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We investigate the dephasing rate, 1 /��, of weakly disordered electrons due to scattering from diluted
dynamical impurities. Our previous result for the weak-localization dephasing rate is generalized from diluted
Kondo impurities to arbitrary dynamical defects with typical energy transfer larger than 1/��. For magnetic
impurities, we study the influence of magnetic fields on the dephasing of Aharonov-Bohm oscillations and
universal conductance fluctuations both analytically and using the numerical renormalization group. These
results are compared to recent experiments.
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I. INTRODUCTION

Decoherence is the fundamental process leading to a sup-
pression of quantum mechanical interference and therefore is
indispensable for our understanding of the appearance of the
classical world. The destruction of phase coherence in a
quantum system occurs due to interactions with its environ-
ment and can be studied, e.g., in mesoscopic metals and
semiconductors where the quantum-mechanical wave nature
of the electrons leads to a variety of transport phenomena at
low temperatures.

Although the concrete definition of the dephasing rate,
1 /��, depends on the experiment used to determine it, the
electron-electron interactions are thought to be the dominant
mechanism for the destruction of phase coherence in metals
without dynamical impurities below about 1 K. The dephas-
ing rate for interacting electrons in a diffusive environment
was first calculated by Altshuler, Aronov, and Khmelnitsky
�AAK� and vanishes at low temperatures, T, with some
power of T, depending on the dimensionality of the system.1

In the last decade several independent groups performed
magnetoresistance experiments2–5 to probe the influence of
dephasing on weak localization in disordered metallic wires.
Irritatingly, a saturation of the dephasing rate, 1 /��, has been
observed at the lowest experimentally accessible tempera-
tures. This observation has triggered an intense discussion on
the mechanism responsible for the excess of dephasing.6–8

The most promising candidates to explain the saturation of
1 /�� are extremely low concentrations of dynamical impuri-
ties, such as atomic two-level systems9,10 or magnetic
impurities.3–5,11–14 This has been corroborated on the one
hand by experiments3,5 on extremely clean Ag and Au
samples where the dephasing rate continues to decrease well
below 100 mK and on the other hand by doping studies with
magnetic impurities.2,3,5,15,16 As expected theoretically,12

these experiments show a saturation of 1 /�� above the
Kondo temperature, TK, the characteristic scale of screening
of the magnetic moment, and a suppression of 1/�� below
this scale. Recent highly controlled experiments,15,16 in
which a few ppm �parts per million� of Fe ions have been
implanted by ion beam lithography into very clean Ag
samples, showed that the screening of these Fe ions is sur-
prisingly well described15 by the theoretically predicted

dephasing rate for spin-1/2 Kondo impurities13 down to tem-
peratures of 0.1TK. At the lowest temperature, again a pla-
teau in the dephasing rate has been observed proportional to
the number of implanted Fe ions. The origin of this puzzling
behavior is still unclear but may arise from further dynamical
defects created during the implantation process or by rare Fe
ions with a different chemical environment and strongly re-
duced magnetic screening.

An obvious option to study the influence of magnetic im-
purities on the dephasing rate is to measure its dependence
on an externally applied magnetic field. The application of
sufficiently large magnetic fields freezes out inelastic spin-
flip processes as discussed theoretically in Ref. 12, and there-
fore one expects the dephasing rate to return to the value
predicted by AAK for dephasing induced by Coulomb inter-
actions in a diffusive environment. The orbital contribution
of the magnetic field does, however, destroy the weak-
localization �WL� contribution to the magnetoresistance, as
the joint propagation of an electron and a hole along time-
reversed trajectories �the Cooperon� picks up extra �random�
Aharonov-Bohm phases in the presence of external magnetic
fields. Measuring the B-dependent dephasing rate in a WL
experiment is therefore only possible in strictly one- or two-
dimensional systems using magnetic fields almost exactly
parallel to such a structure, requiring an accurate alignment
of magnetic fields.

Universal conductance fluctuations �UCF� and Aharonov-
Bohm �AB� oscillations with a periodicity of h /e, on the
other hand, are not suppressed by orbital effects and can be
used rather directly to determine the field dependence of the
dephasing rate.17

UCFs can be observed as characteristic fluctuations of the
conductance as a function of the magnetic field. The external
magnetic field enters the metal and changes the pattern of the
electrons wave functions and therefore the conductance in a
random but reproducible way �“magnetofingerprint”�. In AB
experiments performed on mesoscopic rings, these sample
fluctuations are further modulated by periodic h /e oscilla-
tions resulting from the magnetic flux piercing the ring. Both
UCF and AB oscillations rely on the constructive interfer-
ence occurring in the collective propagation of electrons and
holes traveling along the same path �the diffuson�. These are
robust against the breaking of time-reversal invariance
�while Cooperon contributions are rapidly suppressed by
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small fields� but are sensitive to dephasing by inelastic pro-
cesses. Indeed, Benoit et al.18 and Pierre et al.5 have shown
that the amplitude of Aharonov-Bohm oscillations increases
by almost an order of magnitude for increasing magnetic
fields, clearly showing a suppression of dephasing by mag-
netic �Zeeman� fields. This leads to the conclusion that the
main mechanism of dephasing in the investigated low-
temperature regime is the scattering from magnetic impuri-
ties.

