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Strongly correlated electrons on an Apollonian network are studied using the Hubbard model. Ground-state
and thermodynamic properties, including specific heat, magnetic susceptibility, spin-spin correlation function,
double occupancy, and one-electron transfer, are evaluated applying direct diagonalization and quantum Monte
Carlo techniques. In the strong-coupling limit, the quantum anisotropic spin-1 /2 Heisenberg model is used and
the phase diagram is discussed using the renormalization group method. The results support an antiferromag-
netic order with a metal-insulator transition for U / t=11.1 at temperature T=0 and a tendency toward a
nonordered phase in the half-filled Hubbard model for any U / t. We also indicate that the spectral dimension
must control the magnetic behavior on the Apollonian network.
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I. INTRODUCTION

Scale-invariant networks have been the subject of inten-
sive study in view of possible insights into inhomogeneous
problems such as random magnets, surfaces, porous rocks,
aerogels, sponges, etc.1,2 These structures can embody par-
ticular fractal substructures, like a scale-free network. In this
case, the fraction of sites with k connections follows a power
law,3 which is very different from the usual topology of the
Bravais lattice. Recently, the area of scale-invariant networks
has been highly motivated by the creation of a synthetic
nanometer-scale Sierpinski hexagonal gasket, a self-similar
fractal macromolecule.4 New types of photoelectric cells,
molecular batteries, and energy storage may be possible.
This perspective raises questions about correlated electron
systems on these networks, such as studies of quantum mag-
netism, superconductivity, metal-insulator transition, etc.

An important aspect that has to be analyzed is the influ-
ence of this topology on the properties of the Anderson
metal-insulator transition �MIT�.5,6 The Anderson MIT inves-
tigations on scale-free networks have shown that the spectral
dimension characterizes the behavior of the MIT critical ex-
ponent, and the fractal dimension quantifies the critical dis-
order. Thus, the critical exponent on scale-free networks fol-
lows the mean-field prediction, and the localization of the
electronic states is influenced by the connectivity of the
network.5,6

These investigations suggest that the influence of these
topologies may lead to a very novel and interesting behavior
associated with the appearance of magnetic order on these
networks. In particular, it would be interesting to investigate
whether the decisive role for the magnetic behavior is the
spectral or the fractal dimension.

In this paper, we investigate one family of free scale-
invariant graphs, the Apollonian network.7–9 The purpose is
to examine correlated electrons on Apollonian networks. We
explore the connection between the scale-invariant network
topology and the magnetic properties of quantum magnetism
models, namely, Hubbard and anisotropic spin-1 /2 Heisen-

berg models. We have examined the Hubbard model using
the small-cluster diagonalization12,13 and quantum Monte
Carlo techniques.14,15 The Heisenberg model is studied
within a real-space renormalization group framework.16–18

The construction of the Apollonian network has the topol-
ogy of the contacts of an Apollonian packing of two-
dimensional disks. As initial configuration we use, for an
Apollonian packing, three mutually touching circles in-
scribed inside a circular space. The interstices of the initial
disks define a curvilinear triangle to be filled. In the next
iteration, four disks are inscribed, each touching all the sides
of the corresponding curvilinear triangle. This process is re-
peated indefinitely by setting disks in the newly generated
curvilinear triangles. The Apollonian packing is a fractal
whose dimension has been estimated as 1.3057.9

The Apollonian network �AN� is derived from the two-
dimensional Apollonian packing associating vertices with the
circles and connecting two vertices if the corresponding
circles touch. Figure 1 shows the first three generations of
the AN. With this construction procedure one obtains a de-
terministic scale-free network where the number of sites at
iteration n is �3n−1+5� /2. Besides being a scale-free network,
the AN has interesting properties, such as being Euclidean,
matching, and space filling.7

The organization of this paper is as follows. The models
are briefly introduced in Sec. II. The results for ground-state
and thermodynamic properties of the Hubbard model on an
AN are presented in Secs. III and IV, respectively. The phase
diagram of the quantum anisotropic Heisenberg model is dis-
cussed in Sec. V and conclusions are presented in Sec. VI.

