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The Wang-Landau method is used to study the magnetic properties of the giant paramagnetic molecule
�Mo72Fe30� in which 30 Fe3+ ions are coupled via antiferromagnetic exchange. The two-dimensional density of
states g�E ,M� in energy and magnetization space is calculated using a self-adaptive version of the Wang-
Landau method. From g�E ,M� the magnetization and magnetic susceptibility can be calculated for any tem-
perature and external field.
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I. INTRODUCTION

During the past decade the field of molecular magnets has
experienced a rapid evolution.1–3 Nowadays a vast variety of
species can be synthesized, ranging in size from 2 to more
than 30 paramagnetic ions embedded in the host molecule.4

The fascinating properties of these new materials include
hysteretic behavior,2,5,6 quantum tunneling of the magnet-
ization,7–9 magnetocaloric,6,10 and magnetostrictive effects.11

Astonishingly, for several observables and not too low
temperatures it is sufficient to treat magnetic molecules clas-
sically by applying the Heisenberg model.12 This enables one
to apply the powerful machinery of classical stochastic sam-
pling methods. The Metropolis algorithm13 has become the
standard tool to calculate the statistical classical properties of
these nanomagnets.14,15 Recently, the Wang-Landau �WL�
algorithm16 has been successfully applied to various prob-
lems in statistical physics and biophysics both to models
with discrete16,17 as well as with continuous degrees of
freedom.18–21 In this context the WL algorithm exhibits a
superior feature in comparison to the Metropolis algorithm.
Since the WL algorithm calculates the density of states
�DOS�, one can estimate thermodynamic observables such as
the free energy and entropy for all temperatures using just
one single simulation of the density of states.

However, calculation of the DOS in energy space g�E�
permits one only to calculate thermodynamic properties as a
function of temperature and at zero magnetic field—e.g., the
zero-field specific heat—but not observables such as the
magnetic susceptibility at nonvanishing field.22 For studying
the magnetic properties of a system at arbitrary external
magnetic field one has to calculate a joined DOS g�E ,M� in
energy and magnetization space. Once g�E ,M� is known,
properties like magnetization M and magnetic susceptibility
� can be calculated at any temperature and any external mag-
netic field using again just one single simulation of the
density of states.21,23

In this article we introduce a self-adaptive version of the
WL algorithm which allows one to calculate the two-
dimensional DOS g�E ,M� using a discrete binning scheme
in the continuous energy and magnetization space. We dem-
onstrate that the WL algorithm is capable of calculating ef-
ficiently all thermodynamic properties of rather large spin
systems using the example of the magnetic Keplerate mol-

ecule �Mo72Fe30�.24 The dependences of the thermodynamic
observables on both temperature and external magnetic field
can be obtained by only one single simulation. We conclude
by discussing the problems arising at low temperatures and
high magnetic fields.

II. MODEL AND COMPUTATIONAL METHODS

In the Keplerate molecule �Mo72Fe30� 30 iron �III� ions
�s=5/2� occupy the vertices of a perfect icosidodeca-
hedron24 �see Fig. 1�. The spins are coupled with their near-
est neighbors by an isotropic and antiferromagnetic coupling
of strength J /kB=1.566 K. The spectroscopic splitting factor
is g=1.974.12

We write the Heisenberg Hamiltonian as

H = J �
�m,n�

Sm · Sn + g�BB�z��
n

Sn
�z�, �1�

whereas �m ,n� directs that the sum is over distinct nearest-
neighbor pairs, B�z� is an external magnetic field in the z
direction, �B is the Bohr magneton, and S denotes classical
vectors of length �S�=	
s�s+1��.25 We use a self-adaptive26

scheme of the WL algorithm to calculate the two-
dimensional DOS g�E ,M�, where E denotes the Heisenberg
energy of a given spin configuration of Hamiltonian �1� with-
out external magnetic field, i.e.,

FIG. 1. Geometrical structure of an icosidodecahedron. For the
molecule �Mo72Fe30� the vertices represent spin sites and the edges
represent nearest-neighbor interactions.
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E = J �
�m,n�

Sm · Sn, �2�

and M is the magnetization in the z direction, which is de-
fined as the sum over the z components of all classical spin
vectors:

M = �
n

Sn
�z�. �3�

In contrast to the Metropolis algorithm, where the acceptance
probability of a new generated state is determined by
min�exp
−�Ej −Ei� / �kBT�� ,1�, the WL algorithm is charac-
terized by an acceptance ratio min�g�Ej� /g�Ei� ,1�, where Ei

and Ej refer to energies before and after the transition. The
original WL algorithm has been applied to models where the
energy assumes only discrete values.16,17 Since the Heisen-
berg model consists of classical spin vectors which are con-
tinuously orientable, the possible energy and magnetization
values are real numbers between the minimum and maxi-
mum energy and magnetization, respectively. Thus, we dis-
cretize the continuous energy and magnetization range by the
introduction of bins.21,22 We have chosen bins of uniform
width of ��E� /kB=4 K in energy and �M =0.6�S� in magne-
tization range. To speed up the simulation we divide the total
energy range into eight overlapping intervals and follow the
recipe in Ref. 27 to avoid boundary effects. A priori it is not
known which magnetization bins are accessible by the ran-
dom walker in a certain energy interval. A striking feature of
the WL algorithm is that one does not have to know anything
about the DOS one wants to calculate. Following the original
WL algorithm the random walker biases itself to explore the
accessible energy and magnetization space. To do so, we
have chosen the following procedure: At the beginning we
perform a trial run for the desired energy interval. We intro-
duce an initial DOS ginitial�E ,M�=1 and a reference histo-
gram RH�E ,M�, and perform spin flips according to the
original WL procedure, accepting and neglecting new spin
configurations for a defined number of Monte Carlo steps
ninitial

MC . One Monte Carlo step corresponds to a single-spin tilt
event. Each time a bin �Ei ,Mi� is visited, the corresponding
entries in RH�Ei ,Mi�=RH�Ei ,Mi�+1 and ginitial�Ei ,Mi�
= fginitial�Ei ,Mi� are updated, whereas f is the initial modifi-
cation factor. Following this recipe the random walker trig-
gers itself to explore the accessible energy and magnetization
space for a predefined energy interval.

After ninitial
MC steps have been performed we stop the initial

run. Now we continue with the normal WL for the same
energy interval. As an initial guess for the DOS we use
ginitial�E ,M�. A new state is only accepted if the correspond-
ing entry in RH�E ,M� is not zero �compare Fig. 2�. In other
words, we accept only states corresponding to bins in the
energy and magnetization space which have already been
visited during the initial run; otherwise, the new generated
state is neglected according to Ref. 27. In addition, the rela-
tive flatness of the accumulated histogram is only checked
after all valid entries in the reference histogram have been
visited at least 100 times. Of course the total run time of the
simulation and the accuracy of the finally calculated DOS are
very sensitive to a good choice of ninitial

MC . If ninitial
MC is chosen

very large, the random walker explores bins at the bound-
aries of the accessible energy and magnetization space,
which are rarely visited. Thus the DOS for these entries is
small and does not contribute significantly to the partition
function. Nevertheless, sampling of these states increases the
total run time of the simulation since a flat histogram is to be
accumulated during the simulation. On the other hand, if
ninitial

MC is chosen too small, the energy and magnetization
space is sparsely explored and many bins of the accessible
energy and magnetization space are not visited, resulting in
an inaccurate estimate of the DOS. Thus, the question is to
find a good trade-off between the run time and accuracy of
g�E ,M�. To estimate a reasonable value for ninitial