Previously we have studied the zero-field dephasing rate
due to diluted Kondo impurities as measured from the WL
experiment.13 We showed that the dephasing rate for all ex-
perimentally relevant temperatures is proportional to the in-
elastic cross section,14 which itself can be expressed in terms
of the T matrix describing the scattering of the electrons
from a single magnetic impurity. Such a relation has been
proposed previously by Schwab and Eckern19 in the context
of UCFs.

In this paper we generalize our previous work to arbitrary,
diluted impurity scatterers with typical energy transfer larger
than 1/��. Furthermore, we supply the magnetic field depen-
dence of 1 /�� as measured in the AB experiment �and com-
pare our results to the AB experiments performed by Pierre
and Birge20�. The outline of this paper is as follows: In Sec.
II we discuss the dephasing rate due to generic dynamical
scatterers as measured in the WL experiment. We briefly re-
view our previous results13 and generalize them to arbitrary
dynamical impurities with typical energy transfer larger than
1/��. In Sec. III we turn to the dephasing rate as measured
from the UCF and the amplitude of the AB oscillations. We
briefly review the main concepts entering the analysis of
these experiments and discuss how the dephasing rate mea-
sured from the UCF differs from that measured in the WL
experiment. The main goal of Sec. III is to give the dephas-
ing rate as measured from the amplitude of the AB oscilla-
tions. Results for the dephasing rate obtained using the nu-
merical renormalization group �NRG� are described in Sec.
IV. Section V summarizes with a discussion.

II. DEPHASING RATE FROM WEAK-LOCALIZATION
CORRECTIONS TO THE CONDUCTIVITY

The most accurate way to extract 1 /�� at low magnetic
fields is via the WL corrections to the Drude conductivity,
which result from coherent back scattering of an electron-
hole pair traveling along time-reversed paths in the disor-
dered environment. Technically, the coherent propagation of
the electron-hole pair is described by the Cooperon, C��q�,
and the WL correction is given by

��WL
0 = −

2e2D

�
� ddq

�2��dC�=0�q� , �1�

see Fig. 1. In the absence of dephasing by inelastic processes
C��q� is the bare Cooperon,

C�
0 �q� =

1

Dq2 + i� + 1/�B
, �2�

as diagrammatically depicted in Fig. 2 and21

1

�B
= 4DeB, d = 2 �n�B� , �3�

1

�B
=

D

3
�eBL��2, d = 1,2 �n � B� , �4�

is the dephasing rate due to the applied magnetic field, B.
Here D is the diffusion constant, d is the dimension of the
diffusion process, � denotes the mean scattering time corre-
sponding to a mean free path l=vF�, n is a unit vector or-
thogonal to the probe in d=2, and pointing along the wire in
d=1 and L� is the transverse dimension of the sample. As
can be seen from Eq. �1� the WL corrections depend on the
strength of the applied magnetic field, B, and diverge in low
dimensions, d=1,2 for B=0, reflecting the fact that WL cor-
rections in low-dimensional systems may become strong and
lead to strong Anderson localization.

Taking into account interactions �as, e.g., provided by dy-
namical impurities� the bare Cooperon dresses with a mass,
1 /��, i.e. �if purely exponential decay is guaranteed�,

C�=0�q� =
1

Dq2 + 1/�� + 1/�B
. �5�

For weak magnetic fields �����B� the WL corrections are
therefore cut off by 1/��, allowing to determine the dephas-
ing rate from fitting the magnetoresistance.

In this section we study the dephasing rate due to generic
diluted, dynamical scatterers with typical energy transfer
larger than 1/�� as measured from WL. To be specific, we
consider a Hamiltonian of the general form

FIG. 1. Diagrammatic representation of the Cooperon C�=0
0 �q�

which enters the WL corrections to the Drude conductivity.
p±=q /2± p and wavy lines denote current operators.

FIG. 2. Bethe-Salpeter equation for the bare Cooperon

C0
¯ �q ,��= �1/2���2�C0�q ,��, p±=q /2± p, and p±�=q /2± p�.
Dashed lines denote scattering from static impurities and R, A de-
notes the particle and hole lines, respectively.
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Himp = Himp
0 + �

i

ck�
† ck���fkk����

	 X̂	ei�k−k��xi, �6�

where Himp
0 is the Hamiltonian of the isolated impurity, c†, c

are creation and annihilation operators of conduction band
electrons, xi denotes the position of the impurities, and the
momentum and spin-dependent function f	 parametrizes the

coupling to some operator X̂	 describing transitions of the
internal states of the dynamical impurity. Equation �6�, e.g.,
describes the coupling of the conduction band electrons to
Kondo impurities, two-level systems, etc. In order to find the
dephasing rate due to such generic impurities one has to
compute the “self energy” or “mass” of the Cooperon gener-
ated by the operators of Eq. �6�.