II. MODELS

Our study of the magnetic properties on an AN are based
on the Hubbard model. The Hamiltonian of the Hubbard
model is defined by

Hu = − t �
�ij��

ci�
† cj� + U�

i

ni↑ni↓, �1�

where ci�
† , ci�, and ni��ci�

† ci� are, respectively, the creation,
anihilation, and number operators for an electron with spin �

PHYSICAL REVIEW B 75, 054412 �2007�

1098-0121/2007/75�5�/054412�7� ©2007 The American Physical Society054412-1

http://dx.doi.org/10.1103/PhysRevB.75.054412


in an orbital localized at site i; the �ij� sum runs over nearest-
neighbor sites on the AN.19

The question of magnetic order in the one-band Hubbard
model has been investigated by several authors and much
controversy has arisen. In the strong-coupling limit a major
part of the ferromagnetic phase is predicted. In this case, for
a half-filled band, U is much larger than t, and the Hubbard
model, using a suitable expansion in perturbation theory, is
formally equivalent to the antiferromagnetic Heisenberg
model. The Heisenberg exchange parameter J is written in
terms of the Hubbard model parameters as J=−4t2 /U, where
the Hamiltonian of the Heisenberg model is defined by

He = − J�
�ij�

S� iS� j , �2�

where S� i is the total spin-1 /2 operator for the ith site. Here
we study the anisotropic Heisenberg model to compare the
behavior for different values of the anisotropy parameter.18

III. GROUND-STATE PROPERTIES

We have obtained exact numerical results of the Hubbard
model defined on the second generation of the AN, corre-
sponding to seven sites. We computed all the eigenvalues
and eigenvectors of the Hamiltonian of Eq. �1� on a basis of
states for which the occupation number is diagonal. We con-
sider subspaces of fixed total azimuthal spin operator SZ.
Thus, the maximum possible dimension of the matrix to di-
agonalize is 1225.

Table I shows the results for the spin of the ground state.
Until the half-filled band, the occurrence of a ferromagnetic
state, where the total spin S is not minimum, can be found
only for four electrons. In this case the ground state is three-
fold degenerate, corresponding to a triplet state of S=1. This
behavior can be explained considering the spectrum of the

free electron system. Table II lists the single-electron ener-
gies and degeneracies. The double degeneracy in the second
level forms a triplet of lowest energy for the four-electron
case. For two, three, five, six, and seven electrons the ground
state always has minimum spin. We observe that the Cou-
lombian interaction does not favor the occurrence of a high-
spin ground state. If U / t is strong, the jumps of electrons
decrease and a frustrated ordered antiferromagnet is favored.
We easily see that the network is not bipartite, so its structure
is antiferromagnetically frustrated. We find a similar compe-
tition, between interaction and frustration, in the low-
temperature antiferromagnetic state on a triangular lattice.20

Above the half-filled band we obtain a ferromagnetic
ground state. Nagaoka demonstrated that ferromagnetism is
expected for the antiferromagnetically frustrated structures in
the half-filled band case with one excess electron and U
→�.21 Here, this limit represents the eight-electron case for
U / t�1. We can see that if U / t increases the alignment of
spins also increases, in such a manner that, for U / t�20.1,
the ferromagnetic state with the maximum total spin is the
ground state. For more than eight electrons ferromagnetism
is possible, but not stronger than in the case of completely
saturated ferromagnetism.

In general, the behavior of short- �or long-� range ordering
can be better observed by studying the spin-spin correlation
function. Considering the azimuthal spin operator on site i as
Si

z=ni↑−ni↓, the spin-spin correlation function is defined, for
N sites, as

FIG. 1. First three generations of the Apollonian network. Sites
represented by squares, diamonds, and circles are introduced in the
first, second, and third generations.

TABLE I. Spin of the ground state as a function of occupation
number and U / t on the AN of seven sites.

n=2 S=0, all U / t

n=3 S=1/2, all U / t

n=4 S=1, all U / t

n=5 S=1/2, all U / t

n=6 S=0, all U / t

n=7 S=1/2, all U / t

n=8 S=0, U / t�12.5

S=1, 12.5�U / t�15.4

S=2, 15.4�U / t�20.1

S=3, U / t�y

n=9 S=1/2, all U / t

n=10 S=1, U / t�8.44

S=2, U / t�8.44

n=11 S=1/2, U / t�0.44

S=3/2, U / t�0.44

n=12 S=0, U / t�0.57

S=1, U / t�0.57

TABLE II. Energy levels Ei �i=1,2 , . . . ,7� of free electron sys-
tem �U / t=0� on the AN of seven sites.

