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Partial phonon densities of states of >’Fe in Fe-Cr: Analysis by a local-order cluster expansion

Matthew S. Lucas, A. Papandrew, and B. Fultz
W. M. Keck Laboratory, California Institute of Technology, Mail 138-78, Pasadena, California 91125, USA

Michael Y. Hu
HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Building 434E, 9700 South Cass Avenue,
Argonne, Illinois 60439, USA
(Received 4 November 2006; published 28 February 2007)

Nuclear resonant inelastic x-ray scattering spectra were measured for 5TFe in disordered body-centered-cubic
alloys of Fe-Cr. Partial phonon density of states (DOS) curves were obtained from these data. These results, in
conjunction with the results of Ruckert et al. [Hyperfine Interact. 126, 363 (2000)] on Fe-Cr thin-film multi-
layers and alloys, were analyzed with a local-order cluster expansion method. Interaction partial phonon DOS
functions for the different short-range correlation functions were obtained from the disordered alloys. These
interaction DOS functions were used in reconstructing the STFe partial DOS curves measured by Ruckert ef al.
on a set of thin-film multilayer samples of "Fe/*Fe/Cr. The method worked well using terms up to a
combined first- and second-nearest-neighbor triangle cluster, which were obtained reliably from the disordered
alloys. The limitations of a basis set of correlation functions from disordered alloys are discussed but shown to

be acceptable for the chemical trends of phonons in the Fe-Cr system.
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I. INTRODUCTION

In the past two decades, there has been considerable
progress toward understanding the Gibbs free energies G
=H-TS of alloy phases and phase diagrams. Electronic
structure calculations have proven powerful for assessing the
enthalpy H, identifying thermodynamic ground states for 7'
=0, and showing trends for materials under pressure at low
temperatures. Static contributions to the entropy S are under-
stood well, such as the configurational entropy of atom ar-
rangements. Dynamical sources of entropy such as phonon
entropy S, are known to be important,' but their systematics
is less well understood, especially for disordered solid
solutions.?

At modest temperatures, H and S for most alloy phases
are determined primarily by their local arrangements of at-
oms, even when the bonding electrons are delocalized. A
standard method to parametrize atom arrangements in crys-
talline alloys uses a hierarchy of local atom correlations,
with contributions organized over an increasing number of
atoms and an increasing range of distances. A cluster expan-
sion is a systematic method for expressing a ground-state
function of an alloy as a sum of terms, each being the prod-
uct of an atomic correlation function for a specific localized
cluster, and an interaction parameter to weight the impor-
tance of the cluster.>”” A set of atomic correlation functions
{€,} is unique to each chemical arrangement ¢, whereas the
set of interaction parameters {J,} is constant for alloys with
the same lattice and specific volume. The cluster expansion
method has proven efficient for evaluating the compositional
dependence of the electronic energy and the configurational
entropy of alloys because their interaction parameters decay
quickly with the size of the cluster.»3 For phonon entropy,
the formalism for the cluster expansion was developed and
tested some time ago,'®!! but it is not yet clear if the inter-
action parameters have the quick convergence that makes the
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cluster expansion method so useful as for other thermody-
namic quantities. Physically, interatomic force constants are
usually confined to short distances between atoms, but it is
less well known if these force constants are sufficiently con-
stant for alloys with different concentrations and local struc-
tures to allow reliable cluster expansions with relatively few
terms. The systematic effects of bond stiffness versus bond
length? suggest that short-range structural information may
indeed be sufficient. A previous assessment showed that the
phonon density of states (DOS) of Fe-Pt could be understood
with the atomic arrangements of a first-nearest-neighbor
shell of atoms, but this could involve many clusters.!?

Obtaining cluster interactions often begins by calculating
thermodynamic properties of different ordered structures. Or-
dered structures are well suited for band theoretical calcula-
tions and have well-defined atomic correlation functions that
facilitate obtaining the effective cluster interactions by ma-
trix inversion.'> With these cluster interaction parameters,
the more computationally challenging thermodynamic prop-
erties of disordered alloys are then obtained using the proper
weighting of the correlation functions of the disordered al-
loys. On the other hand, although disordered solid solutions
may be more challenging computationally, they often prove
convenient experimentally when ordered structures are not
available in nature. For disordered alloys, different atomic
correlation functions can be emphasized by changing the al-
loy composition.

