
magnetization Mx�t� in a curved nanowire with radius r=45 nm and
Gilbert damping parameter �=0.05. The wire is excited with a
magnetic � pulse. The lines show the spatially resolved �solid line�
and the integral response �dashed line�. The insets show the spa-
tially resolved discrete Fourier transforms for seven selected
eigenfrequencies.

FIG. 4. �Color online� Amplitude of the domain-wall displace-
ment versus frequency of the applied current for different radii r.
The Gilbert damping �=0.05, the ratio of the exchange and spin-
flip relaxation time �=0.01, and the polarized current density jp

=1011 A/m2 are fixed. The crosses denote numerical values while
the lines are fits with the analytical result of Eq. �17�.
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quencies in the limit of a straight wire �r�1 �m�. For
smaller radii the phenomenological model gives eigenfre-
quencies which are significantly lower than the ones of the
numerical calculations. Our analytical model including the
geometrical corrections fits the numerical data very well.

Figures 6 and 7 show the corresponding data for a ring
with a radius of 45 nm and different values of the Gilbert
damping parameter �. The analytical solutions are calculated
with no free fit parameter. While the data points for the
damping constant ���� coincide with the analytical result,
small deviations occur in the resonance frequency �r���.
These deviations can be attributed to the finite cell size in our
simulations.

In Figs. 8 and 9 the values for the fit parameter F�� ,r� are
compared with the analytical result. The analytical values
exceed the numerically obtained parameters by up to a factor

of 2. This difference has several reasons. In Sec. III we as-
sumed that the ground mode can be described by the motion
of the center of the wall X and the magnetization angle 	.
This neglects spin-wave excitations and higher wall modes.
Calculating the mode spectrum excited with a single driving
frequency revealed a strong coupling between the ground
mode and higher modes. This coupling is enhanced for small
radii. Therefore, the force is distributed over several modes,
thus decreasing the amplitude of the ground mode. More-
over, in wires with small radii the current distribution is very
inhomogeneous with a higher current density at their inner
edge. We expect that this leads to an additional deformation
of the Néel wall. Another aspect is the finite cell size. In the
numerical calculations the curved surface has been approxi-
mated with rectangular prisms. The resulting kinks in the
wire wall have a measurable effect on the domain-wall mo-
tion similar to surface roughness.

VI. RELATION TO EXPERIMENT

In the analytical calculations we assume the linear ap-
proximations sin�X /r��X /r and sin 	�	. Nonlinearities

FIG. 5. �Color online� Resonance frequency �r and damping
constant � versus reciprocal ring radius. Shown are the values de-
termined from the fits in Fig. 4 �data points� and the analytical
values �solid lines�. The dashed line indicates the behavior of the
resonance frequency as expected from the phenomenological model
of Saitoh et al. �Ref. 9�

FIG. 6. �Color online� Amplitude of the domain-wall displace-
ment versus frequency of the applied current for different Gilbert
damping parameters �. The ring radius r=45 nm, the ratio of the
exchange and spin-flip relaxation time �=0.01, and the polarized
current density jp=1010A/m2 are fixed. The crosses denote numeri-
cal values while the lines are fits with the analytical result of Eq.
�17�.

FIG. 7. �Color online� Resonance frequency �r and damping
constant � versus Gilbert damping parameter �. Shown are the
values determined from the fits in Fig. 6 �data points� and the ana-
lytical values �solid lines�.

FIG. 8. �Color online� Force per wall mass at the resonance
frequency versus reciprocal ring radius. Shown are the numerical
values �crosses� and the analytical values �line�. The polarized cur-
rent density is jp=1011A/m2.
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cause the deviation of the resonance frequency in Fig. 10
from the analytical form at the current density jp
=1011 A/m2 and Gilbert damping parameters below 0.05.
Note that these nonlinearities are small ��5% �. The pre-
sented model clearly fails beyond Walker’s breakdown.2 The
current densities at which nonlinearities become important
strongly depend on the geometry of the wire. Our analytical
model allows us to derive them for typical experimental pa-
rameters. In the rest of this section we will assume that the
damping constant � is not field dependent � �H