Two assumptions allow to reduce this problem to that of
summing up a simple geometric series. First, we assume that
the concentration of dynamical impurities ni is small, and,
second, that the elastic mean free path l is large. How small
ni and how large l has to be, depends on both, the dynamics
and the extension of the impurity as briefly discussed below
and—for Kondo impurities—in more detail in Ref. 13 �the
influence of stronger disorder on the distribution of Kondo
temperatures has recently been investigated by Kettemann
and Mucciolo22�. Note that in relevant experimental systems
in the WL regime2–5 the two assumptions are well justified.13

The first observation is that quantum interference corrections
to the inelastic scattering rate are small when a diffusing
electron is unlikely to return to the same dynamical impurity
�i.e., when the weak localization corrections are weak�. Tech-
nically speaking, this is reflected in the fact that diagrams
mixing scattering from dynamical and static impurities are
suppressed by factors of 1 /N� and a / l �or 1/ �kFl� for
a
1/kF�, where N� is the number of transverse channels in
a quasi one or two dimensional system and a is the typical
diameter of the dynamical impurity. This effect and further
system dependent factors relevant for the suppression of
quantum interference corrections are discussed in Ref. 13.
Only at lowest, experimentally unprobed temperatures, does
the enhanced infrared singularity, caused by the presence of
extra diffusion modes, overcompensate this phase space sup-
pression factor, as discussed in detail in Ref. 13. The small
parameter 1 / �kFl� or a / l therefore reduces the problem to
compute the “mass” of the Cooperon to that of solving the
Bethe-Salpeter equation diagrammatically depicted in Fig.
3�a�.

For small ni, one can furthermore restrict the analysis of
the irreducible vertex � to terms linear in ni as shown in Fig.
3�b�. � can be separated into three distinct contributions:
self-energy diagrams �the first two terms in Fig. 3�b��, an
“elastic” vertex correction with no energy transfer between
upper and lower line �third term�, and an “inelastic” vertex
where interaction lines connect the two lines �last term�.
Only this inelastic vertex makes the Bethe-Salpeter equation
a true integral equation as it mixes frequencies but, fortu-
nately, this term can be neglected1 if the typical energy, �E,
exchanged between electrons and holes during an interaction
process greatly exceeds the dephasing rate due to the dy-
namical impurities, 1 /��, i.e., �E���1. Physically,1 the sup-
pression of the inelastic vertex arises as an exchange of en-

ergy �E leads to a phase mismatch of order ei�E�� between
electron and hole destroying interference completely for
�E���1. Technically, one can confirm this argument by es-
timating corrections to the WL contributions due to the in-
elastic vertex, as, e.g., depicted in Fig. 4.13 More importantly,
however, the condition �E���1 always holds for suffi-
ciently small concentrations ni, since 1/��ni. In the case of
Kondo impurities discussed below, for example, this condi-
tion translates to ni��TK.

Restricting to the self-energy and elastic vertex contribu-
tions, the Bethe-Salpeter equation is easily solved: Since
self-energy and elastic vertex contributions conserve the en-
ergy of single electron lines, the solution of the reduced
Bethe-Salpeter equation amounts to a straightforward sum-
mation of a geometric series. Setting the center-of-mass fre-
quency � to 0 �see Fig. 1 and Fig. 3�, the Cooperon is given
by

C�=0��,q� =
1

Dq2 + 1/����,T� + 1/�B
, �7�

with the T and � dependent dephasing rate

FIG. 3. �Color online� Bethe-Salpeter equation for the Cooperon

C̄ in the presence of dilute dynamical impurities to linear order in

ni. C̄0 is the bare Cooperon in the absence of interactions and � the
irreducible vertex obtained by adding self-energy, elastic-, and
inelastic-vertex contributions. The crosses with attached dashed
lines denote the averaging over impurity positions xi, the squares
the inelastic scattering from a single impurity to arbitrary order.

FIG. 4. �Color online� Lowest order correction to WL contribu-

tions due to inelastic vertex. The Cooperon, C̄, is dressed with a
mass resulting from summation of the elastic part of the vertex �,
i.e., the self-energy and the elastic vertex contribution.
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1

����,T�
=

2ni

��
�� d3p

�2��3g��p�
1

2i
�T−p,−p

A ��� − Tpp
R ����	�

−� d3p

�2��3 � d3p�

�2��3g��p�g��p��Tpp�
R ���T−p,−p�

A ���	 .

�8�

Here g��p�= �/2�

���p�−��2+1/4�2 restricts the electrons momenta, p,

and energies, �, to the Fermi-surface, ��p� is the dispersion
relation of the conduction band, TA,R are the advanced and/or
retarded T matrices, defined by the Green’s function
Gxx����=Gxx�

0 ���+Gx0
0 ���T���G0x

0 ����, and � denotes the den-
sity of states per spin. Equation �8� generalizes our result of
Ref. 13 to arbitrary shaped diluted impurities. Notice that
also forward scattering processes enter 1 /��, which do not
contribute to the transport scattering rate. We stress that Eq.
�8� is the general result for the dephasing rate for a weakly
disordered metal due to a low concentration of generic dy-
namical impurities for which the condition �E�1/�� holds.
In the opposite limit, �E�1/��, vertex corrections become
important, as has been discussed earlier on23,24 in the context
of magnetic impurities.