Although phonon entropy is a thermodynamic quantity
amenable to analysis by cluster expansion methods, more
information is contained in the phonon DOS, from which the
phonon entropy can be readily calculated in the harmonic
and quasiharmonic approximations. The phonon DOS is of
interest in its own right because it gives insight into inter-
atomic forces, and the DOS functions have considerable
structure that is lost when the phonon entropy is obtained by
averaging over all modes of vibration. In principle, a stan-
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dard cluster expansion could be performed for each vibra-
tional mode of the solid, each mode having its own set of
interaction parameters. In what follows, however, we group
the mode interaction parameters into functions that we call
“interaction phonon DOS functions.” In essence, we gener-
alize the interaction parameters used in the cluster expansion
method to be functions of phonon energy.

The Fe-Cr system was selected for experimental study in
part owing to previous inelastic neutron-scattering studies of
phonons in Fe-Cr alloys.'*"!7 The present investigation used
the technique of nuclear resonant inelastic x-ray scattering
(NRIXS). This method gives the partial phonon DOS of >'Fe
atoms in the sample, i.e., the projection of the phonon DOS
onto the motions of >’Fe atoms. Our measurements were
made on disordered body-centered-cubic (bcc) solid solu-
tions of Fe-Cr, but the measurements were planned to
complement previous measurements of the °'Fe partial pho-
non DOS by Ruckert er al. on monolayers of *’Fe in epitax-
ial FeCr multilayers.'® The Fe-Cr disordered solid solutions
and thin films have similar lattice parameters (bcc Fe and Cr
have lattice parameters of 2.87 and 2.88 A, respectively).
This helps reduce volume effects, simplifying the interpreta-
tions of changes in the partial phonon DOS in terms of the
local chemical order.

After explaining experimental details of the bee >’Fe-Cr
samples and NRIXS measurements, we describe the practice
of using the cluster expansion method with interaction func-
tions for partial phonon DOS functions. The robustness of
using interaction functions from disordered alloys is assessed
in terms of the condition number for the matrix of correlation
functions. These interaction functions, obtained from the
present NRIXS data and measurements on bee *'Fe-Cr alloys
by Ruckert et al., are then used to reconstruct the partial
phonon DOS functions from multilayered thin films.'® The
DOS functions of the multilayered samples are reproduced
surprisingly well using clusters up to the triangle and up to
second-nearest-neighbor distances from ’Fe atoms. Short-
range correlation functions can be obtained reliably from dis-
ordered Fe-Cr alloys and appear sufficient for understanding
essential trends in the phonon entropy of Fe-Cr alloys.

II. EXPERIMENTAL METHODS

Alloys of Fe,_,Cr, for xc=[0.70,0.47,0.30] were pre-
pared by arc melting under an argon atmosphere using
99.99% Fe and 99.995% Cr. The alloys of composition xc,
=[0.47,0.30] were enriched to contain approximately
13 at. % of the ’Fe isotope. The alloy of composition
Fe(30Crp70 was not enriched and therefore contained ap-
proximately 1 at. % of the 3'Fe isotope. There was negligible
mass loss and minimal surface oxidation after melting, so the
compositions are expected to be accurate to 0.1 at. %. The
samples with x¢,=[0.47,0.30] were cold rolled to final thick-
ness, sealed in a quartz tube under an argon atmosphere, and
then annealed at 1100 °C for 72 h. The brittle ingot of
Fe 30Cr( 7o was sealed in a quartz tube under an argon atmo-
sphere, annealed at 1100 °C for several hours, sectioned
with a diamond saw, sanded to a thickness of 70 um, and
stress relieved at 400 °C. X-ray diffraction patterns were

PHYSICAL REVIEW B 75, 054307 (2007)

Intensity

Velocity [mm/s]

FIG. 1. Conventional room-temperature Mdssbauer spectra of
the alloys.

measured on all samples both before and after the heat treat-
ments. The patterns showed diffraction peaks from only the
bce phase. There was no evidence of sigma phase or oxide.