2r �
K�

�0Ms
� and

that the squared Gilbert damping parameter is small ��2

�1�. These assumptions usually hold in experiments be-
cause the domain-wall width � is small compared to the
radius r and the usual values of the damping parameter � are
lower than 0.1. We can express all terms in Eq. �22� with the
expressions for � and �r in Eqs. �18� and �20�, respectively,
when we assume that the ratio of exchange and spin-flip
relaxation time � is comparable or less than the Gilbert
damping parameter �. In the case of a noncritically damped
oscillation ��r��� the oscillation becomes nonlinear if the
current density is approximately

j = min� �r

4bj
,

�2�

2��rbj
� . �39�

The experimental current densities which Saitoh et al.9

applied on a wire with cross section S=3150 nm2 and radius
r=50 �m are well below this current density. They have
determined a domain-wall width �=70 nm, a domain-wall
mass m= �6.55±0.06��10−23 kg, and a domain-wall relax-
ation time �= 1

2� = �1.4±0.2��10−8 s. Calculating the demag-
netization energy for a straight wire numerically and fitting
with the expression for the shape anisotropy K� sin2 �sin2 	,
we get an anisotropy constant of K�=76175 J /m3. This
yields an effective anisotropy of K�eff=76175 J /m3+ A


2�r
− A

r2 . Using Saitoh’s experimental parameters we obtain from
Eq. �15� a domain-wall mass m�1.2�10−23 kg. Tatara and
Kohno’s approach18 used in the paper of Saitoh et al.9 deliv-
ers exactly the same result.

As mentioned in Sec. 3 the analytical calculations lead to
relations between the micromagnetic material parameters
and the parameters of the harmonic oscillator. These can be
used to experimentally determine the Gilbert damping pa-
rameter � from the experimental data. From Eqs. �18�, �20�,
and �15� one can derive the relation

� =
2��H�

�r
2r

=
m���

�0MsS
. �40�

With the domain-wall mass and the domain-wall relaxation
time of the experiment of Saitoh et al. we get a Gilbert
damping parameter of �=0.0114±0.0017. This value agrees
quite well with the experimental values of Nibarger et al.47

and Schneider et al.48 which range from 0.008 to 0.017 for
film thicknesses between 10 nm and 93 nm.

VII. CONCLUSION

The current-induced motion of a domain wall in thin
curved nanowires has been investigated. A harmonic-
oscillator model which so far had only been introduced phe-
nomenologically is derived from the LLG equations ex-
tended by the spin torque according to Zhang and Li.21 This
derivation relates micromagnetic material parameters to the
characteristic quantities describing the oscillating domain
wall under the influence of an alternating driving current. It
is shown that the dipole moment of the wall and the curva-
ture of the wire have an important influence on the resonance
frequency and damping constant of the oscillation. The do-
main wall can be seen as a quasiparticle in a parabolic po-
tential well which is acted upon by a current-induced force.
An important result is that the time derivative of the current
density greatly contributes to the force on the domain wall.
The phase and magnitude of the force depend on the fre-
quency of the current. The analytical results have been com-
pared to numerical simulations. They agree very well. Our
analytical solution suggests new methods to determine mate-
rial parameters which are otherwise difficult to measure: e.g.,
the nonadiabatic term of the spin torque can be determined
from the phase shift between the applied current and the
overall magnetization. Moreover, the Gilbert damping pa-

FIG. 9. �Color online� Force per wall mass at the resonance
frequency versus Gilbert damping parameter. Shown are the nu-
merical �crosses� and the analytical values �line�. The polarized cur-
rent density is jp=1011A/m2.

FIG. 10. �Color online� Resonance frequency �r versus Gilbert
damping parameter �. The data points are the numerical values
obtained for a wire with radius 45 nm and two different densities of
the polarized current jp. The line is a fit according to the analytical
result �r=C /
1+�2 from Eq. �20� with the fit parameter C.
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rameter � and the domain-wall mass m follow from a mea-
surement of the resonance frequency �r and the damping
constant � of the oscillations.
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