As we assumed that a� l, Eq. �8� can be further simpli-
fied,

1

����,T�
=

2ni

����SF
�

d2p

�2��3

1


vF�p�

Im��Tpp

A ����

− �
SF

�

d2p

�2��3�
SF

�

d2p�

�2��3

1


vF�p�

1


vF�p��


�Tpp�

R ���
2	 ,

�9�

where SF
� is the Fermi surface �or more precisely the surface

with �k=��. Here we also assumed a time-reversal invariant
system with Tpp�

R ���=T−p�,−p
R ��� and employed the identity

�Tpp�
R ����*=Tp�p

A ���. Also Kettemann and Mucciolo have gen-
eralized the dephasing rate for a momentum independent T
matrix to Eq. �9� independently in a recent report.22 The
dephasing rate given in Eq. �9� has a simple interpretation:14

Since the Fermi-surface integrated imaginary part of the T
matrix is proportional to the total cross section and 
Tpp�

R 
2

�integrated over the Fermi surface� is proportional to the
elastic cross section, its difference is, by definition, propor-
tional to the inelastic cross section, �inel, introduced in Ref.
14. Therefore, Eq. �9� can be rewritten in the form

1

�����
= ni�vF�p��inel�p,��� , �10�

where �¯� denotes an angular average weighted by 1/vF�p�
to take into account that fast electrons are scattered more
frequently from elastic impurities. According to Eq. �10�, ��

is nothing but the average time needed �in a semiclassical
picture� to scatter from an impurity with cross section �inel.
Note that the vanishing of 1/�� for static impurities is guar-
anteed by the optical theorem.

From Eq. �9� we can read off the dephasing rate for di-
luted dynamical isotropic s-wave scatterers13,19

1

����,T�
=

2ni

��
���loc Im�TA���� − 
��locTR���
2� , �11�

where �loc is the local density of states at the Fermi energy at
the site of the impurity which can differ from the thermody-
namic density of states entering the prefactor. Note that in
the case of Kondo impurities discussed below �and in Ref.
13�, the combination �locTR/A���= f�� /TK,T /TK,B /TK� is an
universal dimensionless function of the ratios
� /TK,T /TK,B /TK. If the assumptions underlying the deriva-
tion of Eq. �11� are valid, one can therefore predict without
any free parameter the dephasing rate if the concentration of
spin-1/2 impurities, the Kondo temperature and the thermo-
dynamic density of states are known �see, e.g., Ref. 15�.
However, one of the assumptions underlying the derivation
of the prefactor of Eq. �11� may not be valid in realistic
materials: we assumed that the static impurities are com-
pletely uncorrelated and local such that electrons are scat-
tered uniformly over the Fermi surface. While this should be
a good assumption in doped semiconductors, this may not be
valid in metals with complex Fermi surfaces and strongly
varying Fermi velocities. Under the latter conditions, we ex-
pect that the prefactor of Eq. �11� becomes nonuniversal,
yielding temperature-independent corrections of order one,
which may be important for the interpretation of high-
precision experiments.16,15

In Ref. 13 we have calculated the leading corrections to
Eq. �11� arising from mixed diagrams involving combined
scattering from static and dynamical impurities and from dia-
grams including higher processes in ni. We showed that, sup-
pressed by the small parameter 1 / �kFl�, their contributions
are negligible at all experimentally relevant temperatures, T.
Only at the lowest experimentally irrelevant temperatures do
these corrections become important due to infrared singulari-
ties of the dressed interaction potential �dressed by coherent
backscattering processes�. The estimates of subleading cor-
rections presented in Ref. 13 can be generalized to extended
dynamical impurities by replacing 1/ �kFl� by a / l for
kFa�1.

The experimentally measured dephasing rate does not re-
solve the dependence on the electrons energy �. We de-
scribed in Ref. 13 that to allow for a comparison with the
�-independent dephasing rate, ��

−1�T�, extracted from the WL
experiment, the energy-resolved representations of 1 /��,
Eqs. �9�–�11�, still require an average over energies accord-
ing to

1

���T�
=�

−� d�fF��������,T��2−d�/2	2/�d−2�

, d = 1,3,

1

�
exp�� d�fF����ln

����,T�
�

	, d = 2,

−� d�fF����/����,T�, ��/�B � 1.
�

�12�

Here the last line applies to a case where a relatively strong
magnetic field, B, is present.
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Specifying to a situation where the coupling of the con-
duction band electrons to the �diluted� dynamical impurities
is described by the spin-1/2 Kondo effect, the general Hamil-
tonian of Eq. �6� takes the form

HS = J�
i

Ŝic�
†�xi�����c���xi� , �13�

where J is the exchange constant. An external magnetic field,
B, causes Zeeman splitting, �z, of the conduction band elec-
tron spin states,

�z = ge�BB , �14�

and couples to the impurity spins according to

HB = gS�BB�
i

Ŝi
z. �15�

ge, gS are the electrons and the magnetic impurities gyromag-
netic factors, respectively. As already mentioned in the Intro-
duction, measuring the B-field dependence of the dephasing
rate due to Kondo impurities in a WL experiment is a highly
delicate task. In view of this difficulty it is more feasible to
measure the B dependence of 1 /�� from the amplitude of the
AB oscillations as discussed in the following section.