Transmission Mossbauer spectrometry was performed on
all samples at room temperature with a conventional constant
acceleration spectrometer, using a source of 75 mCi of >’Co
in Rh. Mossbauer spectrometry has been used extensively to
characterize bcc Fe-Cr alloys and the sigma-phase
compound.'”1%23 The >’Fe atom serves as a probe of its
local environment, detecting the presence of Cr atoms in its
first and second coordination spheres. The Mdssbauer spectra
of Fig. 1 are typical of those of disordered solid
solutions.’®?3 The broadened magnetic sextets are expected
for the high Cr concentrations in these alloys. No paramag-
netic peak is detected in the center of the spectra from
Fe( 30Crg 7o or Feq 53Crg 47 that could indicate the presence of
Fe in a Cr-rich regions caused by spinodal decomposition.'”
The high >’Fe content in the two enriched samples contrib-
utes an unfortunate saturation distortion to the spectrum,
however.

Nuclear resonant inelastic x-ray scattering?~2° (NRIXS)
was performed on all of the alloys at hutch 16-IDD at the
Advanced Photon Source at the Argonne National Labora-
tory. Each sample was placed at a grazing angle to the inci-
dent photon beam. The incident photon energy was tuned to
14.413 keV, the nuclear resonance energy of > Fe. The de-
layed signal was measured from a single avalanche photodi-
ode positioned 90° from the direction of the beam. Data were
collected in scans of incident photon energy from —80 to
+80 meV from the resonant energy, with a monochromator
resolution of 2.2 meV. The Fe(3oCrg79, Fegs3Crgay, and
Fe( 70Cry 30 samples were measured for 12, 5, and 17 h, re-
spectively.

III. RESULTS AND DISCUSSION
A. Experimental results

The NRIXS spectra are shown in Fig. 2. The error bars
are consistent with differences in >’Fe enrichment and mea-
suring times. The intense elastic peak at E=0 extends well
off the figure. Nuclear scattering with phonon creation con-
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FIG. 2. Measured NRIXS spectra acquired from the three
samples at room temperature.

tributes to the intensity to the right of the elastic peak; pho-
non annihilation processes contribute to the intensity at the
left. The raw scattering data were summed and analyzed us-
ing the program PHOENIX,”” which performs all of the calcu-
lations necessary to determine the STFe partial phonon DOS,
including removal of the elastic peak and multiphonon cor-
rections. The *’Fe partial phonon DOS curves for the three
alloys measured in this experiment are shown in Fig. 3.

B. Local-order cluster expansion formalism

A general cluster expansion is useful for average thermo-
dynamic quantities, but our experimental results are centered
on *’Fe atoms. An appropriate method for clusters localized
around specific atoms is the “local-order cluster
expansion,”?® which is described first. A method applicable
to both the local-order and general cluster expansions is then
presented.

“Spin variables” o are used for the two species of atoms,
where an A atom (Fe) is assigned the factor c=+1 and a B
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FIG. 3. Y'Fe partial phonon DOS curves for the three alloys
measured with NRIXS.
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atom (Cr) has o=-1. A cluster is a shape made by connect-
ing a number of points, n+ 1, on the lattice. In the local-order
cluster expansion, the clusters must contain the local point of
interest [ (e.g., an °'Fe atom). The correlation function &, is
defined as the sum over all clusters of the products of the
spin variables for each atom in the cluster:

1
€= 12 0,0, O (1)

ni{p;t

Here, n also denotes the order of each term in the expansion.
For example, n={0,1,2} for the point, pair, and triangle
terms, respectively. In our local-order cluster expansion, n
=0 is the point term because every point cluster is the atom
of interest with o=+1. The number of clusters of type n is
N,,. The value of the spin variable at site p is g, with each
lattice point labeled from 1 to n.

