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The glass transition in dipolar glass formers with long-range indirect dipole-dipole interactions has been
studied by Monte Carlo simulation. Our simulation shows that the non-Arrhenien behavior of the relaxation
time with temperature is induced by a progressive crossover from a regime of fast dynamics at high tempera-
ture in the polar liquid to one of slow dynamics controlled by the presence of polar clusters. The interaction
between the clusters results in a spectrum of relaxation time and transition to the glass state. The glass
transition starts at a temperature T0�Tc, below which spatial heterogeneities appear. These spatial heteroge-
neities start to influence the dynamical behavior and the spectrum of relaxation time becomes asymmetric.
Below Tc, when the polar clusters reach a nanometric size ergodicity breaking occurs.
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I. INTRODUCTION

The glass transition phenomenon is one of the most excit-
ing unsolved problems in the physics of condensed matter. It
takes place when the viscosity upon cooling becomes so
great that the molecular motion is arrested on the time scale
of the experiment. This transition is often characterized by a
temperature called Tg. For temperatures below Tg, the struc-
ture is like a disordered solid or a frozen liquid, the average
relaxation time is very high and increases to reach a value of
102 s at Tg.

Many recent experimental and computational studies of
glass transition indicate the existence of “dynamic heteroge-
neity” and its major role in the glass transition of polymeric
and other glass-forming liquids.1–5 These deviations from
“homogeneity” in the liquid dynamics are often accompanied
by spatial dynamic heterogeneity induced by spatial correla-
tion of particles in a state of enhanced or diminished
mobility.6,7 The structure of glasses has been studied exten-
sively using spin-glass models.8–11 These simulations predict
a dynamic transition at a temperature Tc below which ergod-
icity breaking occurs. The dynamic equations of these spin-
glass models are similar to those of the mode-coupling
theory �MCT� of liquids.12 In the framework of MCT theory,
nanometric heterogeneities appear at Tc when the dynamics
becomes cooperative.13 The cooperative rearranging domains
or regions are called CRR by Adam and Gibbs.14 The coop-
erativity of the movements engaged in the vicinity of the
glass transition is the most important characteristic of the
associated relaxation process. At T lower than Tc the dynam-
ics is dominated by activated processes. In the landscape
scenario,15,16 there exists a temperature T0�Tc below which
the energy landscape starts to influence the dynamical
behavior.17

Another characteristic of the majority of glass formers
during glass transition is a Vogel-Tammann-Fulcher
�VTF�-type18–20 temperature dependence for the relaxation
time. This distinction is valid irrespective of the chemical
structure of the liquid.

All these characteristics of glass transition are similar to
the dielectric phase transition in relaxor ferroelectrics. The
phase transition in relaxor ferroelectrics is a diffuse phase
transition which can be attributed to the reorientation of
some randomly oriented polar microregions originating from
compositional fluctuations on the nanometer length scale.
These chemical fluctuations result in the statistical distribu-
tion of the transition temperature and consequently the broad
temperature dependence of dielectric properties. The relaxor
behavior of these materials is attributed to these nanometer-
size regions and to a thermally activated ensemble of super-
paraelectric clusters. The broad distribution of relaxation
times for cluster orientations originates from the distribution
of the potential barriers separating the different orientational
states. A short-range cooperative interaction between these
superparaelectric clusters was considered by Viehland et al.21

to explain the freezing of the superparaelectric moments into
a dipolar glass with a ferroelectric order at lower tempera-
tures. The freezing of dielectric relaxation in relaxor ferro-
electrics was directly evidenced by Gazounov and
Tagantsev22 following the VTF law.

Recently the aspect of dipole relaxation in ferroelectric
materials has been investigated by Su et al.23,24 They have
proposed a Ginzburg-Landau coarse-grain-type theory em-
ployed for Monte Carlo simulation of the dielectric proper-
ties of relaxor ferroelectric materials. Using the resemblance
between the dielectric phase transition in the relaxor ferro-
electrics and the glass transition in glass formers, in this
paper we apply the model first proposed by Vugmeister25

with recent developments by Su et al.23 This model success-
fully reproduces the dielectric properties of relaxors and is
used to describe the dynamics in a polar glass former whose
molecular group has a dipole flip moment. This polar system
is regarded as an ensemble of randomly distributed rotating
local dipoles coupled by strong long-range indirect dipole-
dipole interaction. The dielectric response of the system to
the applied electric field thus consists of two effects, the
polarization of the molecules of the glass, which does not
include the effect caused by the dipole rotation, and the po-
larization caused by a rotation of local dipole moments par-

