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We derive the nonlinear transport equations for isothermal crystalline solids using a density-functional
theory based free energy and the Poisson bracket formalism. The model is comprised of three characteristic
time scales: A fast one of sound waves and two slow ones of diffusive phenomena. It also combines long-range
elastic features with a density field � having an atomistic resolution. At the level of linearized hydrodynamics,
our results are identical to transport equations obtained from the Mori projection operator treatment when the
coupling of mass density and phonons becomes weak. At the linear level, we also show that Fick’s law breaks
down without dislocations in accordance with Cahn’s theory of stress effects on diffusion in solids. In contrast,
with no bilinear couplings between the density and the displacement fields, it is possible to use a nonlinear
local theory to describe diffusion and elastic effects using just a single scalar field �, which is numerically
efficient. We show how a variety of phenomenological phase field crystal models—which have recently
demonstrated their power in materials science applications—can be derived, and how their parameters can be
related to more microscopic ones.
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I. INTRODUCTION

The purpose of this paper is to derive the dynamic laws
describing the evolution of slow variables in crystalline sol-
ids, and compare the similarities and differences between
various theories. Slow variables represent a good set of
“thermodynamic quantum numbers,” which is relevant for
the description of time evolution—after local equilibrium has
set in—in an interacting many-body system. They are asso-
ciated with the conserved and symmetry broken emergent
variables.1 The difference between liquids and solids is that,
in addition to the mass density �, momentum density g, and
energy density E, there are three extra variables associated
with the spontaneously broken translational symmetry. These
are the acoustic phonons; their action is accounted for by a
thermodynamic field called the displacement field u. A great
deal of work has been invested in the development of the
phenomenological theories of hydrodynamics of solids, in
the contexts of liquid crystals and crystals:2,3 Nondissipative
quantum field theoretic models,4 two-dimensional �2D�
melting,5 and two-fluid description.6 The phenomenology
has reached a certain degree of maturity, but there is more
room to improve on our understanding of the valid ranges of
different theories, the values of the parameters and mappings
between the theories, and how they relate to more fundamen-
tal derivations, such as the notable first-principles approach
developed by Wadati, and co-workers.7–9 Equilibrium prop-
erties and nondissipative properties have been more the fo-
cus of attention; but recently, microscopic Mori projection
operator formalism derivations of linearized dissipative hy-
drodynamics have also been presented.10

One of the main motivations behind this work was to
derive the so-called phenomenological phase field crystal
models, which have already shown their usefulness in mate-
rials science applications.11–13 These models seem to contain
all the necessary ingredients for the description of elastic
material properties, in terms of a single scalar density, obey-

ing model-B-type diffusive dynamics or a nonlinear wave
equation. We will show that indeed it is possible to under-
stand the emergence of these and other phenomenological
models from a more fundamental theory comprising more
degrees of freedom. One of the aspects, that makes the
theory presented here more versatile than most of the exist-
ing ones, is the fact that it combines elements on the scale of
macroscopic elasticity with information about the dynamics
of structures on the atomistic scale. This information is pre-
sented in terms of a continuous �probability� density field,
the classical one-particle density ��r , t�, which can be treated
as a more or less coarse-grained object depending on how
much detailed information is required. The model can also be
shown to be thermodynamically consistent; being based on a
unique equilibrium free-energy functional derived from clas-
sical density functional theory �DFT� or phenomenologically
postulated. We also present the valid range of the phenom-
enological phase field theories based on the linearized hydro-
dynamics of solids.

II. DERIVATION OF FREE ENERGY

In bridging the gap between more microscopic descrip-
tions and the various phenomenological models, we resort to
the use of macroscopic Poisson bracket formalism as a hy-
brid that can utilize both microscopic information in the con-
struction of the free-energy functional and the reactive cur-
rents, and macroscopic irreversible behavior; which
guarantees that the correct thermodynamic equilibrium state
is attained. The equilibrium distribution is Gibbsian,
exp�−�F��. As input for the implementation, we need to sup-
ply an expression for the free energy and define the macro-
scopic Poisson brackets. Let us start by considering the gen-
eralized free energy

F� � FK + F , �1�

where
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FK =
1

2
� dr

1

��r�
g2�r� �2�

is the kinetic energy14 and F is the static free-energy func-
tional, which can be derived from microscopics by, e.g., us-
ing density-functional theory. For the purpose of explicit cal-
culations, we use

F �� dr���r�ln���r�/�̄0� − ���

−
1

2
� dr� dr����r�C2�r,r�����r�� , �3�

where �����r�− �̄0, and �̄0 is the mean density in the solid
phase. Equation �3� has proven to be successful in the de-
scription of both liquid–solid transition15 and liquid-glass
transition.16,17 Since C2�r ,r�� is the direct correlation func-
tion at liquid-solid coexistence, the dynamic density-
functional theory to be developed below can describe both
phases using a single mass and momentum density fields.
Indeed, the Euler-Lagrange equation �F /��=0 can be shown
to support both periodic �atomistic� and flat �fluidlike� solu-
tions depending on the values of the parameters of F.18 Here,
we concentrate on the isothermal properties of the solid
phase.

From a symmetry-breaking point of view, A “discontinu-
ity” appears when going from the liquid phase to the solid
phase: The free energy �3� must be modified to account for a
new relevant macrovariable, the displacement field u. Let us
first assume that there are no defects in the solid �we are
mainly considering point defects in this work�. We further
assume that the deformed state ��r� experiencing a long-
range perturbation u can be generated from the unperturbed
perfect crystal density field �0�r� via ��r , t�	�0(r−u�r , t�)
	�0−��0 ·u. This leads to the following excitation spectrum
above the ground state:

F̃��0,u� = F��0� +
1

2
� dq ui�q�Kij�q�uj�− q� , �4�

and the elastic constants can be obtained from

Kij�q� = Ã2 
 �Q�−QQiQj�C2�Q� − C2�q + Q�� , �5�

where we have expanded the perfect crystal solution �with-
out defects of any kind�,

�0�r� = �̄0 + Ã 
 �QeıQ·r, �6�

with normalization Ã and summed reciprocal-lattice vectors

Q over the first Brillouin zone. The values of Ã and Q can be
found in terms of the parameters of F.11 The operator K is
dependent on scale, and it can be related to scale dependent
elastic “constants,” which in the limit q→0 reduce to

Kij�q� = Ã2

Q

�Q�−QQiQjC̃�q,Q� → �ijklqkql �7�

with

C̃�q,Q� � �1/2��qk · �Qk
��ql · �Ql

�C2�Q� . �8�

Although these results are well documented10,19 and suffice
for our purposes here, we point out that there is a problem
when substituting the expansion �	�o−��0 ·u�r� into F to
obtain the excitation spectrum: the �probability� mass is not
conserved for an arbitrary u configuration. Other expansions
have been suggested, leading to different values of elastic
constants. Mahato et al.20 expand around u�R�, where the
displacement field is tied to the equilibrium position R of the
nearest atom. This frees the authors from the mass conserva-
tion problem; but consequently, u cannot be used as a genu-
ine dynamic variable. Kirkpatrick et al.21 used an expansion
of the form �	�0−� · ��0u�+h, where h is related to con-
trolling the sub-Cauchy scale volume changes. This expres-
sion conserves mass but certain ambiguities arise with mul-
tiple integrals in the free energy and Poisson bracket terms, if
one wishes to use the dynamic formalism presented here. An
expansion that fully respects all conservation laws has been
used by Wadati9 based on Umezawa’s boson transformation:
�	�0+�i�̃ij���uj. The mass matrix �̃ij��0� induces cou-
plings in the equations of motion between the various uj
already at the level of linearized hydrodynamics which, to
our knowledge, have not been taken into account in any of
the more phenomenological theories dealing with linearized
hydrodynamics, of solids. For the following discussion, this
feature can be implemented straightforwardly into the final
results.