It is straightforward to calculate the correlation functions
&, for a random solid solution of A and B atoms around a
local point containing an A (Fe) atom. For the pair term, we
perform the sum in Eq. (1) over the N, atoms in the vicinity
of the local point,

1
§1=_EU >
Ny ™

1
=— (N o4+ Ngop),
& NI(AA B0p)

&1=1-2xp. ()

Here N, and Np are the number of A and B atoms in the
vicinity of the local point, Ny=N,+Np, xz=Ng/N, is the
concentration of species B, and x,=N,/N;=1-xp is the con-
centration of species A. For a random solid solution, the
probability of finding a particular atom on a site in any pair
of atoms is again its concentration, so the triangle term &, is
simply the product of the point correlation function with it-
self. Another factor of & is used for &, and by induction

gn = (1 - ZxB)n- (3)

A function of the local atomic arrangement at a specified
point, F ! is a sum over the correlation functions multiplied
by the corresponding interaction parameters {J,ll},

v-1
Fl = T (4)
n=0

Here m’ is used to denote a specific atomic configuration on
the parent lattice. This is often a specific ordered structure,
but in the present work, it will be a disordered alloy of speci-
fied composition. The total number of terms used in the clus-
ter expansion is v. Often a set {Fﬁn} are known by calcula-
tions or direct measurements, and correlation functions &, ,,
are apparent from the configurations. The interaction param-
eters can then be obtained by inverting &, ,, as follows:!3

r—1
L= F&h. (5)
m=0
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The phonon entropy S,,,(E) for the specific alloy m' is, in
the quasiharmonic approximation,'’

E
S (E) = 3kg f F(ENG™ (E"E', (6)
0

with

fY(E) = [fpe(E) + 1]In(fge(E) + 1) = fpe(E)In(fpL(E)),
(7)

where fz(E) is the Bose-Einstein phonon occupancy factor
and g”"(E) is the DOS for the particular alloy configuration

m’. Both fgp(E) and g”‘l(E) are obtained at the same tem-
perature. The partial phonon entropy is obtained from an
equation of the same form, where now g’”l(E) denotes the
partial phonon DOS. Typically, the phonon entropy is not a
function of energy, since the desired quantity is S,(E,),
where E. is the upper limit of the phonon DOS. The upper
limit on the integral can be taken to infinity because gm,(E)
is zero for E>E,.

Any ground-state thermodynamic quantity can be ex-
pressed with a cluster expansion.’ This pertains to the partial
vibrational entropy as it is obtained from the partial phonon
DOS of *’Fe atoms of Eq. (6),

v-1

E
3ka f*(E,)gm,(E,)dEl = 2 Sph,n(E)gn,m' s (8)
0 n=0

where S, ,(E) is equivalent to J, of Eqs. (4) and (5). We
have neglected the superscript / as the following formalism
can be applied to both the local and general cluster expan-
sions. By analogy to cluster interaction parameters, we call
Spna(E) an “interaction phonon entropy.” With independent
phonons, consistent with harmonic or quasiharmonic theory,
it is possible to evaluate a partial contribution to S, , from
individual phonons, or from phonons within a small range of
energy. Differentiating with respect to E gives the contribu-
tion from phonons within the energy range from E to E
+dE,

r—1
g"(E)= > [ d sph,n(m]gn,mr. 9)

3eaf*(E) 2 | dE

The similarity of Eq. (9) to Eq. (4) prompts the definition of
an “interaction phonon DOS” g,(E),

d
Sph,n(E)s (10)

gn(E) = 3k (E) dE

so the phonon DOS from a specific configuration m’ is

v—-1

g (E)= 2 gu(E)éys (11)
n=0

which can be inverted formally in the same way as Eq. (5),
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v-1

g(E) =2 g"(B)E, .. (12)
m=0

Equations (9) and (10) show the relationship between the
interaction parameters Sy, ,(E) and the interaction DOS func-
tions g,(E). A cluster expansion of the DOS is done by per-
forming a cluster expansion of the number of modes at each
energy E.

If a useful cluster expansion can be performed with only a
few terms, it is possible to overcome some difficulties asso-
ciated with using correlation functions from disordered al-
loys. Equation (3) approaches zero as the number of terms n
becomes large, but the most significant issue is the lack of
unique information obtained from cluster functions with
larger n—the correlation function basis becomes ill condi-
tioned with an increasing number of terms. In practice, this
means that although the fit to the thermodynamic functions
may improve with n, the higher-order interaction parameters
may not be determined reliably with experimental data on
random solid solutions.