MC for each
energy interval, we have chosen different values and counted
the number of visited distinct bins in RH�E ,M� after finish-
ing the initial run. It turns out that the number of visited bins
shows some saturation behavior. After a critical number of
steps the visited energy and magnetization space do not grow
significantly anymore. Thus, after this critical number of
steps has been reached we consider the accumulated
RH�E ,M� to be a good estimate for the successive WL run.
As the initial modification factor f we have chosen a rather
large value of fstart=e4 and reduce f in large steps.28 After
finishing the initial run we perform 14 steps, decreasing f
according to the recipe f i+1=	4 f i, resulting in a final modifi-
cation factor of 1.000 000 015. After g�E ,M� has been ob-
tained, the magnetization M�T ,B� as a function of tempera-
ture T and external magnetic field B can be calculated from

�M�T,B�� =

�
E,M

Mg�E,M�exp�− H/kBT�

�
E,M

g�E,M�exp�− H/kBT�
. �4�

The differential magnetic susceptibility �=��M� /�B can be
computed by using the equation

FIG. 2. Low-energy part of the two-dimensional map for
the reference histogram with RH�E ,M��0 for the molecule
�Mo72Fe30�. RH�E ,M��0 defines the accessible energy and mag-
netization space. The grid shows the bins in energy and magnetiza-
tion space.
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��T,B� =
1

kBT

�M2�T,B�� − �M�T,B��2� . �5�

While without an external magnetic field it is sufficient to
calculate only the DOS for negative energies, since states
with positive energies due to their Boltzmann factor
exp�−E /kBT� practically do not contribute to the partition
function, in the case of an external magnetic field also energy
bins with a positive energy become important, since they
might be low lying in the case of an applied external field.
Thus it is required to calculate the DOS over the full energy
range of the system if the properties at high magnetic fields
are studied. The exact ground-state energy for �Mo72Fe30� is
known to be E0 /kB=−412.125 K,29 which is close to the
lowest accessible energy bin of Emin/kB=−406 K. The clas-
sical ground state of the molecule is characterized by relative
angles of 120° between nearest-neighbor spins.29 The possi-
bility of generating such a spin configuration is practically
zero, and thus an effective sampling of the DOS near the
ground-state energy is not possible. The same is valid for the
highest-energy states of the molecule, where the probability
of generating a spin configuration with all spins pointing in
the same direction is unlikely. The highest-energy bin visited
during the initial run is Emax/kB=786 K. As the criterion of
flatness we used a relatively small value of 0.5, and to further
decrease the statistical error we perform four runs, calculate
the magnetic properties for each of these runs, and compute
the mean value and mean standard deviation afterwards. On
a personal computer �Intel, Xeon, 2.60 GHz� the sampling of
the complete DOS took about 120 h of CPU time.

For a comparison of accuracy we performed extensive
Monte Carlo simulations using the Metropolis algorithm.
We perform 30�106 spin tilt trials to let the system reach
equilibrium at a defined external magnetic field and tempera-
ture. Afterwards for additional 30�106 tilting trials the
thermodynamic properties are computed.

III. RESULTS AND DISCUSSION

The calculated joint DOS g�E ,M� for the magnetic mol-
ecule �Mo72Fe30� is presented in Fig. 3. One notices that the
low-energy boundary Emin�M� assumes a parabolic shape as
observed for various systems.30,31 The region with
�g�E ,M� /�M =0 at high energies indicates the global rota-
tional symmetry of the system. One also notices that in the
vicinity of the phase-space boundary the classical density of
states grows very rapidly by orders of magnitude which ex-
plains why it is difficult to obtain very accurate results at the
boundaries.

The limited accuracy at the energy and magnetization
space boundaries loses its significance with increasing tem-
perature. This is demonstrated by evaluating the magnetiza-
tion as a function of temperature T and external magnetic
field B. Figure 4 shows the behavior of the magnetization in
the relevant temperature and field range. The simulated mag-
netization does not show any significant statistical fluctua-
tions; it compares nicely to the result of a Metropolis sam-
pling.

Figure 5 compares the magnetization at T=2 K and 4 K
as a function of field for the WL and Metropolis simulations.
As can be inferred from the figure, at a temperature of the
order of the exchange coupling the WL algorithm reaches the
same accuracy as the Metropolis algorithm, but the latter has
to be performed for each pair of variables �T ,B�, whereas
with the WL algorithm the density of states has to be
sampled only once in order to obtain the complete function
�M�T ,B��.