To summarize the discussion above, we have obtained the

excitation spectrum for u: F̃��0 ,u�=F��0�+��1/2�ujKijuj,
where �0�r� is the atomistic equilibrium density of the crystal
and uKu part contains the long-wavelength excitations.
However, in our expansion �	�0−��0 ·u �or �	�0
+�i�̃ijuj� we have made � and u dependent on each other.
Equilibrium thermodynamics tells us that two independent
state variables ��, E in terms of our conserved fields� are
needed in addition to u. There are two ways of decoupling �
from u. First, by introducing a �point� defect density N we
can say that �=��N ,u� instead of �=��u� as before. Alter-
natively, we can define

F̃��,u� = F��� +
1

2
� uiKijuj + �� �� − �0� , �9�

where � and u can be varied independently, and � is a
Lagrange multiplier enforcing the mass conservation. In fact,
the last term can be dropped since it will be invisible in the
actual equations of motion. To generalize further, we also
introduce a lowest-order coupling term �2�uii between the
mass and the displacement field �uii�� ·u�. This type of
coupling has been considered before as representative of
defect-strain interaction5 and structural phase transitions.22 It
is also easy to understand how such a coupling term can be
derived from Eq. �3� using an expansion of the type �	�0
+�i�̃ijuj +N. Later on, we will show how �2 can be related to
chemical inhomogeneity-induced stress of Larche and
Cahn.23 For now, we keep the parameter �2 free, and write

S. MAJANIEMI AND M. GRANT PHYSICAL REVIEW B 75, 054301 �2007�

054301-2



F̃��,u� = F��� +� �2�uii +
1

2
� uiKijuj . �10�

Just as the “original” free energy F��� was valid for all
smooth configurations �, in the sense that exp�−�F���� gives
the “nonequilibrium” probability weight of configuration �,

exp�−�F̃�� ,u�� can be seen as the mean-field weight ob-
tained from cell averaging of the full partition function. This
is subject to the constraint that the microscopic mass density
in the cell around r is ��r� and the displacement field takes
the value u�r�. Alhough, an important difference remains
between the fields � and u: The latter cannot be interpreted
as a probability density.

In the next section, we use the generalized free energy
derived above as the generator of the dynamics. From the
static arguments of this section, one may very well question
if � and u are really independent of each other. Maybe their
appearance in the same free energy �10� leads to some kind
of double counting. Specifically, from the derivation of Eq.
�4� based on substitution of �	�0+��0 ·u, it appears as if
the long-range contribution dependent on u should be purged
from � in order for it to be an independent variable from the
displacement field. We argue below that whatever relation
we assume between � and u, when deriving the free energy,
no longer matters after the variations are performed in Eqs.
�20�, �22�, and �28�: Equations of motion will determine the
wavelength content of all fields.

III. EQUATIONS OF MOTION

The remaining task is to determine the nonzero reactive
couplings between the slow fields from fluctuating hydrody-
namics �see, e.g., Refs. 24 and 25. From our three slow
fields, mass and momentum are defined by the microscopic
expressions

��r,t� � 

�

m��r − r��t��; �11�

g�r,t� � 

�

p��t���r − r��t�� , �12�

where the particle index � runs over all N particles with
mass m and microscopic momentum p�. The nondissipative
dynamics of the slow fields will be expressed in terms of
Poisson brackets, which we define as

�A�r�,B�r��� � 

�j
� �A�r�

�rj
�

�B�r��
�pj

� −
�A�r�
�pj

�

�B�r��
�rj

�  .

�13�

Plugging Eqs. �11� and �12� into Eq. �13� yields

���r�,gi�r��� = − ��r���i��r − r�� , �14�

�gi�r�,��r��� = − ��r��i��r� − r� , �15�

where �i�� /�ri, and similarly for the primed coordinates.
For momentum density,

�gs�r�,gi�r��� = − gi�r��s���r� − r� + gs�r���i��r − r�� .

�16�

The definition of the Poisson brackets for the displacement u
is trickier because unlike momentum and mass, it has no
unique microscopic definition. However, a sensible choice
turns out to be

�ui�r�,gj�r��� = + �ij��r − r�� , �17�

�gi�r��,uj�r��� = − �ij��r − r�� . �18�

A more detailed discussion of the microscopic representation
�see Eq. �83�� of the displacement field will be provided in
Sec. VIII A. Nonlinear extensions of these relations are
possible,17 but in the following, we will consider nonlineari-
ties only in the mass density field.

We will first construct the linearized hydrodynamics for
slow fields. We restrict the analysis to the isothermal case
and leave out the energy equation �temperature equation�. In

terms of the generalized free energy F�=FK+ F̃, and the
Poisson brackets above, the mass balance equation becomes

�t� =� dr����r�,gj�r���
�F�

�gj�r��
�19�

=� ��,gj�
�F�

�gj
= − � · g . �20�

Einstein summation convention over repeated indices is im-
plied, and appropriate integration over spatial coordinates is
understood. In addition, the integration will always be over
the argument of the right-most member of the Poisson
bracket. Using this notation, the momentum balance equation
reads

�tgi = �gigj

�F�

�gj
+� �gi,uj�

�F�

�uj
+� �gi,��

�F�

��
+ �	g�i

�21�

=Lijgj + Kijuj − �̄0�2�iujj − �3�i� + �	g�i, �22�

where the prefactor

�3 �
�̄0

�S�0�
− �2. �23�

The Fourier transform of the structure factor is denoted S�q
=0�=S�0�. A fluctuation-dissipation theorem fixes the noise
correlations as

��	g�i�r,t��	g� j�r�,t��� = 2T�gigj
��r − r����t − t�� , �24�

and the dissipative term �gigj
��F� /�gj�=Lijgj, with

Lij � 
1�ij�
2 + 
2�i� j . �25�

The bulk and shear viscosities are denoted by 
1 and 
2. Of
course, the liquid-state-like viscosity is strictly infinite in a
solid so 
i’s require a new interpretation. There are two con-
tributions to the viscosity of the solid in the current formu-
lation. One describes the energy transfer between the acous-
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tic and optical �thermal� phonons as will be discussed below.
In principle, the viscosities can be computed from the micro-
scopic Green-Kubo expression of the total momentum flux
density current as demonstrated in Ref. 10:


ijkl =
1

kBTV
�

0

�

dt lim
q→0

�P��ij�− q,0�P��kl�q,t��eq,

�26�

where P��1− P and P is the projection operator on the
subspace of relevant variables. Here P��ij = �P��kl�q��fluid

− ı�ijkluj�q�ql is the projected stress tensor10 and �ijkl is the
elastic tensor to be defined below. To the extent that �ij is
dependent on the defect current, the defects can also contrib-
ute to the effective solid-state viscosity. This second contri-
bution to the viscosity links the coefficients 
1 and 
2 to the
dissipative motion of vacancies. Later on, we will also see
that within the linearized hydrodynamics the diffusion coef-
ficient D will not depend on the viscosity explicitly. Implic-
itly, though, there is a connection through the dissipative
current correlator �30� as far as the projected total current
depends on the vacancy current.

After discussion of the noise properties of the momentum
balance equation, let us take a look at the reactive term
−�3�i�, which is just the pressure gradient. Indeed, in the
liquid phase Eq. �22� would reduce to the liquid momentum
flux equation with a similar type of lowest-order density de-
pendence. It should also be noted that the corresponding
nonlinear pressure term −�� can be taken as the definition
of solid-state pressure �without fluctuating temperature ef-
fects in the present case�. More detailed comparison with the
literature will be presented in Sec. IX A.

Finally, we have the time evolution of the displacement
field:

�tui = �uiuj

�F�

�uj
+� �ui,gj�

�F�

�gj
+ �	u�i �27�

= Aij�Kjsus + �2� j�� + �1/�̄0�gi + �	u�i, �28�

where the noise correlations satisfy

��	u�i�r,t��	u� j�r�,t��� = 2TAisKsj��r − r����t − t�� .

�29�

Explicitly, in terms of the elastic constants calculated in Eq.
�7�, AisKsj =Ais�sjrlkrkl. The dissipative prefactor matrix

Aij =
1

kBTV
�

0

�

dt lim
q→0

�P�u̇i�− q,0�P�u̇j�q,t��eq, �30�

where P��1− P and P is the projection operator on the
subspace of relevant variables.10 This dissipative coefficient
can be interpreted as stemming from scattering effects of
various kinds. In the two-fluid theory of Enz,6 dissipative
energy transfer is partly due to the coupling of the acoustic
phonons with the dissipative thermal ones. �Here, we use
synonymously the expression optical for thermal or dissipa-
tive modes: The optical modes are understood as the other
vibration modes except the acoustic Goldstone modes.� It
should also be noted that the extra �vacancy� density cou-

pling �2�j� in our theory, which connects the total momen-
tum with the vacancy dissipation. Exactly, as in the case of
the momentum current, the term proportional to �2 was not
obtained from the Mori projection operator formalism of
Ref. 10. It is of the same order in powers of q as the elastic
term, and thus is relevant. As a possible reason why such a
term was not generated, we suspect the use of the geometric
projector in the definition of the u field. The displacement
field used by Szamel was defined heuristically using the
mass conservation violating assumption ��r−u�r��	�0�r�
−��0 ·u through

u�q� � −
1

N
�h�,�� � −

1

N � dr e−ıq·r���0�r���r� ,

�31�

where N= �h� ,h�� is the normalization and h�

�exp�−ıq ·r����0. It is easy to see that this type of density
decomposition leads to a zero coupling at least when directly
substituted into Eq. �3� and after the long-wavelength limit is
taken.