The condition of the &, ,, matrix can be described in part
by the absolute value of the determinant, which is the vol-
ume of the figure bounded by the vectors of the matrix. If a
matrix is degenerate, e.g., if two of its vectors lie in the same
direction, the volume of this figure will be zero, as its deter-
minant. The other extreme is a matrix whose vectors span the
space maximally. Here, the volume of this figure and the
determinant are maximized.

An upper bound on the determinant of a v X v matrix with
complex elements restricted to modulus M is known from
the “Hadamard maximum determinant problem,”’

|det A| = M"v"2. (13)

Our vX v matrix of correlation functions §,,, has all ele-
ments of modulus 1 or less [Eq. (3)]. A (=1,1) matrix, a
matrix whose elements lie on the unit sphere, can be con-
structed for §,,, only up to v=2, however. For v>2, the
maximum value of the determinant is

|det A| = M"27"(v+ 1)+D2, (14)

where M is the largest modulus of the basis vectors. A matrix
of correlation functions that satisfies Eq. (14) spans the space
maximally. Our matrix composed of only correlation func-
tions given by Eq. (3) is a Vandermonde matrix.* Its deter-
minant is

ldetv]= 1

Isi<jsv

(&, &), (15)

which was maximized to find the set of alloys that provide an
&,» matrix that spans the space maximally. The results of
this are given in Table 1.

Using the determinant as a measure of the condition of the
&, ., matrix simplifies the task of finding the best set of com-
positions for the disordered alloys. A better measure, how-
ever, is the matrix condition number «,
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TABLE 1. Determination of most orthogonal basis using only alloys.

v {& basis} {xet [Det V| 27"(w+1)0D2 2
2 -1,1} {1,0} 2 2
3 {-1,0,1} {1,1/2,0} 2 2 5.196
4 {=1,-1/45,1/35,1} {1, 0.72, 0.28, 0} 1.1449 3.494 16
5 {-1,-3/7,0,\3/7,1} {1,0.83,1/2,0.17,0} 0.3665 6.75 55.90
6 {-1,-0.77,-0.29,0.29,0.77,1} {1, 0.88, 0.64, 0.36, 0.12, 0}  0.0643 14.118 216
7 {-1,-0.83,-0.47,0,0.47,0.83,1} {1,0.92,0.73,1/2,0.27,0.08,0} 0.0061 32 907.49

K(V) = VIV, (16)

Here, the double brackets denote the matrix norm and the
subscript denotes the use of the 2-norm. The condition num-
ber is a measure of the sensitivity of a matrix to numerical
operations. A matrix with a condition number of 1 is per-
fectly conditioned, whereas an infinite condition number oc-
curs when V is singular.3! In our linear system, we take the
matrix entries to have machine precision, which is the maxi-
mum possible relative error in representing a number as
floating point. The interaction DOS vector does have an as-
sociated error, where error propagation from Eq. (12) yields

v—1 172

S = | 2 (B &, ) (17)
m=0

The value of «/v multiplied by the error bars on the mea-
sured alloy DOS provides the upper limit on the error bars
for the interaction DOS functions. Table II shows the alloy
compositions that were used in this experiment, along with
the determinant and the ratio x/v of the corresponding &, ,,
matrix.

The interaction partial phonon DOS functions up to the
triangle term, determined using the alloy sets in Table II, are
shown in Fig. 4. These were calculated using Eq. (12). The
interaction partial phonon DOS functions are shown for an
increasing number of terms v. The functions through the tri-
angle interaction, g,(E), keep a consistent shape with in-
creasing v, although the triangle function has some change in
shape for v=5. The error bars increase in size as v increases
in a manner that is consistent with the ratio «/v given in
Table II.