The differential susceptibility �Figs. 6 and 7� is a second
derivative of the partition function. Therefore, it will mag-
nify inaccuracies of the simulated density of states. Figure 6
displays the susceptibility as a function of T and B. It can be

FIG. 3. �Color online� Joint DOS ln
g�E ,M�� for the magnetic
molecule �Mo72Fe30�.

FIG. 4. �Color online� Magnetization M as a function of
temperature T and external magnetic field B.
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seen that for temperatures higher than J /kB the behavior is
rather smooth, but for lower temperatures a spiky behavior is
observed which results from statistical fluctuations at the en-
ergy and magnetization space boundaries. At T�J /kB these
fluctuations are still visible, but on average much smaller
than the real minimum at about Bsat /3 �Ref. 14� �compare
Fig. 7�. Clearly one can see that the dip in susceptibility at
about Bsat /3 vanishes with increasing temperature.14 The
spurious peak at T=0 and B=0 reflects the difficulty to ob-
tain the density of states in close vicinity of the ground state.
A comparison with Metropolis simulations is shown is Fig.
7. The results obtained using both methods agree well. The
fluctuations in the WL data are due to the missing bins in
g�E ,M� at the energy and magnetization space boundaries,
since these features are apparent in all four WL runs. The
statistical sampling errors are given by the size of the sym-
bols and by the linewidths used in Fig. 7.

The last function we want to discuss in this paper is the
specific heat C as a function of temperature T and external

magnetic field B. As can be seen in Fig. 8 the specific heat
does not show too strong fluctuations at low temperature and
fields below saturation. It seems that this observable is more
robust against statistical fluctuations of the density of states
than the susceptibility. In order to complete the discussion
we display the specific heat also for magnetic fields above
the saturation field where it shows strong fluctuations. They
reflect magnified inaccuracies at the high-energy boundary of
g�E ,M� and thus are spurious.

Summarizing, one can say that the proposed self-adaptive
version of the Wang-Landau algorithm can efficiently gener-
ate the density of states g�E ,M� of a rather large spin system,
such as the magnetic molecule �Mo72Fe30�. The obvious ad-
vantage is that with one simulation of g�E ,M� many thermo-
dynamic observables can be evaluated as a function of tem-
perature and applied magnetic field. Statistical fluctuations
are apparent in the second derivatives of the two-
dimensional DOS: namely, the specific heat and magnetic
susceptibility at low temperatures. These fluctuations can be
minimized at the cost of computational time, by either in-

FIG. 5. �Color online� Comparison of the magnetization M as a
function of external magnetic field calculated from g�E ,M� �solid
lines� with computed data using the Metropolis algorithm at
T=2 K �open circles� and 4 K �open squares�, respectively. Statis-
tical sampling errors are smaller than the used symbols and
linewidths.

FIG. 6. �Color online� Magnetic susceptibility � as a function of
temperature T and external magnetic field B.

FIG. 7. �Color online� Comparison of the magnetic susceptibil-
ity � as a function of external magnetic field calculated from
g�E ,M� �solid lines� with computed data using the Metropolis al-
gorithm at T=2 K �open circles� and 4 K �open squares�, respect-
ively.

FIG. 8. �Color online� Specific heat C as a function of tempera-
ture T and external magnetic field B.
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creasing the number of bins or imposing a more strict flat-
ness criterion. Recently, it was demonstrated that a fitting of
the one-dimensional DOS for a sampled energy interval by
higher-order polynomials results in a less fluctuating specific
heat.32 Nevertheless, it is stated that this fitting procedure
fails if one tries to extrapolate the DOS outside the sampled
energy interval using the fitting function. Thus, further im-
provements are still needed to provide an effective sampling
at the boundaries of g�E ,M�. Due to the fact that the density

of states varies by many orders of magnitude, it is clear that
close to the boundaries of g�E ,M� the statistics becomes
poorer.
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