III. DEPHASING RATE FROM UNIVERSAL
CONDUCTANCE FLUCTUATIONS AND AHARANOV-

BOHM OSCILLATIONS

Let us first begin with a brief discussion of the universal
conductance fluctuations �UCF� and their dependence on
1/�� and then turn to the experiment on Aharonov-Bohm
rings.

To be specific, we consider a wire of noninteracting elec-
trons, scattering elastically from static impurities, and inelas-
tically off a low concentration, ni, of Kondo impurities,
where the coupling of the conduction band electrons to the
dynamical impurities is described by the Hamiltonian equa-
tion �13� and the influence of the magnetic field is accounted
for by Eqs. �14� and �15�.

For wires of length L�LT=�D /T, the fluctuations of the
conductance, �g�g, are determined25 by

�g�g =
�2e2D�2

3�TL4 � d�1d�2fF���1�fF���2�

�� dx1dx2
P�1,�2
�x1,x2�
2. �16�

Here P�1,�2
�x1 ,x2� is the amplitude for an electron-hole pair,

with energies �1 ,�2, respectively, to diffusively travel from
x1 to x2 along the same trajectory �diffuson, see Fig. 5�. The
overbar denotes the ensemble average, which is experimen-
tally realized by changing the magnetic field. Equation �16�
assumes the large ring diameters, L�L�, such that the
dephasing rate, 1 /��, controls the magnitude of the fluctua-
tions. Furthermore, we assume temperatures T���1. Notice
that generally there is also a contribution from the Cooperon,
which is, however, suppressed already for small magnetic
fields.

We change to momentum representation and separate the
two-particle propagator P into its spin-singlet and -triplet
components, P=�i=1,. . .,4P�i�, where �following the notation
of Ref. 12�

P�1�2

�i� �q� =
1

Dq2 + i��1 − �2 + �i�z� + 1/�SO
�i� + 1/��,S

�i� ��1,�2,B�
.

�17�

The modes i=1,2 ,3 describe the spin triplet state with Sz
component equal to 1, −1, and 0, respectively. i=4 denotes
the spin singlet channel. The Zeeman splitting enters only the
triplet diffuson with nonvanishing projection Sz= ±1, i.e.,
�i= ±1 for i=1,2 and zero otherwise. 1 /�SO

�i� is the spin-orbit
scattering rate. 1 /�SO

�i� is identical for the three spin triplet
diffuson �i=1,2 ,3� and zero for the spin singlet mode
�i=4�. For strong spin-orbit scattering only the singlet diffu-
sion contributes �otherwise 1/�SO

�i� is an additional fitting pa-
rameter�. Finally 1/��,S

�i� is the dephasing rate for the ith
diffuson mode due to the presence of diluted magnetic im-
purities which has the structure

1

��,S
�i� ��1,�2�

=
2ni

��
���

2i
�T�i,a���2,B� − T�i,b���1,B��

− ����2T�i,c���1,B�T�i,d���2,B�� , �18�

where the proper combination of T matrices for the various
channels can be read off by comparison with Table I. Equa-
tion �18� is evaluated from summing up self-energy and elas-
tic vertex contributions. Notice that in contrast to the WL
experiment the electron and hole lines �i.e., the inner and
outer rings� in Fig. 6 represent different measurements.
Therefore there are no correlations between dynamical im-

TABLE I. Combination of T matrices entering the dephasing
rates for spin-triplet and spin-singlet diffusons. S denotes the total
spin and M its z component. T↑, T↓ denotes the T matrix for spin-up
and spin-down electrons, respectively.

i 
S ,M� Combinations of T matrices

1 S=1,M =1 T1= 1
2i �T↓

A−T↑
R�−T↓

RT↑
A

2 S=1, M =−1 T2= 1
2i �T↑

A−T↓
R�−T↑

RT↓
A

3 S=1, M =0 T3= 1
2Im�T↑

A+T↓
A�− 1

2 �T↑
RT↑

A−T↓
RT↓

A�
4 S=0 T4= 1

2Im�T↑
A+T↓

A�− 1
2 �T↑

RT↑
A−T↓

RT↓
A�

FIG. 5. Bethe-Salpeter equation for the bare diffuson D̄0�q ,��
= �1/2���2�D0�q ,��. p±= p±q /2 and p±�= p�±q /2. Dashed lines
denote scattering from static impurities and R, A denotes the par-
ticle and hole lines, respectively.
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purities residing on different rings and interaction lines may
only be drawn within the same ring. Consequently the inelas-
tic vertex contributions do not enter the Bethe-Salpeter equa-
tion for the diffuson, see Fig. 7. Notice that there are inelastic
vertex contributions, as, e.g., depicted in Fig. 8, which be-
come important in the context of electron-electron
interactions.26 It is instructive to compare those to the inelas-
tic vertex corrections relevant for WL depicted in Fig. 4. In
the latter case, the sum of the incoming momenta of the
vertex is small due to the Cooperon in Fig. 4. Consequently,
the inelastic vertex corrections to the WL dephasing rate are
not suppressed by powers of 1 / �kFl� but only by powers of
1 / ��E���. In contrast, the relevant momenta in Fig. 8 are
uncorrelated �i.e., particle and hole are far apart�, leading to
an suppression both by powers of 1 / �kFl� and of 1/ ��E���.27