IV. LINEARIZED HYDRODYNAMICS

We will now rewrite the linearized hydrodynamics of our
theory in terms of new variables, which will help us to better
understand the diffusive phenomena and which will make it
easier to compare our results with those of Larche and Cahn
presented in Sec. IX D. We first introduce a different density
decomposition:

� = �0 − �̄0uii + N = Ñ − �̄0uii, �32�

where we have defined a different defect density:

Ñ � �0 + N . �33�

Note that this expansion is taken to be an exact definition of

N�Ñ�. Everything else—from point defects to higher powers

of the u field—is lumped into Ñ. As discussed in Sec. III,
due to our practical definition, N=��r�−�0�r�+ �̄0uii, N can
contain contributions other than just the actual coarse-
grained density of the vacancies, such as nonlinear contribu-
tions from u, density of dislocations, etc. Therefore, it is
possible that N /� is larger than O�5.0�10−5�, which holds
for the Lennard-Jones system near triple point.26 In the new

variables u and Ñ we can write our balance equations as

�tÑ = − � · gN, �34�

��t − L�gL + ��t − L�gN = K3u − �3�Ñ , �35�

gL � �̄0�tu; �36�

�gN�i � − �̄0Aij�K2u + �2�Ñ� j , �37�

where we have defined acoustic phonon current gL and the
defect current gN, the sum of which equals the total momen-
tum as dictated by Eq. �28�:
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g = gL + gN. �38�

We point out that it is easy to generalize the phonon current
to the form gL=�i�̃ijuj, corresponding to strictly mass con-
serving excitation, if necessary. We have also defined two
new operators:

K2u � Ku − �̄0�2�uii, �39�

K3u � Ku + �̄0��3 − �2��uii. �40�

In fact, in view of the comments above concerning the slow-
ness of the vacancy diffusion in metals, the maximum con-
tribution to the current gN can come from the dissipative
phononic processes, and in this sense, it may be somewhat
misleading to talk about defect current. However, to facilitate
the comparison, especially with Ref. 5, we will stick to this
nomenclature.

Next, we solve from our linearized equations of motion

for u�Ñ�, and obtain from Eqs. �34�–�37�

�tÑ�q� = − D���q̂�q�q�Ñ�q� , �41�

where we have defined the diffusion tensor consisting of two
parts,

D�� = �̄0�2A�� + D̃��; �42�

D̃�� = �̄0�3A�	�K2�	��q̂��K3���
−1�q̂� . �43�

The unit vector has been denoted q̂, K���q̂��−�����q̂�q̂�,
and

�K3����q̂� = K���q̂� − �̄0��3 − �2�q̂�q̂� �44�

is the wave propagation matrix of dissipationless phonons. In
the limit �2→0 the diffusion constant reduces exactly to the
one obtained from the Mori projection analysis.10 The results
�41� and �42� implies the breakdown of Fick’s law because
the diffusion equation becomes nonlocal. This has been veri-
fied numerically.27 Nonlocal behavior results from the pres-
ence of the K2u term in the diffusion equation �100�. One
first has to solve the elastic fields from the force balance
equation �momentum equation� and substitute the nonlocal
result back into Eq. �100�. Nonlocality always results for
crystals with symmetry lower than cubic,23 except for some
very special geometries. In particular, these conditions are
never realized under experimental circumstances such as
polycrystalline grain growth or solidification: The grains do
not have a regular shape on average and one may expect
nonlocal effects always to manifest themselves. However, in
an infinite system with no boundaries to complicate the ex-

pression of u in terms of Ñ, and with isotropic elastic opera-
tor of the form �1�ij�

2+�2�i� j, the ensuing diffusion equa-
tion will be local �but anisotropic� even if the dissipative
operator Aij is not diagonal:

D�� = �̄0A����2 +
�3�� − �2�̄0�

� + �̄0��3 − �2�
� , �45�

where ���1+�2. For nonisotropic crystal the direction co-
sines would appear in the expression for the diffusion con-

stant as is evident from the more general result �42�.

V. NONLINEAR DENSITY INTERACTIONS

The Poisson bracket formalism allows us to consider ar-
bitrary nonlinearities in density, momentum density, and
elastic fields. In order to establish the connection with other
theories, we will now take consider of the nonlinear effects
in the mass density �. Keeping elastic self-interactions linear
but retaining all bilinear terms of the theory, and fully non-
linear density self-interactions, we obtain the following set of
equations from Eqs. �20�, �22�, and �28�:

�t� = − � · g; �46�

�tg = Lg + Ku + �2�� − ����,u� + 	g; �47�

�tu = �1/�̄0�g + A�Ku + �2��� + 	u, �48�

where we have defined �� ,u�=�F̃�� ,u� /��. Assuming di-
agonality of the dissipative matrix A �a condition which can
be relaxed, if needed� we can take the divergence on both
sides of Eqs. �47� and �48�. Using Eq. �46� we can then
express the dynamics in terms of a new field,

� � �̄0uii, �49�

as follows:

�t� + �t� = a��2� + c2�
2� , �50�

�t
2� − 
�2�t� = − ��/�̄0��2� − �2�

2� + �2 � � �

�̄0

���
+ ��� � ���� , �51�

where ��� is only a function of �. In other words, ���
��F̃�� ,u=0� /��. We have also dropped the noise terms and
defined the following symbols:

c2 � �̄0a�2, �52�

� � �1 + �2, �53�


 � 
1 + 
2. �54�

The third term on the right-hand side �RHS� of Eq. �51�
results from the action of � /�� on the coupling term �2�uii

in F̃�� ,u�, and it has been explicitly separated from . The
term �2� ��� / �̄0���� is the only bilinear coupling between
two different fields, and responsible for the fact that the two
equations �50� and �51� cannot be combined into one third-
order equation in time. This would be expressed solely in
terms of density and would be local in real space. If the
bilinear coupling is linearized such that

�2� � �

�̄0

��� 	 �2�
2� �55�

�or, if �2=0�, then the entire theory is representable in terms
of a single local equation for the density field �. This is easy
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to see by operating on both sides of Eq. �51� with

L1 � �t − a��2, �56�

and using Eq. �50� and the approximation �55�. We obtain

L1�t
2� − 
L1�

2�t� = �− �/�̄0 + �2��2�− �t� + c2�
2��

− �2L1�
2� + L1� ��� ���� . �57�

This is a fully local scalar equation in time and space �given
that local free-energy functional is used� with third-order
time derivatives. It can be easily simulated by decomposing
it into three first-order equations in time, for instance. We
made no other assumptions other than requiring all elastic
couplings �self-couplings and couplings with other fields� to
be linear �not bilinear� and the dissipative matrix Aij to be
diagonal. Thus, within linear elasticity, effects of the set of
five equations in two dimensions �seven in three dimensions�
given in Eqs. �46�–�48� can be exactly packaged into Eq.
�57� Despite the simple appearance of Eq. �57� it is, of
course, impossible to simulate it on diffusive time scales
with realistic values of the materials parameters for which
the time scale separation of the phononic and dissipative
timescales is several orders of magnitude. Bringing these two
time scales artificially closer to each other but still keeping
them well separated leads to qualitatively reasonable results
for many phenomena, such as those studied in Ref. 12. For
more quantitative results, a quasistationarity condition for
the phonons can be utilized.

Next, we will study two limits of the full model. The first
one, �Sec. V A� is the limit where the familiar �viscosity
damped� wave equation for the phonons becomes detectable.
The second one is the limit, where the dissipative features of
the phonon current dominate �Sec. V B�

A. Limit of nondissipative current domination

Let us consider a weak coupling �2 such that c2�
2�

�a��2�, where c2��2. By the same token, we can also
assume that the bilinear term, which is approximated as
�2�

2� is much smaller than the first term on the RHS of Eq.
�51� and can be dropped. Then, Eq. �50� reduces to �t�	
−�t�+a��2�	−� ·gL−� ·gN. When the nondissipative pho-
non current gL dominates mass transport, �t�	−�t�, or �	
−� �leaving out the time independent �0�r��, and the original
condition c2�

2��a��2� yields the condition for the magni-
tude of �2: ��2 � � �−� / �̄0�. Equation �51� reduces to

�t
2� − 
�2�t� = ��/�̄0��2� − ����0�r� − �� ���0�r� − ��� ,

�58�

which, apart from the last term on the right-hand side, is
nothing but the divergence of the familiar wave equation
where −
�2�t� gives the damping of the phonon fluctuations.
In fact, there is linear contribution in � originating from

����0�r� − �� ���0�r� − ��� , �59�

which can be absorbed into the redefinition of the diagonal
elastic constant, that is, the sum �=�1+�2. Nevertheless, the
form of the wave equation is not changed by this fact. The
nonlinear interactions of �, originating from the term �59�,

can be interpreted as a higher-order scattering effect. How-
ever, due to the reasons discussed in the beginning of this
section, we only consider the linear contribution in the dis-
placement field �. It should be noted that, since � and u are
independent in the Poisson bracket formalism, there is no
problem in expanding the nonlinear chemical potential term
in �. The linear contribution, which renormalizes the elastic
constants and sound velocity—should not be set to zero,
even if we set the coupling �2=0.