E1 E2=E3 E4 E5=E6 E7

−4.5114 −0.6180 0.7589 1.6180 1.7525
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L� =
1

4N
�

i

Si
zSi+�

z . �3�

The quantity L0, called the local moment, depends on the
magnitude of the difference between up and down electron
spin at each site. It shows the degree of localization of elec-
trons. For a completely localized system in which each site is
occupied by a single electron �up or down�, L0=1/4, while
for a noninteracting system L0=1/8. L� ���0� is the corre-
lation between the electron spins at different sites. They are
related to the magnetic ordering. The results for the ground-
state spin-spin correlation function versus U / t in the half-
filled band case are presented in Fig. 2. L0 gradually in-
creases if U / t�0 increases, i.e., electrons gradually localize.
L1 has a negative sign and increases if U / t�0 increases and
L2 has a critical value for U / t=8 where the behavior changes
from a negative to a positive sign. For U / t�8, L2 is positive,
L1 is negative, and an antiferromagnetic order appears.

For U / t=11.1 there is a change in the spatial symmetry of
the ground state. It is important to observe the discontinuous
behavior of L�.12 Recent studies of the metal-insulator tran-
sition on the triangular lattice for the half-filled Hubbard
model revealed a critical interaction U / t=12 for a Mott
metal-insulator transition.10,11 Reference 10 uses dynamical
mean-field theory and quantum Monte Carlo simulations to
investigate the triangular lattice at finite temperature. Their
results are consistent with the ones of Ref. 11 from the
Kotliar-Ruckenstein slave-boson technique and an exact nu-
merical diagonalization on a 12-site lattice at zero tempera-
ture. The AN has a structure comparable to the frustation
effect of the tringular lattice. The change in the spatial sym-
metry of the ground state for U / t=11.1 on the AN has a

similar feature with the exact-diagonalization results of Ref.
11 on a triangular lattice. This suggests a first-order transi-
tion between the metal and insulator on the AN at U / t
=11.1 at zero temperature. For U / t�1, L0 is approximately
equal to 1/4 and we can conclude that each site is occupied
by just one electron. The ground state has minimum spin S
=1/2. We cannot analyze if larger ANs present a ferrimag-
netic order at temperature T=0. For U / t�8, L2 is negative
and the magnetic behavior of the ground state is more com-
plex.

We analyze the wave function of the ground state, defin-
ing Pk= ��k0�2, where ��k0� is the nth component of the
ground eigenstate. We define the total antiferromagnetic
�AF� configuration �k=AF� such that sites introduced in the
first generation on the AN �represented by squares in Fig. 1�
are occupied by electrons of one type of spin and sites intro-
duced in the second generation �represented by diamonds in
Fig. 1� are occupied by electrons of the opposite spin. We
observe that PAF/ Pk�2 for U / t=0 and increases to
PAF/ Pk�15 if U / t=8, for all k�AF, i.e., the total antifer-
romagnetic configuration PAF is approximately two times for
U / t=0 and 15 times for U / t=8 more probable than any an-
other configuration.

We can construct a physical picture where the ground
state has an antiferromagnetic order �frustrated� at any U / t.
In contrast, we shall see in the present work, using the real-
space renormalization group approach for the antiferromag-
netic Heisenberg model on the AN, that the strong-coupling
Hubbard model, at finite temperature, does not have an or-
dered phase. The above observations suggest that, in the ther-
modynamic limit, the Hubbard model on the AN, at any
U / t�0, has an antiferromagnetic order with a metal-
insulator transition for U / t=11.1 at temperature T=0 and a
disordered phase for any finite temperature, where we were
not able to observe the Mott transtion.

IV. THERMODYNAMIC PROPERTIES

On one hand, we study the thermodynamic properties of
the half-filled band Hubbard model using small-cluster
exact-diagonalization calculations in the grand canonical
ensemble.13 We have calculated all eigenvalues and eigen-
functions for an AN of seven sites. On the other hand, we
study lattices of 63 and 124 sites using the grand canonical
quantum Monte Carlo method.14,15 We used a discrete
Hubbard-Stratonovich transformation to convert the problem
into one of free particles interacting with a time-dependent
Ising field, together with an exact updating algorithm for the
fermion Green’s function to compute the relative weights of
the Ising configurations.