We point out the following differences for 1 /��,S mea-
sured from the UCF experiment, Eq. �18�, compared to that
found from the WL, Eq. �11�. First, the T matrices entering
Eq. �18� depend on the spin configuration of the diffuson
mode and have acquired a B dependence due to the coupling
of the impurity spin to B, Eq. �15�. Second, 1 /��,S depends
on two energies. This results from the fact that in the UCF
experiment electron and hole lines constituting the diffuson
are produced in different measurements of the conductance
�see Fig. 6�. Therefore their energies are individually aver-
aged as can be seen in Eq. �16�.

From Eqs. �16� and �17� the amplitude of the UCFs is
obtained to be proportional to ���,S. Especially compared to
the AB oscillations, discussed below, the 1/��,S dependence
of the UCFs is rather weak. In the following, we will there-

fore focus our discussion on AB experiments.
Aharonov-Bohm oscillations are measured in a ring

geometry,20,28 where the conductance oscillates periodically
as a function of B piercing the ring, and the amplitude of
these AB oscillations decrease exponentially with 1/��,S. The
periodic oscillations result from the change of boundary con-
ditions, due to flux lines piercing the ring and can be calcu-
lated from

�g����g�� + ��� =
�2e2D�2

3�TL4 � d�1d�2fF���1�fF���2�

�� dx1dx2
P�1,�2

�� �x1,x2�
2. �19�

Here P�� is again given by Eq. �17� but now the continuous
q have to be replaced25 by discrete momenta, q=qm����
= 2�

L �m+ ��
�0

�, depending on the difference of the magnetic
flux during the individual measurements of g. The fluctua-
tions are a periodic function in �� /�0, where �0=2� /e is
the elementary flux quantum and ��=�BL2 / �4��. There-
fore an expansion in its harmonics can be made,25

�g����g�� + ��� =
Ce4

�2 �
k=0

�

Ak�B�cos�2�k
��

�0
	 , �20�

where C is a factor of order 1, depending on the sample
geometry in the vicinity of the ring. Restricting to the situa-
tion of strong spin-orbit scattering29 where the spin singlet
diffuson gives the leading contributions to Eq. �19�, one finds
that �for L�L��

Ak�B� =
�2��3D3/2

T2L3 � d�
e−kL/�D�����

cosh4��/2T�
������ , �21�

where ���=��,S
�4� in the notation of Eq. �18��

1

����,T,B�
=

2ni

��
��� Im�T�4�

A ��,B�� − 
����T�4�
R ��,B�
2� .

�22�

Here �=�1+�2 and we used that relevant contributions to the
integral over energy differences, �̄=�1−�2, result from ener-
gies �̄�1/�� to eliminate the �̄ dependence. Notice that such
a reduction to a single energy integral can only be done in a
one-dimensional system where the q integral over the square
of the diffuson, Eq. �17�, is dominated by infrared diver-

FIG. 6. Diagram giving the main contribution to the UCF.
Dashed lines represent coherent impurity scattering of electron �R�
hole �A� pair, i.e., the bare diffuson where interaction due to scat-
tering from magnetic impurities is not yet taken into account.

FIG. 7. �Color online� �a� Bethe-Salpeter equation for the diffu-

son, D̄, in the presence of �dilute� magnetic impurities to linear

order in ni. D̄0 is the bare diffuson in the absence of interactions. �b�
Diagrammatic representation of the irreducible interaction vertex,
�, consisting of the self-energy �represented by the first two contri-
butions�, the elastic vertex �third contribution�. The inelastic vertex
�the fourth contribution� does not enter the diffuson as measured in
the UCF.

FIG. 8. �Color online� Diagrammatic representation of lowest-
order corrections to UCF due to inelastic vertex contributions. No-
tice that for a local interaction these are not only suppressed by
powers of 1 / ��E��� but also small in powers 1/ �kFl�.
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gences. In a 2-d system, e.g., relevant energies extend to
�̄�T. For the following, it is convenient to rewrite Eq. �22�
�see also Eq. �10�� as

1

��

=
1

�hit

��inel�
�max

, �23�

where �max=4� /kF
2 is the cross section of a unitary scatterer,

�inel /�max is the conditional probability of inelastic scatter-
ing if an electron hits the impurity, and

1

�hit
=

2ni

��
�24�

describes the typical “hitting rate.”
As in the WL experiment discussed above, fits to experi-

mental data have to be done with the �-independent dephas-
ing rate. For a comparison with experiment we therefore
have to give the �-independent dephasing rate which for
k=1 is obtained by solving the equation

L��T,B,L�
L

e−L/L��T,B,L� =
3

8T
� d�

e−L/L���,T,B�

cosh4��/2T�
L���,T,B�

L
,

�25�

where L�=�D�� is the dephasing length. Notice that the ac-
tually measured dephasing rate depends on the length of the
ring. It also differs from the WL result due to the different
energy averages.