B. Limit of dissipative current domination

In the opposite limit, � ·gN�� ·gL, or −a��2��−�t�.
From the linear analysis of Sec. IV, we obtain the following
condition

1

��̄0a2��
� k2 �

1

��̄0
a�
, �60�

where we have used the quasistationarity of the momentum
current and the late time condition ��1/ ��a�̄0�� characteris-
tic of diffusive time scales. Then, Eq. �50� gives �t�
=a��2�, and subsititution into Eq. �51� yields

�t
2� − 
�2�t� = −

�̄0�2 − �

�̄0a�
�t� − �2�

2� + �������� .

�61�

Simple power counting tells us that the left-hand side �LHS�
of Eq. �61� is negligible in the long time limit, and therefore,
a nonlinear �vacancy� diffusion equation results:

�t� =
�̄0�2a�

�̄0�2 − �
�2� +

�̄0a�

� − �̄0�2

�������� �62�

	a�̄0�������� �63�

in the limit of weak coupling, �2→0. The only simplifying
assumption in the derivation of the nonlinear diffusion equa-
tion �63� was that A��=a���. If diagonality holds, we obtain
in the limit of large times �t�	a�̄0�����, which is the
locally conserved representation in variable �. It is important

to note that the diffusion coefficient of the defect part Ñ in
Eq. �42� is slightly different than the factor in front of the
chemical potential term in Eq. �63� due to the splitting of �
into two contributions in Eq. �32�. Moreover, the condition
�60� is only needed to impose a strict dominance of the dif-
fusion current over the nondissipative part. Even if it is re-
laxed, the full model presented in Sec. V does have a diffu-
sive pole in its hydrodynamic determinant for arbitrarily
small k values. This is not the case with the modified phase
field crystal model �MPFC� to be presented in Sec. VII: If
one insists that it is derivable from the fundamental model of
Sec. V with the same �physical� parameter values, then con-
dition �60� is necessary.

VI. MULTISCALE MODELING AND ELASTIC
COEFFICIENTS

We have considered two types of coarse graining in this
work: Coarse graining in time and space. The time scale
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hierarchy leading to the evolution equation �57� consists in
increasing order of the momentum relaxation time �m�k�
��
k2�−1 �Eq. �51��, the sound propagation time scale �s

���̄0 /��1/2k−1 �Eq. �58��, and the diffusive time scale of de-
fects and other dissipative processes,

�d � � a�̄0k2

�S�0�
�−1

�64�

�cf. Eqs. �75� and �41��. For a hard sphere gas �radius ro,
mass m� one can approximate �m���m�1/2 / �r0

2�0�, indepen-
dent of k.28 Also, the processes of most rapid variation time
�T due to the thermal fluctuations have all been lumped into
the noise terms. Thus, in this sense, the fields entering the
Poisson bracket formalism have already been averaged over
time scales shorter than �T, although, this is not explicitly
shown.

Various spatial scales also arise. The field � varies as a
probability density on scales having atomistic resolution. The
exact precision in the spatial form of � is set by the correla-
tion function C2 in the free energy. As it is directly related to
the structure factor of the system, whose precise form de-
pends on the experimental methods �or simulation tech-
nique�, it can be concluded that the type �energy� of radia-
tion, quasielastic nature of collisions, multiple scattering, and
other factors all play a role in the interpretation of the fine
structure of the � field. For explicit calculations, we have
also utilized various analytical approximations, which make
� more diffuse than it would be in an ideal situation. For
example, fuzziness of � is common to all theories having a
free energy that has been obtained through a gradient expan-
sion. If one is only interested in phenomena where the den-
sity field varies slowly on the scales of the correlation length
of the direct correlation function �pair potential in low tem-
peratures�, one can expand29,30

��r�� = ��x� + ��r − r�� · ����r� +
1

2
��r − r�� · ��2��r� + . . .

�65�

in Eq. �3�. This leads to the local free-energy density whose
gradient interaction term derives from the second term on the
RHS of Eq. �65�:

� dr c̃0��̄0�����2 �� dr
1

12�
� dr��r��2C2�r�, �̄0�����2,

�66�

where we have indicated that the coefficient c̃0 depends
weakly on the density �and temperature� because C2 does.
Even though the gradient expansion is sometimes used out-
side of its domain of validity, it can be expected to give
quantitatively accurate results only for slow density varia-
tions, such as a binary alloy close to spinodal or liquid-gas
systems31 close to the critical point. For example, in order to
get quantitatively reliable results for fluids in the vicinity of
solid walls, the full nonlocal form of interaction should be
considered.26 Thus, any gradient interaction theory, such as
the phase field crystal models given in Refs. 11 and 12, has
already been coarse grained to a coarser scale than Eq. �3�

and consequently, the probability density is not the atomistic
one anymore. The coefficients in these expansions can be
related to the more microscopic ones by, e.g., relating the
elastic coefficients or other parameters to each other, as ex-
plained in Sec. VII. Of course, by adding higher-order gra-
dient terms and suitable nonlinearities, shorter scale features
can be mimicked approximately.

Now let us consider the spatial scales beyond the cell
scale above which a sensible gradient interaction theory can
be defined for a liquid-gas system.14 The most relevant ones
for the present purposes are the widths of the phase bound-
aries and the average domain size of the polycrystalline
grains. For example, the grain size grows like �t1/2 in time
for a nonconserved order parameter even though the under-
lying dynamics of � is conserved. There are several correla-
tion lengths that can be determined for the roughening do-
main boundaries as well. Also, the various diffusion lengths
are important for understanding the macroscopic materials
properties.

Of all our dynamic fields, it is the smooth part of u that
varies on the largest scales. For smooth elastic effects using
the elastic free energy given in Eq. �10� means that we have
washed out all legth scales in the limit k→0 and, therefore,
the elastic fields do not see, e.g., individual grains. The reso-
lution can in principle, at least, be increased by retaining the
dependence of the elastic constants on the field ��r�. Using
the fact that at zero strain, the Euler-Lagrange equation for �
should give rise to the microscopic density distribution �0�r�
and the assumption that when �0�r� is replaced by ��r� �with
microscopic resolution� in Eq. �4�, one obtains the correct

generator F̃�� ,u� for strained density evolution. One is im-
mediately led to the following expression for the elastic en-
ergy density:

Fel��,u� =� dk ui�k�K̃ij��,k�uj�− k� , �67�

where the scale dependent elastic constants are given by

K̃ij =� dr� dr��i��r�C2�r − r���1 − eık·�r−r���� j���r�� .

�68�

In other words, it is possible that the elastic constants given

by K̃ij can assume a different value on the grain scale �deter-
mined by setting the coarse-graining level of �� from their
values on a much larger scale of the entire crystal. Also, the
� dependence can be utilized when modeling coexisting liq-
uid and solid phases �see Sec. VIII A�. From the mathemati-
cal point of view, the admissibility of elastic continuum for
materials with hierarchical structure is a more complex ques-
tion, which cannot be separated from the determination of
macroscopic boundary conditions. Thermomechanical con-
siderations related to this observation have been presented in
Ref. 32.

VII. RELATION TO PHASE FIELD CRYSTAL MODELS

In this section, we will demonstrate under what kinds of
conditions the equations of motion �46�–�48� will give rise to
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two different variants of the phase field crystal models. A
purely diffusive model, which contains a single diffusive
time scale, has been introduced by Elder and one of us in
Ref. 11 where it was demonstrated that the PFC model has
the capability to describe various features of nonequilibrium
materials processing ranging from epitaxial growth to soft-
ening of nanocrytalline materials. Precisely the same model
has also appeared in the context of block copolymer systems
and it is known as the Landau-Brazovskii theory of weak
crystallization.33 A long-range version of the theory was pro-
posed by Kawasaki and Ohta.34,35 Another variant of the PFC
model was introduced, recently, by Stefanovic, Haataja, and
Provatas, who considered an extension of the diffusive PFC
model by introducing a second time scale, by adding a
double time derivative term into the model of Ref. 11. Vari-
ous case studies were performed in Ref. 12 where it was
shown, that due to the fast time scale, the mass transport was
more realistic on the time scales of the simulation. A very
similar model with two time scales has previously been pro-
posed also by Teramoto et al.36

To be able to derive the PFC models, we need to first
simplify our driving force ����� by replacing it with
�̄0�

2 in the momentum balance equation. The term �����
plays a dual role: It originates from the reactive Poisson
bracket and can be argued to be essential for obtaining the
reversible mode coupling due to driving force.28 On the other
hand, the same term can appear in a dissipative role, such as
in the description of the coarse-grained dynamics of colloidal
suspensions.37 The exact nature and consequences of the ap-
proximation, �����	 �̄0�

2, can be revealed through nu-
merical simulations not pursued in the present work. We will
also set the coupling term �2=0 for simplicity. Equations
�47� and �48� now reduce to the form

�tg = Lg + Ku − ��; �69�

g = �̄0�tu − �̄0AKu = gL + gN. �70�

Taking divergence on both sides of Eq. �69� and using the
mass conservation equation �46�, we obtain

�t
2� − 
�2�t� − �a�̄0�−1 � · gN = ��� �� 	 �̄0�

2 ,

�71�

where, for simplicity, we have assumed that Aij
−1= �1/a��ij.