We consider several values of U / t for all the studied ther-
modynamic properties. We determine with considerable ac-
curacy the temperature dependence of the spin-spin correla-
tion functions, spin susceptibility, specific heat, double
occupancy, and one-electron transfer.

The temperature dependence of L0, L1, and L2 for some
typical values of U / t is shown in Figs. 3�a�–3�c�. If U / t
increases, L0 gradually increases for U / t�0, indicating that
electrons are gradually localizing. At high temperature L0

FIG. 2. Ground-state spin-spin correlation function versus U / t
for the half-filled band on the AN of seven sites. On top we see a
detailed view of the curve for L0.
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gradually decreases and electrons gradually delocalize. At
very low temperatures, the temperature dependence with
negative signs of L1 induces an antiferromagetic ordering.
The inset in Fig. 3�b� shows Monte Carlo results for the AN
with 7, 43, and 124 sites and U / t=1 and 4. Results for 43
and 124 sites do not reveal any new behavior; however, the
antiferromagetic ordering increases. We observe that the
properties obtained for seven sites must be qualitatively
equivalent to those for larger ANs. We observe a competition
between interaction and frustration in the ordered antiferro-
magnetic state by the analysis of L2. For small or intermedi-
ate U / t, the negative sign of L2 is a result of the frustrated
structure of the AN, disfavoring the antiferromagnetic order.
For U / t�1, L2 has a positive sign, showing that the strong
electron interaction favors the antiferromagnetic order.

Figure 4 shows the temperature dependence of the mag-
netic susceptibility 	. The Curie-Weiss behavior, 	
1/ �T
−��, is observed for high temperatures. For small and inter-

mediate U / t the curves present a peak. The temperature as-
sociated with the peak of 	 corresponds approximately to the
rapid decay of L1 and L2, and is a consequence of the col-
lective excitations that lead to the destruction of the antifer-
romagetic order.12 Here the ground state has spin S=1/2 and
	 must go to infinity at temperature T=0. The susceptibility
	 with U / t=1 and 4 for 7, 43, and 124 sites on the AN using
the Monte Carlo method is shown in the inset of Fig. 4.

A comparison between results for different clusters shows
a good agreement at large temperatures, but not at low tem-
peratures. This result may be explained considering that we
are studying finite clusters of odd number of sites and elec-
trons. In these cases, 	 must go to infinity at T=0. As a
consequence of the finite-size effect, if we increase the size
of a system with an odd number of sites and minimum spin
S=1/2, the relevance of the spin S=1/2 for the magnetic
susceptibility decreases and the values of 	 at low tempera-
ture must also decrease. The finite-size effect for 	 indicates
that the AN does not present a ferrimagnetic order in the
thermodynamic limit.

The standard sign problem of the quantum Monte Carlo
method14 is relevant. The absence of the particle-hole sym-
metry from frustrated lattices, like the AN and the triangular
lattice, implies a sign problem even at half filling. Due to this
problem, we cannot go to low T and large U / t. However, the
finite-size effect becomes in general less important as U
increases.10

The temperature dependence of the specific heat is shown
in Fig. 5 for typical values of U / t. For small values of U / t
there is a peak in the specific heat. On increasing U / t, the
peak splits into two, which reflects a rearrangement of the
fermionic structure in the system. The low-temperature peak
arises due to low-lying collective excitations, while the high-
temperature broad peak comes from single-particle excita-
tions. This behavior is quite general and has been noticed for
different structures.12,13

Next, we study the thermal average of the double occu-
pancy d= �1/N��ini↑ni↓ and of the one-electron transfer de-
fined by

FIG. 3. Correlation functions L� vs temperature with U / t=0.1,
1, 6, and 8 for the AN of seven sites. �a� L0; �b� L1; �c� L2. In the
inset of �b�, L1 with U / t=1 �black� and U / t=4 �gray� for 7, 43, and
124 sites on the AN using the Monte Carlo method.