IV. NUMERICAL RESULTS FOR DEPHASING RATES
FROM AHARANOV-BOHM OSCILLATIONS

In order to evaluate the dependence of the dephasing rate
on magnetic field, temperature and ring length from Eq. �27�
we require the T-matrix for the single impurity Kondo model
defined in Sec. II. By using the equation of motion method
this can be expressed as30

T���,T,B� = J�Sz� + J2��Sc	
†�	�;S��	�c	��� , �26�

where ��¯�� denotes a retarded correlation function and �
are the Pauli spin matrices. We calculate Eq. �26� by apply-
ing the numerical renormalization group �NRG� method31 for
finite temperature dynamics.32 At finite magnetic field, it is
also important to use the reduced density matrix33 to evaluate
the above dynamical quantity. For all calculations presented
here we used a discretization parameter for the conduction
band of �=1.5 and we retained 960 states per NRG iteration.
We checked that this number of states was sufficient to main-
tain particle-hole symmetry of the spectral densities
Im T↑�� ,T ,B�=Im T↓�−� ,T ,B� at this relatively small value
of the discretization parameter. The Friedel sum rule for the
T=0 spectral density was satisfied to more than 1% accuracy
in our calculations.

Figure 9 shows the numerical evaluation of �A1�B� for
various T at a given length L=10Lhit where Lhit=�D�hit. No-
tice that, if lengths are measured in units of Lhit, the ampli-
tude �A1�hitTK�1/2 becomes a universal function of B /TK and
T /TK.

Figure 10 gives the magnetic field dependence of the

dephasing rate at various T and a fixed ring length
L=10Lhit. For large magnetic fields, B�T ,TK, the dephasing
rate is expected12 to vanish proportional to
�T /B�2 / ln4�B /TK�, consistent with the numerical results �the
precise form also depends on L /L�, see below�.

Figure 11 shows the results for 1 /��,S as a function of T
for different strengths of the magnetic field B at a fixed ring
length L=10Lhit. While the maximal dephasing occurs for
T�TK for small fields B�TK, it shifts to larger values
�T�B� for B�TK. For high temperatures, small fields
and not too large L /L�, see below, T�TK ,B the dephasing
rate is well described by the Nagaoka-Suhl formula,13

1 /���T�=
ni

2��
�23/4

�23/4+ln2 T/TK
.

Figure 12 shows the dependence of 1 /��,S�T� on the ring
length, L, at zero magnetic field. As pointed out above, the L
dependence of the experimentally measured dephasing rate
enters through the energy average of Eq. �25�. As can be seen
from Fig. 12 the dephasing rate only changes by a factor 1 /4
on increasing the ring length by a factor 200. We included
curves for the rather academic cases L=100–1000Lhit �the
amplitude is too strongly suppressed to be observed for such

FIG. 9. �Color online� Amplitude of the Aharonov-Bohm oscil-
lations �in units of ��2��3 / ��hitTK��1/2� as a function of the applied
magnetic field, B �in units TK, �B/kB=1�, for different temperatures
T �in units TK� obtained from NRG calculations for L /Lhit=10. The
rapid rise of the oscillation amplitude results from the suppression
of dephasing �see Fig. 10� by polarizing the spins. Here, and in the
remaining figures in this section, the symbols represent the discrete
values of �B ,T� at which NRG calculations were carried out.

FIG. 10. �Color online� The dephasing rate as a function of the
magnetic field, B �in units TK� for various temperatures, T, and a
ring of length L=10Lhit. Note the rapid suppression of 1/�� espe-
cially for low temperatures.
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large ring lengths� in order to show this weak L dependence.
Figure 12 also shows that for temperatures T�TK the
dephasing rate becomes entirely L independent. This reflects
the fact that the energy resolved dephasing rate, 1 /��,S�� ,T�,
establishes a deep minimum at �=0 for T�TK and the inte-
gral on the right-hand side of Eq. �25� is therefore well ap-
proximated by setting �=0. To be precise, in the limit of ring
lengths L�L� the integral on the right-hand side of Eq. �25�
�for fixed T and B� is dominated by the saddle points of the
function

f��� =
L

L�
�4����

− ln�L�
�4����
L

	 + 4 ln�cosh� �

2T
�	 .

For temperatures T�max�B ,TK� f has a saddle point at
�=0, which for temperatures T�TK becomes unstable. At
very large ring diameters L /Lhit�102, a second saddle point
at �= L

2Lhit ln2�L/2Lhit�
T starts to dominate the integral for

T�TK. Here Lhit=�D�hit is the diffusive length scale corre-
sponding to the time �hit=

��
2ni

and introduced above. Although
this limit is rather academic it is interesting that for such big
rings dephasing is dominated by rare events of highly excited

thermal electrons scattering from the magnetic impurities.
This originates from the fact that high-energy electrons scat-
ter less effectively from Kondo spins, as Kondo renormaliza-
tion becomes less effective for ��TK. Inserting this second
saddle point into Eq. �25� one finds that the length depen-
dence of 1 /�� for high temperatures follows

1

���T,L�
�

1

ln2� L

2Lhitln
2�L/2Lhit�

	 , �27�

explaining the weak suppression of 1/�� for large ring
lengths shown in Fig. 12.