In order to obtain the MPFC model of Ref. 12, one consid-
eres the regime ���a�k2� where the dissipative flux domi-
nates,

� · gN � � · gL ⇒ � · gN 	 � · g . �72�

In more rigorous terms, the wave vector window �60� is now
necessary for the existence of diffusive pole, unlike for the
full model of Sec. V. With the approximation �72�, it is pos-
sible to use again the mass balance equation to express � ·g
in terms of �t�. Equation �71� becomes

�t
2� + �1/�a�̄0� − 
�2��t� = �̄0�

2 , �73�

where for large enough length scales, we can drop 
�2 in
comparison with the constant 1 / �a�̄0�. The “wave
equation”12 follows:

�t
2� + �a�̄0�−1�t� = �̄0�

2 . �74�

The parameters of this model are now known in terms of the
more microscopic expressions, as will be detailed below.

Finally, as pointed out in Sec. V, since the first term on the
LHS of Eq. �74� is negligible to the second one at late times
��1/ �a�̄0�, the original diffusive PFC equation11 emerges
in this limit:

�t� = a�̄0
2�2 . �75�

Thus, we have been able to express the unknown time res-
caling � of Ref. 11 in terms of a�̄0

2, with a given by the
microscopic expression in Eq. �30�. We point out that it is
possible to obtain the same diffusive pole—both from the
linearized hydrodynamics of the full model �57� and from
Eq. �75� directly without first reducing the full model to the
MPFC form.38 It is also important to note that if the diffuse
mass current dominated limit as given in the approximation
�72� is a clean one, then our diffusion coefficient �45� should
reduce to D��

PFC of the original PFC model in the dimension-
less units where a�̄0

2 can be set to 1 �absorbed into dimen-
sionless time� and �2=0.11

D��
PFC = ����1 + r + 3�̄0

2 +
9

8
Ã2� � ���d2, �76�

where r�b�T /�Aq0
4 is the parameter that determines the de-

viation from criticality. In the dimensionful numbers D��
PFC

=a�̄0d2��� is, indeed, obtained from the result of Eq. �42� by
setting an extra constraint

�− �/�̄0� � �d2� . �77�

Despite the fact that the static elastic properties contained in
the free energy in both cases are the same, the elastic con-
stants appear explicitly only in Eq. �45�. In both cases, the
phonons affect the diffusion constant implicitly through the
prefactor a.

In Refs. 11 and 12 the phenomenological Swift-
Hohenberg free energy was utilized. Its parameters can be
matched with the more fundamental DFT free energy, for
example, by considering the elastic constants or the diffusion
constant. The parameters of the phenomenological Swift-
Hohenberg FSH free energy,11

FSH��� � � dr�1

2
��r�w��2���r� +

�B

4
�4�r�� , �78�

w��2� � b�T + �A�q0
2 + �2�2, �79�

can now be mapped onto the DFT results using our results
for the elastic constants derived in Sec. II. In particular, we
obtain the following result:

Kij = Ã2

Q

�Q�−QQiQjC̃�q,Q� , �80�

where we have defined similarily to Eq. �5� the kernel C̃
function
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C̃�q,Q� = �A��− 2q0
2 + 2QiQj�q2 + 4QiQjqiqj� . �81�

The results in 2D hexagonal were obtained by direct evalu-
ation of the free energy under compressive, shear, and devia-
toric deformations considered in Ref. 11. Elder and Grant
found that the Swift-Hohenberg free energy sustains only
isotropic stresses with fixed Poisson ratio 
P=1/3. More-
over,

K11/3 = K12 = K14 =
1

3
�Aq0

4Ã2. �82�

When the DFT form �5� for determination of the elastic co-
efficients is used, it is possible to obtain an arbitrary Poisson
ratio unlike with Swift-Hohenberg free energy. It is also im-
portant to notice that the simple gradient expansion of the
nonlocal DFT free energy �3� will not produce the gradient
terms of the Swift-Hohenberg free energy �78� because the
lowest order Laplacian ��2� has a different sign. Therefore,
the lowest order gradient expansion will not directly yield
the phenomenological PFC parameters in terms of the DFT
parameters. Alternatively, one can utilize the phase-
amplitude representation39 of the density field on large
scales, as will be discussed in Sec. VIII A.

We conclude that the MPFC model of Ref. 12 is derivable
from our model by replacing the dissipative momentum cur-
rent gN with the total momentum. Consequently, as stated by
Stefanovic et al., the waves described by Eq. �73� are not real
acoustic-phonon excitations but quasiphonons, whose pur-
pose is to move �probability� mass from one place to another
at a faster rate than pure diffusion would be able to. Contrary
to the real acoustic-phonon excitations, which live on large
spatial scales, the quasiphonons manifest themselves only for
small times and distances.12 We also point out that the dis-
persion relation characteristic of the quasiphonon equation is
similar to the dispersion relations derived from the two-fluid
equations of Enz6 of optical phonons in the second sound
domain on a rigid lattice u=0.

VIII. CONNECTIONS WITH OTHER PHASE FIELD
MODELS

A. Amplitude expansion

We have discussed the hydrodynamics of solids using
four fields: mass, momentum, and energy represent the con-
served slow variables and the displacement field u describes
the long-wavelength excitations of the crystal. It is funda-
mentally different from the first three for several reasons: it
is not conserved, it is constrained to the solid phase only, and
it does not have a unique microscopic expression in terms of
particle positions and momenta. The last point is usually
overlooked and the displacement vector of the �th particle is
presented as a vector that points from the closest equilibrium
lattice position R� of the perfect equilibrium crystal lattice to
the actual �displaced� position of the atom. However, at any
finite temperature, the crystal is necessarily defected and,
therefore, there is no unique origin for the displacement
vector.4 For the purposes of the Poisson bracket formalism,
approximative microscopic definitions, such as17

��r,t�ui�r,t� � m

�=1

N

ui
��t���r − r��t�� , �83�

where r��t��R�+u��t�, can be used to fix the brackets of u
with the other fields.

Also, u cannot be seen simply as the order parameter of
the solid. It certainly fulfills the requirement of the order
parameter in the sense that it is nonzero in the ordered �solid�
phase and zero, or vanishing, in the disordered �liquid�
phase. However, we cannot present u as an expectation value
of a symmetry breaking operator, which would single out an
�unambigious� reference state. Usually, the real order param-
eters of the crystalline solid are defined as the various Fou-
rier amplitudes �G��V dr ��r�exp�ıG ·r�.15,18 This definition
clearly makes sense and is microscopically well defined. Yet,
what makes the derivation of hydrodynamical description of
the solid slightly discomforting, using this definition, is not
only the fact that there are infinitely many order parameters,
but also the entanglement of the order parameters with the
conserved density field. The latter clearly comprises the
former, and these fields cannot be separated at the micro-
scopic level at least. Other definitions in the same vein in-
clude the one introduced in the context of the boson
transformation:7 �0�r�= �̄0+A�0�r�. If we use the lowest or-
der modes for the spatially periodic part of the ground state
�0�r�, the density field of the perfect crystal without defects
is expanded as

�0�r� = �̄0 + A

Q

�Qe−ıQ·r, �84�

and the amplitude of the periodic part is taken to be the order
parameter. Obivously, A=0 in the liquid. It should also be
noted that in the case of liquid-gas coexistence, which was
not considered in Ref. 7, A should be considered to be a
function of r, not merely a constant. Thus, A is very much
analogous to the amplitude used in the amplitude-phase ex-
pansion of nonlinear dynamical systems,40 which can serve
as the basis fields of a systematic renormalization-group
�RG� theory:39

��r,t� = �̄0 + 

i

Ai�r,t�eıQi·r, �85�

where Ai are the complex amplitudes in the directions of the
basis vectors �3 for the 2D hexatic crystal39�. These complex
amplitudes can be considered as the order parameters of the
solid. In fact, they are more than that, because knowing them
allows one to exactly reconstruct39 the �microscopic� density
field and its excitations above the ground state through Eq.
�85�.