FIG. 4. Magnetic susceptibility as a function of temperature
with U / t=0, 0.5, 4, and 8 for the AN of seven sites. Inset: Magnetic
susceptibility with U / t=1 and 4 for 7, 43, and 124 sites on the AN
using the Monte Carlo method.
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j = �
�ij��

ci�
† cj� =

Ud − H
t

. �4�

Figure 6 shows the temperature dependence of j and d �inset�
with U / t=0.1, 1 and 4 for the AN with 124 sites. Clearly
these functions are related to the local moment. It is easy to
show that for the half-filled band d= �1−4L0� /2. If U / t in-
creases, the local moment increases �see Fig. 3�a�	 and the
double occupation and one-electron transfer decrease. In the
strong-coupling limit �U / t�1� each site is occupied by just
one electron and the electronic itinerancy vanishes. This re-
gion is characterized by localized magnetism and we can
apply the Heisenberg model.

V. LOCALIZED MAGNETISM: RENORMALIZATION
GROUP APPROACH

The fractal and self-similar nature of scale-invariant net-
works, generated through a recursive procedure, offers an
appropriate way to get rigorous results at the phase transi-

tion. The difficulty with the spin-decimation process, which
leads to the renormalization group equation as found on Bra-
vais lattices due to parameter proliferation, disappears on
scale-invariant networks.23,24 Because fractal lattices are
characterized by dilation invariance but do not have transla-
tional invariance, the study on these networks can with re-
striction be used to model Bravais lattices. Particularly self-
similar networks can mimic Bravais lattices for some
magnetic models, providing equal critical temperatures and
exponents.24,25

The real-space renormalization group �RG� approach has
been applied with success to the study of the anisotropic
spin-1 /2 Heisenberg model on self-dual hierarchical
lattices.16–18 Here, we apply this analysis on an AN. It is
defined by the cluster transformation process, preserving the
Hamiltonian form, as illustrated in Fig. 7.

The dimensionless Hamiltonian is defined by

h = − �H =
4J

kBT
�
�ij�

��1 − 
��Si
xSj

x + Si
ySj

y� + Si
zSj

z	 , �5�

where ��1/kBT, �ij� denotes first-neighboring lattice sites,

 is the anisotropy parameter, and Si

� 
�=x ,y ,z� is the �
spin-1 /2 operator on site i. The RG recurrence equation is
obtained by imposing

exp�h123� + C� = Tr
site 4

exp�h1234� �6�

where h1234 and h123� are, respectively, the Hamiltonians of
the four-site cluster and of the renormalized three-site clus-
ter, shown in Fig. 7. To make the RG equation possible, an
additive constant C has been included. The RG Eq. �6� es-
tablishes the relation between the set of parameters �J ,
�
and the set of renormalized parameters �J� ,
��. The non-
commutativity between the Hamiltonians associated with
neighboring clusters is neglected, and therefore our results
are approximations for all temperatures, being asymptoti-
cally exact only at high temperatures.17

Defining K�J /kBT and expanding exp�h123� � as

exp�h123� + C� = a� + 4b��S1
xS2

x + S1
yS2

y + S1
xS3

x + S1
yS3

y + S2
xS3

x

+ S2
yS3

y� + 4c��S1
zS2

z + S1
zS3

z + S2
zS3

z� , �7�

we obtain that

4K� = ln� a� + 3c�

a� − c� − 2b�

 +

1

3
ln� c� − a� + 2b�

c� − a� − 4b�

 ,

FIG. 5. Specific heat C /NkB as a function of temperature with
U / t=0, 0.5, 4, and 8 for the AN of seven sites.

FIG. 6. One-electron transfer j as a function of temperature with
U / t=0.1, 1, and 4 for the AN of 124 sites. Inset: Double occupancy
d as a function of temperature.