PHYSICAL REVIEW B 75, 054102 �2007�

1098-0121/2007/75�5�/054102�8� ©2007 The American Physical Society054102-1

http://dx.doi.org/10.1103/PhysRevB.75.054102


tially hindered by the long-range indirect dipole-dipole inter-
action. In this study we will focus on the latter effect. It will
be shown that the long-range interaction of randomly distrib-
uted rotating electric dipoles significantly modifies the di-
electric response and the VTF law of the relaxation time,
resulting in the collective freezing of the dipole rotation and
the appearance of polar clusters.

This paper is organized as follows: in Sec. II, we review
the equations governing our model; in Sec. III, we present
the numerical scheme; in Sec. IV, we discuss our numerical
results in comparison with previous models; and in Sec. V,
we give conclusions and describe work in progress.

II. MODEL

We consider three-dimensional highly polarizable systems
with cubic symmetry where a number of dipoles are distrib-
uted randomly. The interaction between dipoles arises from
the fact that each dipole polarizes the lattice, and this dipole-
induced polarization acts on the adjacent dipole. As a result,
the “indirect” dipole-dipole Hamiltonian interaction is

H = −
�2

2 �
s,s�

s�s�

di�rs�Jij�rs − rs��d j�rs�� , �1�

where � is the coupling constant between a local dipole and
the host lattice polarization �its magnitude is of the order of
the Lorentz constant 4� /3�, d�rs� is the effective dipole mo-
ment of the sth local dipole, the index s numbers all local
dipoles �s=1,2 , . . . ,Nd�, Jij�rs−rs�� is the interaction energy
between two dipoles situated at sites rs and rs�. In our model,
the interaction energy is associated with the electrostatic in-
teraction of the polar clusters in the host lattice can be writ-
ten in the following form:23

J�r�ij =
1

4��−1rcorr
3 � exp�− ��

�
�ij + ��ij − 3

�i� j

�2 �
��−

1

�3 +
exp�− ��

�3 +
exp�− ��

�2 � −
�i� j

�3 exp�− ��� ,

�2�

where �=r /rcorr is the norm of the vector �, � is the suscep-
tibility of the media, rcorr is the correlation length �rcorr

=�	� where 	 is a material constant�. The correlation length
is a material constant at a given temperature that character-
izes the typical size of the polar cluster generated by a local
dipole. It is interesting to note that if �→
, the asymptotic
behavior of the function Jij�r� is proportional to 1/r. This
attractive interaction is thus much stronger and more long-
ranging than the direct dipole-dipole interaction which de-
cays as 1/r3. This indicates that indirect dipole-dipole inter-
action increases the cooperative effect and can cause the
freezing of the dipole clusters into a dipolar glassy state. The
strength of this interaction is governed by the value rcorr and
can be related to the fragility of glass forming liquids. It is a
well-recognized fact that network-forming covalent liquids,
with very strong interaction between the molecules, are also
strong glass formers. Thus choosing the rcorr value we can

reproduce different classes of glass forming liquids.
For the convenience of numerical calculation, Eq. �1� is

transformed into a dimensionless form through the introduc-
tion of a reduced energy defined as

H* = H	� �2d0
2

4��−1rcorr
3 � , �3�

where d0 is the norm of the dipole moment at 0 K. Let us
introduce the following reduced variables: ���s�=d��s� /d0

is the reduced dipole moment of the dipole at site s, �s
=rs /rcorr is position, and ���s−�s�� is the dimensionless
form of Jij�rs−rs��. The dimensionless form of interaction
Hamiltonian is

H* = −
1

2 �
s,s�

s�s�

���s�i���s − �s�����s�� j . �4�

As was discussed in Ref. 23, it is convenient to use the
parameter nd to characterize the dependence of the thermo-
dynamics and kinetics of the system on a given interaction
Hamiltonian. The reduced parameter nd is defined as

nd =
4�

3
rcorr

3 c , �5�

where c is the concentration of dipoles. The parameter nd is
the average number of local dipoles interacting with the se-
lected dipole �or the average number of dipoles located
within a sphere of the correlation radius rcorr around the se-
lected dipole�. Consequently, different correlation lengths
rcorr and concentrations c should give the same results, as
long as they provide the same value of nd.