In order to provide some insight into how to derive the
phenomenological order-parameter models of solidification
and domain coarsening,41,42 as well as more recent ones,
which describe strain relief mechanisms in thin solid films
coexisting with liquid or gas,43,44 we try to extract the order-
parameter dynamics from the known dynamics of the density
field. At first sight, this attempt seems to suffer from the
same problem as the attempt to try to obtain the dynamics of
the displacement field from Eq. �57�: After all, not all fea-
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tures of the vector field �u� can be inferred from the equation
of motion of the scalar field �, which can only contain cer-
tain contractions of the components of u. While this is cor-
rect, it is also true that making an extra assumption about the
form the vector variable u is encoded in the nonlinear self-
interactions of the � field, recovering an approximate equa-
tion of motion for u is possible.45 Of course, we do not need
to back engineer the phonon equations of motion from Eq.
�57� since we have an independent means of deriving it, as
shown in Eq. �28�. This line of reasoning suggests—that it
might be possible to obtain the dynamics of the amplitude
fields Ai in Eq. �85� by substituting the density expansion
��Ai� into the free energy �3�. Then, treating Ai as variation-
ally independent variables in the Poisson bracket formalism,
in the same manner, as we proceeded with the displacement
field when substituting the expansion �	�0−��0 ·u into F.
In general, if a dynamics of a system is potential, i.e., it
obeys gradient flow, there is no guarantee that it stays
potential40 upon a change of collective variables. However,
by explicit computation it can be shown, in the present case,
that a potential condition to lowest order is obeyed.

There is a more rigorous way, however, of obtaining the
amplitude equations.39 In this approach, one starts directly
from the equations of motion of the density field and substi-
tutes the expansion �85�. To get an exact presentation, the
complex nature of all Ai’s has to be taken into account. Be-
low, we make the following simplification: It is assumed,
that on large enough scales, all amplitudes are the same.
Also, we only retain the norm of the amplitudes. Since the
conservation of mass is violated by leaving out the phases,
the traditional phase field models, with a single amplitude
order parameter, will not give a precise description of dy-
namics on smaller scales, or close to phase boundaries where
the solid must orient itself. However, some of these features
can be taken into account phenomenologically, e.g., by intro-
ducing an orientation dependent surface tension.46 The ap-
proximation, which only includes amplitude�s�, is generally
expected to work only close to the bifurcation threshold,
where nonlinearities are weak.40 As most of the traditional
order-parameter models of solid-liquid systems do not in-
clude phase degree of freedom of the amplitude, we expect
that there are regimes where the amplitude dynamics is suf-
ficiently well given by A��Ai�. Indeed, Shih et al. have
shown that, by making all the amplitudes the same, one is
still able to obtain a very good quantitatively correct result
for the isotropic part of the surface tension47 �see also Ref.
48�. To account for the �small� anisotropy, one needs to take
into account the differences in the amplitudes as demon-
strated in Ref. 49. The validity and implications of these
assumptions for sharp interface dynamics will also be stud-
ied in future work.50 Thus, we approximate

��r,t� 	 �̄0 + A�r,t�

i

eıQi·r. �86�

Substitution into Eq. �75� leads to lowest order in derivatives
to

�tA = b0�
2A + b1A + b2A2 + b3A3, �87�

which can be written in the form of nonconserved dynamics,

�tA = − M
�FSH

�A
�88�

with constant mobility M. Direct substitution of expansion
�86� into the local Swift-Hohenberg free energy and rescal-
ing of variables does, indeed, follow an equation of the form
�78�, which suggests that we can try a similar substitution in
more general cases, as well.

B. Models with and without line defects

A more complicated model can be obtained by taking into
account the smooth elastic degrees of freedom. Substitution

of expansion �86� into F̃�� ,u� in Eq. �10� leads to the free-
energy density

f�A,u� =
b0

2
��A�2 +

b1

2
A2 +

b2

3
A3 +

b3

4
A4 + �2Auii +

1

2
uiKijuj ,

�89�

which can be seen to contain the same physics as the phe-
nomenological model presented in Ref. 43 �cf. Ref. 51� with
free-energy density

f��,u� =
l

2
����2 +

1

a
�2��2 − 1�2 +

�2
2

2�
g2��� + �2g���uii

+ fel��,u� , �90�

where � is the liquid-solid order parameter, �2 is related to
external stress, and � is the compressibility. The elastic free-
energy density is given by

fel��,u� �
�

2
uii

2 + g���2

ij

�uij − �1/d��ij �· u�2. �91�

The similarities and differencies between the free energy of
Eqs. �89� and �90� are as follows: Interpreting A as the
liquid-solid order parameter �, the first two terms on the
RHS of Eq. �90� are seen to correspond to the first four in
Eq. �89�. In the latter, the first-order transition is enforced
using a sixth-order potential with three wells, whereas in the
former two wells, with an asymmetric �3 term, ensure the
first-order nature of liquid-solid transition. The third term on
the RHS of Eq. �90� balances the wells, such that, the cou-
pling with elastic degrees of freedom given by �2g���uii does
not change the bulk free energy of the pure phases. In Eq.
�89� there is no apparent Kobayashi contribution. However,
we should also keep in mind that the coupling term �2Auii is
the lowest-order approximation to the coupling �0,��uii in-
troduced in the end of Sec. IX D. Also, the quartic polyno-
mial in A only results from the fact that we have used the
Swift-Hohenberg free energy for the amplitude expansion.
Had we used a more accurate DFT result, such as Eq. �3�,
there would be higher-order nonlinearities present. It is not
certain that these nonlinear contributions sum up effectively
to a Kobyashi type of term. At liquid-gas coexistence, the
form of the coupling term plays a role since the force gen-
erated by the variation ���2�uii� /�� or �(�0,��uii) /�� of
the chemical potential is nonvanishing.
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The elastic free energy of Eq. �89� is essentially the same
as given in Eq. �91� in the solid phase. At coexistence, there
are differences in the two formulations. First, the elastic en-
ergy in Eq. �89� was derived under the assumption of infinite
solid �k→0 limit�. Obviously, this assumption breaks down
when liquid coexists with the solid. In this situation, one can
either introduce a multiplier function, such as the Kobayashi
function in Eq. �91�, or one can force the displacement field
u to be ineffective in the liquid phase. This requirement is
satisfied if one uses the density dependent �scale dependent�
elastic free energy introduced in Sec. VI. Indeed, Eq. �67�
with Eq. �68� reduces to �1/2�uiKijuj in the long-wavelength
limit because �i� coherently sum up in the solid phase. In
the liquid phase, however, when one goes towards larger
scales, the contribution from �i� is incoherent by definition
and there is no contribution from this term. On atomistic
scales, there could be a nonvanishing contribution from Eq.
�67� when the liquid is highly inhomogeneous. We also point
out, that using the density dependent elastic free energy �67�
the bulk compressibility mediated by the u field vanishes in
the liquid as it should. This is not the case in Eq. �91�. There
is no other mechanism in Ref. 43, such as the coupling with
the momentum density field in our case, to give rise to the
free-energy cost due to bulk compression.

Finally, we note that by taking into account a possible
multivaluedness of the displacement field via separation of
the total strain ut strain,

ut = us + up, �92�

into a smooth us and plastic component up, leads immedi-
ately to the free energy studied in Ref. 44. In the rest of this
work, we have used ut=us=u without any contribution from
topological defects. The decomposition �92� can be naturally
motivated—either by using the defect gauge argument by
Kleinert4 or by using the boson transformation method,9

where the plastic fields are seen as the multivalued special
solution of the u evolution equation. Both interpretations
lead to the same result. As compared to Ref. 44, the most
notable difference is the fact that Haataja et al. have left out
the momentum density field of the solid, the fluid and re-
placed its evolution equation with the condition of mechani-
cal equilibrium. While it is true, that as a conserved field, it
is relevant for hydrodynamic description, some conserved
fields relax still more rapidly to a steady state than some
others, and in this case, the diffusive modes related to mass
conservation �giving rise to the nonconserved order-
parameter relaxation� and the defect diffusion are still much
slower processes. Yet, giving up g means that, at coexistence,
the compressibility has not been taken into account via the
pressure term present in the momentum equation.