C. Application of local cluster expansion to thin films

Ruckert et al. prepared thin-film multilayer samples by
molecular-beam epitaxy using layers of *°Fe, 3’Fe, and Cr in
different orders on the (001) plane, as shown in Fig. 5.1%

TABLE II. Properties of alloy basis matrix.

v {xct |det V| Klv
2 {0.97, 0} 1.94 0.505
3 {0.97, 0.47, 0} 1.82 1.10
4 {0.97, 0.70, 0.30, 0} 0.94 1.87
5 {0.97, 0.70, 0.47, 0.30, 0} 0.14 6.97

Spectra from these samples give a unique opportunity for
testing (1) if the cluster parameters obtained from disordered
alloys are transferable to a very different type of chemical
structure and (2) the range of effective cluster interactions
that are needed for describing the phonon DOS in Fe-Cr.
Only the partial phonon DOS of the °’Fe atoms at the inter-
face of the Fe and/or Cr layers was measured in the NRIXS
experiments of Ruckert er al. For example, the thin-film
sample FeCrl depicted in Fig. 5 has the active layer of STFe
separated from the Cr layers by four layers of “°Fe. The
FeCrl >’Fe partial phonon DOS is almost identical to that of
pure bce Fe, showing that the local atomic environment in-
formation needed to describe its phonon properties is of
shorter range than the distance to the Cr layer.

The correlation functions of the multilayers were deter-
mined using the *’Fe local structure shown in Fig. 5. The
first-nearest-neighbor (INN) and second-nearest-neighbor

T T T T T T T T T T T [ TR T T T T[T T T T T T T

9® & %

g [1/meV]

E [meV]

FIG. 4. Interaction partial phonon DOS functions from cluster
expansions of the disordered alloys, showing changes with the num-
ber of terms.
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Fe
@ “Fe
O Cr

FeCr2

FIG. 5. Superstructure of thin-film samples. From left to right:
FeCrl, FeCr2, and FeCr3. Empty circles are Cr, filled circles 56Fe,

[Tant)

and squares with an “x” inside are Spe.

(2NN) distances are similar in the bec structure, and there-
fore the INN and 2NN atoms were both used when deter-
mining the correlation functions of the pair and triangle
terms. When determining the triangle term, only clusters
containing at least one INN pair from the >’Fe atom were
included, because a cluster consisting of two 2NN pairs from
the S’Fe atom would also include a third-nearest-neighbor
pair. The specific pair and triangle clusters used are shown in
Fig. 6.

Figure 7 shows the °'Fe partial DOS curves of the thin-
film multilayers obtained using the interaction DOS func-
tions from the disordered alloys (cf. Fig. 4) and the correla-
tion functions given in Table III. Included in this table is the
rms fit § of the local-order cluster expansion to the measured
37Fe partial DOS from literature. The correlation functions of
the alloys measured in this experiment are also provided for
comparison. The experimental >’Fe partial phonon DOS
curves vary significantly for the different Fe-Cr alloys and
structures (Figs. 3 and 7), and the atomic structures of the

Point Pair Triangle

O INN+1NN

TNN+2NN
@ “Featom O ,,,,,,
O Inactive 66Fe

or Cr atom

FIG. 6. Clusters used to describe the partial phonon DOS of the
7Fe atoms at the interface of the thin-film multilayer samples. The
INN and 2NN pair and triangle clusters are shown and are taken to
be equivalent in the analysis.
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FIG. 7. Partial phonon DOS curves of the thin-film multilayers,
and functions calculated from correlation functions from disordered
alloys.

disordered solid solutions and the multilayer thin films are
substantially different. We therefore consider the calculated
curves in Fig. 7 to be remarkably successful.

It is evident from Table III that the local-order *'Fe cor-
relation functions of the FeCr3 multilayer and the Fe, 30Crq 79
disordered solid solution are almost equal. Also, the correla-
tion functions of the FeCr2 multilayer are both slightly
greater than those of the Fe,s;Cry4; disordered solid solu-
tion. This provides an opportunity to test the cluster expan-
sion without having to perform a matrix inversion. Figure 8
shows that the °’Fe partial phonon DOSs are very similar for
samples with similar correlation functions. This provides
strong evidence that the DOSs are functions of the local
chemical environment, as the thin-film multilayers and dis-
ordered alloys have quite dissimilar long-range order.