With these definitions of variables, the partition sum of
the system is

Z = � e�− Hconf
* /T*�, �6�

where the summation is taken over all possible configura-
tions and corresponds to all possible directions of local di-
poles, and

T* = kBT	� �2d0
2

4��−1rcorr
3 � �7�

is the reduced temperature, kB being the Boltzmann constant.
Therefore the total reduced energy of the system is a function
of the two dimensionless parameters T* and nd.

III. MONTE CARLO SIMULATION

Monte Carlo simulation is performed on a three-
dimensional �3D� L=128 lattice with periodic boundary con-
ditions. 21 000 dipoles are distributed over 1283 sites of the
system �the concentration of dipoles is c=1%�. The correla-
tion length is taken equal to 4a. This corresponds to nd
=2.68, meaning that if we select any dipole, an average of
2.68 dipoles interact with it. It is assumed that each dipole is
allowed to take only six different orientations: 
±1,0 ,0�,

0, ±1,0�, and 
0,0 , ±1�. The change of the configuration
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corresponds to a dipole flip from one state to another at site
i. Assuming that the thermally activated dipole flip is the
unique mechanism involved in changing the configuration,
we perform the simulation via the Metropolis algorithm. The
flip is accepted with the probability W:

W = �1 if 
H* � 0

exp�−

H*

T* � if 
H* � 0, 
 �8�

where 
H* is the change on the Hamiltonian 
Eq. �3�� caused
by a tested flip. Since all dipoles are randomly distributed
and are in different orientation states, each dipole has a dif-
ferent environment. This results in a situation where each
dipole, in general, has a different potential because this po-
tential is generated by differently located neighboring di-
poles in different configurations.

The screened indirect dipole-dipole interaction potential,
Eq. �2�, was cut off at 10a, where a is the cubic lattice
parameter. We compared our calculations, which were per-
formed in real space with rcutoff, with the previous calcula-
tions for a similar system using the Debye approximation,23

and both models gave the same results. Recently, it has been
demonstrated26,27 that in the case of dipole-dipole interac-
tion, 
H* becomes almost independent of rcutoff if rcutoff
�6a. We also tested the influence of the size effect of the
simulation box on the final state of the system. We will dis-
cuss this point below.

Similarly to the thermally stimulated current experiments,
the initial configuration for each Monte Carlo �MC� simula-
tion is assumed to be fully ordered, i.e., all the dipoles have
the same orientation �one of the six possible orientations�.
Thus the macroscopic polarization in this state assumes the
maximum value. This nonequilibrium state is placed at the
reduced temperature T* and relaxes by MC simulation. To
investigate the changes of the value of the macroscopic po-
larization with temperature, the macroscopic polarization at
temperature T* is measured by spatial averaging over all di-
poles and temporal averaging over a large number of Monte
Carlo steps:

�̄ =

�
s

����s��

Nd
, �9�

where ����s�� is the average value of polarization of the sth
dipole over the observation “time.” The averaging is done
after MC equilibration has been reached. The value of mac-
roscopic polarization at a given temperature has been aver-
aged over 16 different simulations.

To test the ergodicity of simulated system, we also started
our calculations from a completely disordered state. As we
will show below, MC simulations show that under some tem-
peratures the final state becomes history dependent and thus
the system ceases to be ergodic.

One of the most important characteristics of glass transi-
tion is the relaxation time. It is determined as follows: for the
sth dipole, the relaxation time �s corresponds to the time it
needs to overcome the energy barrier E�s� in order to flip.
The interaction of the dipole with its neighbors changes E�s�.

Making the usual assumption that this change is equal to half
of the change of the interaction energy 
H�s� produced by
the tested flip,

E�s� = E0 + 1
2
H�s� ,

where E0 is the energy barrier in a dilute system in the ab-
sence of any interaction with neighboring dipoles.

Under these assumptions, the relaxation time �s is

�s = �00 exp�E�s�
kBT

� = �0 exp�
H�s�
2kBT

� , �10�

where �00 is the pre-exponential factor and �0=�00 exp� E0

kBT
� is

the typical relaxation time in a dilute system.
Because the value of 
H�s� is different for each tested

flip, the relaxation times form a spectrum. The test of M0
elementary flips produces a spectrum of M0 values of �
=�s /�0=exp�
H* /2T*�. The spectrum of relaxation times is
characterized by the frequency histogram P��� that deter-
mines the relative number 
M��� /M0 of relaxation times
within the range �� ,�+
��.