As for other differences, in Ref. 44 the authors had to
introduce a term which made the dislocation fields massive
in the fluid phase, and thus effective only in the solid. Using
the dependence of the elastic constants on the density field �
�67�, the same effect is incorporated in our theory without an
extra coupling term. Moreover, any effective boundary con-
dition for the Airy stress function, which in Ref. 44 is medi-
ated by the massive coupling �2, should in the present treat-
ment arise automatically from the interaction of the bulk

fields u and � �A�, if the free energy is correctly derived from
microscopics. As we have pointed out in Sec. VIII A, espe-
cially the shorter scale dynamics and local orienting features
of the phase boundary are expected to depend on the inter-
action of all the amplitude fields Ai and the phases of these
complex fields. Higher-order strain fields in the free energy,
which have also been left out of the present level of sophis-
tication, can also play a role in the formation of the effective
boundary conditions, especially as what comes to the bound-
ary phenomena at grain boundaries in solid-solid transforma-
tions.

From the multiple time scales, only the slowest diffusive
ones have been retained in Ref. 44: The equations of motion
result from assuming conserved relaxation for the dislocation
density and nonconserved type of relaxation for the order
parameter. The Poisson bracket formalism advocated here
does not give a fully satisfactory answer as to what comes to
the extraction of the dynamics of the dislocation density
from the density ��r , t�. Despite the fact that the Poisson
bracket formalism can reproduce the diffuse regime obtained
by more phenomenological means, it is not clear from our
derivation to which extent the topological defects can really
be treated as independent degrees of freedom. The problem
is similar to the one we faced when separating the smooth
strains and order parameter amplitude from the density field
�. This problem is not easily overcome in any continuum
theory, as there is no unique well-defined way of relating the
continuum representation of elasticity to microscopically dis-
crete structure of the lattice, where the defects really mani-
fest themselves. Given that Kleinert’s lattice gauge theory4

and the boson transformation9 both give rise to a similar time
dependence of the defect density fields in the action �free
energy�, it should be possible to apply the field-theoretic
methods to address the more fundamental formulation of dis-
location dynamics.

IX. COMPARISONS

A. Momentum balance equation

Let us now compare our theory with results from the lit-
erature. We start with the so-called two-fluid theories of
solids.6 Even though, we have not explicitly separated out
the thermal phonon fluid used in these theories, the pressure
term is consistent with the two-fluid theory of Enz6 in the
sense that, the total momentum current here plays the role of
the optical momentum in Ref. 6 responsible for the dissipa-
tive effects. On the contrary, there is no pressure term in the
“superfluid” momentum equation �for acoustic phonons� in
Enz’s theory. When only reversible Hamiltonian dynamics is
considered, the reason for the disappearance of the pressure
gradient �at low temperatures� can be understood through the
following double counting argument. At zero temperature the
free-energy density becomes the energy density. Correspond-
ingly, the reversible parts of the equations of motion gener-
ated via the Poisson bracket formalism contain only a varia-
tion with respect to the energy density and no additional
variational derivative with respect to the density �, thus lead-
ing to vanishing of −��=−�p from the momentum bal-
ance equation. However, for finite temperatures, this argu-
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ment does not justify leaving out the pressure part due to the
variations of density.

In the momentum balance equation �3.34� of Ref. 5, all
the reactive terms can be generated using only
��gi ,uj��F�/�uj, and the defect pressure term corresponding
to our ��gi ,���F�/�� does not appear. Specifically, in Ref. 5
the defect pressure only enters as a driving force in equation
of motion of dislocation density. Some reasons for leaving
out the pressure gradient have been contemplated in Ref. 21:
Diffusion of vacancies, at least in typical metals, is ex-
tremely slow with diffusion constant of about 10−10 cm2/s.
Both sound propagation and thermal diffusion take place on
a much faster time scale, consequently, the authors of Ref. 21
retain only the temperature gradient part of the pressure term,
−��p /�T��0

��T. However, if one defines a density �change�
through a relation, such as ����−�0=−�̄0uii+N, where the
defect density N in principle contains everything else but the
long-range volume changes given by −�̄0uii, then N can pos-
sibly contain through �� also faster modes of mass propaga-
tion, e.g., nonlinear u interactions. Therefore, one should ex-
pect at least ���, if not N, to appear as a driving pressure
gradient in the momentum balance equation. Indeed, to low-
est order both in the nondissipative52 and dissipative10 cases,
the −��p /���T��� compressibility term due to the pressure
field, appears in the momentum balance equation derived via
the projection operator formalism. A pressure term similar to
ours also appears in the phenomenological theory of Kim.53

Finally, we make a few remarks on the nonlinear momen-
tum dependence. Taking into account, the convective mo-
mentum flux resulting from the bracket �gi ,gj� given in Eq.
�16� would lead to conservation of momentum at order O�g2�
without dissipation and defects in contradiction with Enz’s
two-fluid theory for the acoustic momentum component,
which is only conserved at linear level O�g�. Choosing to
leave out the convective momentum contribution enables one
to obtain the well-known wave equation for the field u when
no dissipation takes place. However, there can be other types
of nonlinearities resulting from self-interactions of the u
field. Therefore, it is not a priori certain that the convective
momentum term can be dropped if, at the same time, nonlin-
earities in u are taken into account.

B. Displacement field

Similar to Eq. �28�, dissipative terms proportional to
�i� ·u and �iN were obtained from the phenomenologically
postulated displacement field evolution equation of Ref. 5
with different coefficients, however. This is due to the fact
that Zippelius et al. define the dissipative part of �tu through
a phenomenologically postulated total momentum current g
= �̄0�tu+JN, which is then solved for �tu to give the dynam-
ics of the displacement field,

�tui = �1/�̄0�gi + �JN�i �93�

with JN= �̃��F̃ /�N as the defect current. On the other hand,
our corresponding expression �28� gives a slightly different

dissipative part because we differentiate F̃ with respect to uj,
not N ���. Rewriting the displacement field evolution equa-

tion �93� of Ref. 5 in the Poisson bracket form,

�tui = �1/�̄0�gi + �uiN
�F̃

�N
, �94�

where �uiN
� �̃�i, it appears that Onsager’s reciprocity rela-

tions are violated since the coupling term �Nui
�F̃ /�ui is

missing from the defect evolution equation in Ref. 5. In gen-
eral, unless special transformation rules are attached to the
dissipative operators � in the single generator formalism

based on the free energy F̃, it is possible that Onsager’s
reciprocity appears to be violated because of a variable trans-
formation from one set of thermodynamic variables to an-
other. Variable transformations in a single generator frame-
work can be self-consistently addressed in the Fokker-Planck
representation as shown in Ref. 54. In a more refined double
generator formalism of irreversible thermodynamics, such as
GENERIC,55 all transformations, automatically, respect the
reciprocity requirement. Our �single generator� theory does
respect Onsager’s reciprocity because the diffusive coupling
in Eq. �28� is of the form �uiuj

, which is a self-coupling
mixing no variations in other variables than components of
u. Similar dissipative terms, with only self-couplings, also
appear in the free volume diffusion context of amorphous
solids.56

C. Comparison with linear diffusion equation from Mori
formalism

It is interesting to note that, even if we leave out the
explicit u dependence from the diffusion equation �100�, the
phononic scattering effects manifest themselves in the dissi-
pative coefficient Aij � �u̇i � u̇j�eq appearing in the expression
of the diffusion coefficient Dij. Consequently, even though
one can argue that there are no explicit activated jumps from
potential well to another for vacancies in our model due to its
probabilistic nature, the coefficient Aij provides a link be-
tween the diffusional motion through activation and
phonons. As shown in Eq. �42�, the diffusion coefficient is
directly proportional to a Kubo-type current correlator Aij. In
the traditional diffusion theory, one identifies various re-
gimes of tracer diffusion with different dependence of the
diffusion constant D on the viscosity, and thus current
correlations.57 Energy transfers between the bulk modes and
the diffusing atom leads to viscous dissipation. In this con-
text, viscosity �	tr� means the damping coefficient present in
the effective Langevin equation, which describes the dynam-
ics of the adatom obtained, by projecting out the bulk de-
grees of freedom via Mori formalism. More importantly, it
can be shown58 that 	tr contains the phonon correlation func-
tion �ui�t�uj�0��tr similar to our expression �30�. In the
quantum-mechanical case of Ref. 58 the definition of the
phonons �and projectors� is, of course, different from the
classical continuum version of Ref. 10 that we are using. For
single-particle diffusion, one can furthermore show58 that in
the high viscosity regime D�1/	tr, and in the low viscosity
regime D�	tr in the nomenclature of Combs and Kuntz. In
other words, if we were to take Aij analogous to 	tr, our
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collective diffusion coefficient would be indicative of the
low viscosity regime. However, this comparison is not really
appropriate because, for collective phenomena, the same de-
pendency of the diffusion constant on the friction coefficient
does not have to hold. Gortel and Turski59 have extracted the
diffusion constant Dgt of the collective density fluctuations
and shown that for a dense adsorbate

Dgt = lim
�k�→0

R�k�
	gt��k�,0�

, �95�

where R plays the role of the interparticle potential and 	gt is
proportional to the current correlator of the normal coordi-
nates Qj of phonons. Thus Dgt� ��Qj�t�Q−j�0��eq�−1. In con-
trast, our diffusion coefficient D�� is directly proportional to
the current correlation function. Finally, in the case of
boundary lubrication theory, the collective diffusion coef-
fcient Dc is related, as in the theory of Gortel and Turski, to
the macroscpic density fluctuations. In this case, the diffu-
sion constant turns out to be inversely proportional to the
sliding friction 	s, Dc�1/	s in the linear-response regime.60

However, since in this case the friction coefficient is in-
versely proportional to the current �J� correlator, we obtain
the familiar Green-Kubo relation D��0

��J�t�J�0��eq, which
would indicate the analogy J= P�u̇ motivated by Eq. �30�.