FIG. 7. Renormalization group transformation associated with
the AN.
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6K�
� = ln� c� − a� − 4b�

c� − a� + 2b�

 ,

C = − 3k� + ln�a� + 3c�� . �8�

Analogously,

exp�h1234� = a + 4 �
�i�j�

�b�Si
xSj

x + Si
ySj

y� + cSi
zSj

z	

+ 16 �
�i�j���k�l�

�d�Si
xSj

x + Si
ySj

y�Sk
zSl

z + g�Si
xSj

x

+ Si
ySj

y��Sk
xSl

x + Sk
ySl

y�	 + 16fS1
zS2

zS3
zS4

z �9�

where a, b, c, d, g, and f are functions of K and 
. It is easy
to see from Eq. �6� that a�=2a, b�=2b, and c�=2c. The set
of parameters �K� ,
�� as functions of �K ,
� can be deter-
mined by diagonalizing h123 and h1234 and using Eqs. �6�–�9�.
After some calculus we obtain the analytical RG equation as

a� =
1

4
�e6K + e6K
 + 3e−2K
 +

e−2K

2
�3 + e8K
 + 2e−4K
�


b� =
1

4
� e6K
 − e−2K


2
+

e−2K

3
�e8K
 − e−4K
�


c� =
1

4
�e6K −

e−2K

6
�3 + e8K
 + 2e−4K
�
 , �10�

where K� and 
� are functions of c� ,a� ,b� given by Eq. �8�.
We observe that the Ising and isotropic Heisenberg models
are mapped into themselves. The RG recurrence is simplified
as

k� =
1

4
ln� 1 + e6K

1 + e−2K
 �11�

and

k� =
1

6
ln� 3 + 5e8K

6 + 2e−4K
 �12�

corresponding to the Ising �
=1� and the isotropic Heisen-
berg �
=0� limits, respectively.

Figure 8 shows the phase diagram in the �kBT /J ,
� space.
The results for the ferromagnetic case �kBT /J�0� do not
have a relation with the Hubbard model. However, consider-
ing that they represent a situation that has not yet been ex-
plored, we think these results are important to shed light on
the understanding of the magnetism on the AN. In the ferro-
magnetic case, we always observe the existence of ferromag-
netism �F� independent of 
. This result has been found on
the AN for the Ising model using the transfer matrix method8

and on other scale-free lattices.22 Those results agree very
well with ours. Here, we observe that the quantum fluctua-
tions of the XY part of our Hamiltonian do not destroy this
ordering generated by the topology of the AN.

In the antiferromagnetic case �kBT /J�0�, we verify the
absence of the ordered phase for all 
 at finite T. Again, the
results obtained are similar to and consistent with the Ising
limit.8 The antiferromagnetic case represents the strong-

coupling limit of the Hubbard model. The strong-coupling
limit is the region where a major part of the ordered phase
has been found.21 This suggests a tendency toward the non-
ordered phase in the Hubbard model for any U / t at finite
temperature on the AN.

VI. CONCLUSIONS

In conclusion, we have analyzed strongly correlated elec-
tron systems on the AN. The ground state and thermody-
namic properties of the Hubbard model have been studied
using exact diagonalization calculations and quantum Monte
Carlo simulations. The dependence on the ratio U / t of the
specific heat, the magnetic susceptibility, the spin-spin corre-
lation function, the double occupancy, and the one-electron
transfer support several types of magnetic behavior for finite
AN clusters. We have also studied the magnetic properties of
the anisotropic spin-1 /2 Heisenberg model on the AN using
the real-space RG approach. For ferromagnetic coupling, we
always observe the existence of ferromagnetism independent
of temperature and the anisotropy parameter 
. As opposed
to other structures,17,18 the topology of the AN favors ferro-
magnetic order, and the quantum fluctuations do not destroy

FIG. 8. Flow diagram for the Apollonian cell of Fig. 7. Open
circles and full squares respectively denote the semistable and fully
stable fixed points. �a� Ferromagnetic case �J�0�; �b� antiferro-
magnetic case �J�0�.
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this ordering. For antiferromagnetic coupling, we find a para-
magnetic phase for all 
 at finite T. A similar result has been
found on the AN for the Ising model using the transfer ma-
trix method.8 Consistent with a paramagnetic metal–
paramagnetic insulator transition at U / t=12 obtained re-
cently on the triangular lattice,10 our results suggest an
antiferromagnetic order with a metal-insulator transition for
U / t=11.1 at temperature T=0 and a tendency toward a non-
ordered phase in the half-filled Hubbard model for any U / t.

This indicates that the spectral dimension5 controls the mag-
netic behavior on the AN.
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