V. DISCUSSION AND CONCLUSIONS

In this paper we generalized previous results for the
dephasing rate due to diluted Kondo impurities as measured
in the weak localization experiment to describe dephasing
due to arbitrary diluted impurities. Furthermore, we investi-
gated how magnetic fields modify the dephasing rate due to
Kondo spins as can be measured in mesoscopic Aharonov-
Bohm rings. We give results for the numerically evaluated
dephasing rate as a function of the magnetic field, tempera-
ture, and the ring length.

The influence of magnetic impurities on dephasing has
been studied in a number of magneto-resistance experiments

FIG. 11. �Color online� NRG results for the dephasing rate as a
function of T and for different values of B. �hit=�� /2ni as defined
above, T and B are given in units of TK �Ref. 34� �we set
�B/kB=1�. The values are for a ring of length, L, L=10Lhit, where
Lhit=�D�hit. While the maximal dephasing occurs for T�TK for
small fields B�TK, it shifts to larger values �T�B� for B�TK.

FIG. 12. �Color online� Temperature-dependent dephasing rate
for various ring lengths L, measured in units Lhit=�D�� /2ni and
calculated via NRG for B=0. The logarithmic suppression with L
for larger T arises due to the interference of electrons with energies
larger than T.

FIG. 13. �Color online� Amplitude of the AB oscillations in
units of e2 /h as a function of T /TK for T=40 mK ��� and 100 mK
��� measured by Piere et al. �Refs. 5 and 20�, assuming
TK=10 mK. Solid and dot-dashed lines are the numerically calcu-
lated amplitudes with fitting parameters described in the main text.
As for very high magnetic fields, B�100TK, numerical errors in-
crease when the dephasing rate becomes very small, we used an
extrapolation of the numerical results, 1 /��1/B2, in this regime.
The saturation of the amplitude at these high fields arises as the
dephasing due to electron-electron interaction dominates. The data
is equally well described by the fits used in Refs. 5 and 20 �dashed
lines�, see main text. For the solid lines we used the same values for
the dephasing rates ��ee=5.4 ns and 9.9 ns for T=100 mK and
T=40 mK, respectively� as in Ref. 5, where �eeT−2/3 was as-
sumed. For the dot-dashed curve we use instead �ee=13.5 ns for
T=40 mK since one expects theoretically35 that �ee1/T for
L�L� �note, however, that L�L� in this regime explaining the
rather weak dependence on �ee�.
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in Cu, Ag, or Au wires doped with magnetic
impurities.2,3,5,15,16 More recently, high-precision experi-
ments using ion-implanted Fe impurities in Ag wires allowed
a quantitative comparison with our theory for spin-1/2 impu-
rities, see Refs. 15 and 16 for a critical discussion. Such
studies using samples doped with magnetic impurities have,
to our knowledge, only been performed in the spin-glass
regime36 using magnetic ions with tiny Kondo temperatures.
Pierre et al.5,20 studied rings made from nominally clean Cu
wires. As these wires show a saturation of the dephasing rate
�determined from weak localization� at low temperatures
�30 mK�T�1 K�, it was suspected that tiny concentrations
of magnetic impurities with Kondo temperatures below
30 mK may be at the origin of the observed saturation. This
picture could be confirmed as measurements of the ampli-
tude of Aharonov-Bohm oscillation displayed a dramatic rise
by almost an order of magnitude in moderate magnetic fields
�see Fig. 13�, proving the magnetic origin of the low-B, low-
T dephasing.

As neither the concentrations nor the type�s� of magnetic
impurities are known, a parameter-free comparison to our
predictions is not possible for these systems. Assuming Mn
impurities, believed to be characterized by a Kondo tempera-
ture of the order of 10 mK,37 and, using the same dephasing
rates due to electron-electron interactions as in Ref. 5
��ee=5.4 ns and 9.9 ns for T=100 mK and T=40 mK, re-
spectively� we obtain the fits shown in Fig. 13 for a g factor
of g�1.4 and an impurity concentration of 2.7 ppm. We

have also added a curve at T=40 mK �dot-dashed line�
which uses �ee=13.5 ns �keeping all other parameters iden-
tical� to take into account that one expects theoretically35

�ee1/T. The fits and the extracted parameters are not very
reliable as can be seen from the observation that the data has
been equally well described in Refs. 5 and 20 by the simple

perturbative formula
��,S�B=0�

��,S�B� =
g�B/kBT

sinh�g�B/kBT� with g=1.08, see

Fig. 13.
For a more meaningful comparison to our results, experi-

ments on AB rings, doped with magnetic impurities with a
higher Kondo temperature would be highly desirable. On the
one hand, such experiments and their theoretical interpreta-
tion can reveal basic dephasing mechanisms in metals, on the
other hand, they can be used to obtain insight into the phys-
ics of strongly correlated dynamical impurities and their in-
teractions.
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