D. Diffusion of vacancies in elastic network: Larche and Cahn
theory

We will now show that with a nonzero coupling �2 be-
tween the �defect� density and longitudinal component of the
displacement field, our linearized model of Sec. IV reduces
to a model introduced by Larche and Cahn23 for self-stress
effects on diffusion in solids. They considered diffusion of
composition changes that were representative of vacancies in
a background matrix, the network of occupied lattice sites.
To enable the comparison with the Larche and Cahn theory,
we reproduce the diffusion equation of Ref. 23:

�tc = �iBij� jM��,c�; �96�

M��,c� = M�0,c� −
1

�̄0
�duij

c

dc
�ij +

dsijkl

dc
�ij�kl� , �97�

where uij ��1/2���iuj +� jui�. Here, �̄0 is the density of lattice
sites in the reference state. The stress free strain uij

c

=	�c�ij is for simplicity taken to be diagonal tensor linearly
dependent on the thermal-expansion coefficient 	 and on the
composition difference �c�c−c0 from the reference com-
position c0. Finally, sijkl is the compliance tensor. Leaving
out the nonlinear stress contribution for the moment, Eq. �96�
becomes

�tc = �iBij� j�M�0,c� − �	/�̄0��kk� , �98�

where the stress is given in terms of the tensor of elastic
coefficients:

�ij = �ijkl�ukl − ukl
c � = Ku −

Y

1 − 2
P
	�c�ij , �99�

where Y is Young’s modulus and 
P is the Poisson ratio.

We can now identify the variables in the two theories.
Substituting Eq. �37� into Eq. �34� we get

�tÑ = �̄0�iAij�K2u + �2 �Ñ� j . �100�

Taking Ñ to be c ��c�, Eq. �100� can be seen to be of the
same form as the diffusion equation of Larche and Cahn �Eq.

�98�� �Ñ can be trivially replaced by N because �0�r� part
vanishes in the long-wavelength limit from �100��. The phe-
nomenological mobility matrix Bij is associated with the
phonon current correlator Aij � �u̇iu̇j�eq. The remaining term

�2� Ñ can be associated with the self-stress term of Eq. �99�
provided that we set

�2 � −
Y	

1 − 2
P
. �101�

The only difference is that, in the diffusion equation �100�,
the elastic operator K2 appears in the current gN, whereas in
Eq. �99� there is K. In other words, we have an extra contri-
bution to the diagonal part of the elastic tensor proportional
to the coefficient of thermal expansion. However, this can be
absorbed into the redefinition of elastic coefficients.

Finally, we point out that the nonlinear density �concen-
tration c� contributions entering via the chemical potential
M�0,c� of the interstitial species—in Larche’s and Cahn’s
theory23—can be generated by keeping higher-order cou-
pling terms in the expansion of the free energy �10�. In other

words, when deriving F̃ from F in Eq. �3� through expansion
�=�0+��, we obtain

F��� = F��0� +� dr
�F

���r�
���r�

+
1

2
� dr� dr����r�E�r,r�����r�� + ¯ ,

�102�

where the variations are to be evaluated at �=�0. Thus, the
last term, E= ���2F /�������=�0

, gives rise to the term
�1/2�uiKijuj in Eq. �10�. Proceeding as in Sec. II, and making
the replacement �0�r�→��r�, whose relevance and motiva-
tion based scale dependent elastic energy will be further dis-
cussed in Sec. VI, we get

��F

��
�

�=�0

� 1��0�r�� → 1���r�� . �103�

In order to cast the coupling term in the form that is needed
to reproduce the nonlinear defect density dependent part of
the diffusion potential of Ref. 23, we evaluate 1 at �=0
�corresponding to ��=0, or, equivalently, �=�0 in Eq.
�102��. This yields

� dr1����r����=0���r� =� dr 1�Ñ�r����r� , �104�

because �= Ñ−�. Rewriting 1�Ñ��M�0, Ñ�, leads to the
diffusion potential of Larche and Cahn. It should be noted

that since F̃�� ,u�=F���+1���uii+ �1/2�uiKijuj, for nonzero
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u it follows that �F̃ /����F /��. Only �F /�� can be related
to the chemical potential used in Ref. 23. Also, one should be
careful in the construction of the diffusion potential when
using the thermodynamic identities together with the variable

transformation �= Ñ−�: �ij = ��F̃ /�uij�� will give a different

result from �ij = ��F̃ /�uij�Ñ. These different definitions of the
stress tensor are obsolete in our case, since the Poisson
bracket formalism we utilize assumes that � is the fundamen-

tal variable. We chose not to use Ñ due to the lack of unam-
bious microscopic representation for it. Finally, to account
for nonlinear strain fields in the diffusion potential �97� re-
quires the introduction of composition dependent strain
fields.

X. DISCUSSION AND CONCLUSIONS

Let us make a few additional comments on how to extend
the model presented in the previous sections. At the present
stage of the model, we have only considered nonlinearities
that are present in the self-couplings of the density field in
the chemical potential ��� and in the bilinear coupling term
�2� ��� / �̄0����=�2� ���uii� of Eq. �55�. If one wants to
include nonlinear elastic interaction in the model, one should
also start considering the inclusion of plastic strain effects.
Therefore, the theory should also include the dynamics of
various types of line defect densities, such as dislocations
and disclinations. The mechanisims via which they can be
incorporated into the model, already at the level of linearized
elasticity, are briefly discussed in Sec. VIII B. For solid-fluid
coexistence, the main elastic features are included at the qua-
dratic level in strains. Higher-order �smooth� strains are
needed, for example, when describing various solid-solid
transformations.61

The current model does not properly describe the coexist-
ence of solid and liquid, despite the fact that the direct cor-
relation function C2 appearing in the free energy is deter-
mined at coexistence �see Sec. II�. Thus, the solid correlation
function is approximated to a sufficient degree of accuracy
by the correlations of an inhomogenous liquid. In a more
quantitative model, we would have to make the two-point
correlation functions dynamical variables along with the con-
served one-point functions �mass, momentum, and energy�
and the order parameters of the model. This would facilitate
not only the more accurate description of spatially inhomo-

geneous coexistence region, but also the possiblity of seeing
how the constants �such as transport coefficients or param-
eters related to gradient expansion C2� change when the
phase-transition region is crossed. In the phenomenological
approaches different means have been employed to kill the
solidlike features of the fields in the liquid domain. In other
words, the problem reduces to making the field u ineffective
in the liquid, which is then described by only the mass, mo-
mentum, and energy. Rigorously speaking, u should not exist
in the liquid, but in the current formulation presented in this
work, it is simply decoupled from the other fields in the
liquid domain, such that it can still evolve in time, and take
a nonzero value in the liquid. Nevertheless, the remaining
conserved fields do not interact with it in the liquid phase
when Ku vanishes in Eq. �47� and −���� ,u�→−�����.
The actual vanishing of the displacement field can be
achieved if we introduce it only as collective parameter char-
acterizing the excitations of the real order-parameter field �
by using a more fundamental field-theoretic description.62

Finally, we summarize our main results. We have derived
the hydrodynamical evolution equations for isothermal sol-
ids. The generalization to include temperature effects can be
done along the lines given in Ref. 55 consistent with the
Poisson bracket formulation presented here. We have gener-
alized the diffusion equation for point defects given by Mori
formalism in Ref. 10. Furthermore, we have given an alter-
native derivation of Larche’s and Cahn’s diffusion theory in
self-stressed solids, with an interpretation of the phenomeno-
logical constants. It was also shown how two important vari-
ants of the phase field crystal model11,12 can be obtained
from our theory under particular conditions. It was also dem-
onstrated how a variety of elastic continuum models43,44 can
be obtained using the amplitude-phase expansion and a more
microscopic free energy. Finally, an expression for scale de-
pendent elastic free energy was presented, which can be uti-
lized in multiscale modeling of polycrystalline materials.
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