As a further test of the local-order cluster expansion, the
correlation functions &, for the FeCr2 and FeCr3 multilayer
samples were found from the best least-squares fits to the
partial phonon DOS functions of the FeCr2 and FeCr3
samples of Ruckert er al., using the interaction functions of
Fig. 4. The results, given in Table IV, show that the higher-
order terms do not significantly affect the values of &; and &,.

D. Local-Order effects in Fe-Cr

The contribution to the 3’Fe partial phonon DOS for each
of the terms in the cluster expansion for v=3 using the alloys
xx={0,0.47,0.97} is shown explicitly in Fig. 4. Each of the

TABLE III. Correlation functions of thin films and alloys.

Sample & & & 5% 103
FeCr2 1 2/7 1/3 3.29
FeCr3 1 =-3/7 1/9 4.69
Feo.70Cro30 1 04 0.16

Fe( 53Crg 47 1 0.06 0.0036

Feg 30Cro.70 1 -0.4 0.16
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FIG. 8. Partial phonon DOS curves of the thin-film multilayers
compared to the disordered solid solution with the most similar
local-order *’Fe correlation functions.

interaction partial phonon DOS functions can be interpreted
as follows. The n=0 term is the 3’Fe partial phonon DOS of
a random solid solution of Fe( 59Crj 59. The n=1 term shows
the effect on the partial phonon DOS of having different
numbers of Fe and Cr atoms in the 1NN and 2NN shells of
the >’Fe atom. The triangle term, n=2, shows the effect of
having like and unlike pairs of atoms within the INN and
2NN shells of the °’Fe atom. The function g,(E) is added to
the partial phonon DOS when the atom in the INN and 2NN
shells of the >’Fe atom is Fe and subtracted when it is Cr.
The effect of Fe atoms in the INN and 2NN shells of the
"Fe atom is therefore to decrease the number of low-energy
modes and increase the number of high-energy modes,
whereas Cr does the opposite. The function g,(E) is added
when a pair in the INN or 2NN shell of the *’Fe atom is
composed of two of the same atoms. Like pairs increase the
number of low-energy modes while decreasing the number
of high-energy modes, whereas unlike pairs do the opposite.
These statements about the effects of local atomic order on
the partial phonon DOS were made possible by the cluster
expansion analysis. For Fe-Cr, these are the largest effects of
local atomic order on the partial phonon DOS.

The Fe-Cr system was well suited for identifying effects
of local chemical order on phonons. We expect this method
to work as well or better for fully ordered samples that are
bce and maintain the same lattice parameter for the different
phases. In systems that are fully miscible in the bcc phase,
such as CrV, perhaps only the DOS curves of the end mem-
bers and the equiatomic alloy are needed to account for the
main trends of the vibrational properties for all of the alloy
concentrations.
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TABLE IV. Correlation functions of thin films from alloy
DOS.

Thin film » 6% 10° & & & &
FeCr2 3 216 0259  0.559

FeCr2 4 179 0322 0501  0.124
FeCr2 5 1.74 0350  0.533  0.140  0.400
FeCr3 3 365 0772 -0.174

FeCr3 4 368  —0.682 0025 —0.025
FeCr3 5 329 -0.825 0.038 —0475 0.075

IV. CONCLUSION

Partial phonon density of states (DOS) functions for *'Fe
atoms were measured by inelastic nuclear resonant scattering
for disordered bee Fe-Cr alloys. The local cluster expansion
method was adapted to work with partial phonon DOS func-
tions using interaction functions rather than interaction pa-
rameters. It was shown that disordered solid solutions can
provide robust interaction functions for clusters as large as
the combined first- and second-nearest-neighbor triangles,
and these were obtained from the experimental data on dis-
ordered Fe-Cr alloys. The set of three pair and triangle clus-
ters in the local cluster expansion was used to successfully
reconstruct the >’Fe partial phonon DOS functions measured
by Ruckert et al. on Fe/Cr multilayers prepared by
molecular-beam epitaxy. This success indicates that the in-
teraction functions are transferable to different chemical ar-
rangements of Fe and Cr on the bcc lattice, and the main
trends in phonon entropy of the Fe-Cr system can be ac-
counted for with relatively small clusters.
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