The spectrum of relaxation times results from the fre-
quency dispersion of the susceptibility ����. The real and
imaginary parts of ���� are given by

����� = ��0�
1

M0
�
s=0

M0 1

1 + 
��0 exp�
Hs/2kBT��2

= ��0��
�=0


 1

1 + 
��0��2Q���d� , �11�

����� = ��0�
1

M0
�
s=0

M0 ��0 exp�
Hs/2kBT�
1 + 
��0 exp�
Hs/2kBT��2

= ��0��
�=0


 ��0�

1 + 
��0��2Q���d� , �12�

where Q��� is deduced from P��� as follows: Q���= 1

� P���,

� is the frequency of the applied field, and ��0� is the static
susceptibility of the entire system.

The output is curves of �� /��0�= f�� /�0� and �� /��0�
= f�� /�0� at reduced temperature T*. The maximum of the
loss factor �� /��0� corresponds to the value of the relaxation
time � /�0 at temperature T*.

IV. RESULTS AND DISCUSSION

Figure 1 shows the simulated dependence of the reduced
macroscopic polarization of the system vs the reduced tem-
perature T* obtained by the equilibration of the poled or of
the disordered initial state.

The MC equilibrations were carried out without an ap-
plied electric field, so the spontaneous relaxation of the fully
ordered state results in a completely disordered state at high
temperature leading to a vanishing value for the macroscopic
polarization. When the temperature decreases, the thermal
energy becomes too low to completely relax the fully or-
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dered state, thus leading to a macroscopic polarization. In the
case of thermal equilibration of the initially disordered state
a vanishing value for polarization is expected at low tem-
perature. Nevertheless, a small polarization is measured �Fig.
1�. To understand this observation we studied the value of
macroscopic polarization at low temperature for different
sizes of simulation boxes. As expected, it was observed that
the value of �̄ is very sensitive to the ratio of rcorr /L. At low
temperature, we found that for L=128, the value of �̄ tends
towards the value obtained for the initially ordered state.
There is a strong indication that the small remaining polar-
ization is an artifact caused by the size of the simulation box
�see Fig. 1 for L=200�, and by the fact that the measure-
ments are carried out for a finite time, whereas there is a
significant slowing down of the relaxation kinetics near the
Tg temperature.

It should be possible to obtain a vanishing value for the
polarization with a greater value of L and a longer simulation
time. Figure 1 shows that there is a minor influence of L
�between the values 128 and 200� on the final state after the
thermal equilibration of the fully ordered state. Our simula-
tions were thus carried out with L=128.

From Fig. 1, it follows that at temperatures below Tc
=0.6 the final state of the system gradually becomes history
dependent and thus the system becomes nonergodic. This
temperature has the same significance as the critical tempera-
ture in MCT theory.

This diffuse ferroelectric transition appears at the value of
nd�1. Therefore we have here three different ranges, nd�1,
nd�1, and nd�1:

�i� At small concentration of dipoles �nd�1�, the system
can be described as a dilute state where each dipole is inde-
pendent. In this case the rcorr is smaller than the mean dis-
tance between the dipoles.

�ii� At high concentration of dipoles �nd�1�, the system
is described by the mean-field approximation—it no longer
“feels” the individual dipoles and behaves as a homogeneous
material with a “normal” ferroelectric transition. The results
of the recent paper by Zhang and Widom28,29 are in agree-
ment with this scenario. This paper showed that the frozen
amorphous dipolar systems described by the mean-field
theory could also have a spontaneous ferroelectric order for a
density of dipoles ���c. Monte Carlo and molecular-
dynamics simulations also confirm the influence of the initial
concentration of dipoles on the nature of the transition from
the liquid phase.30,31

�iii� The most interesting case considered in this paper is
nd�1. This is the only case where a dipolar glass phase can
appear and the ferroelectric transition becomes diffuse. The
relaxor ferroelectric behavior was observed in the poly�vi-
nylidene fluoride-trifluoroethylene� copolymer system which
is a glass former system.32

Using the imaginary part of susceptibility, we calculated
the relaxation time at a given temperature �Fig. 2�. The simu-
lated dependence of the relaxation time with 1/T* is in very
good agreement with experimental curves. One of the rea-
sons for the small number of decades on simulated curves
can be related to the fact that in our simulations we do not
take into account the temperature dependence of the correla-
tion radius rcorr. Figure 2 shows that at high temperature an
Arrhenius behavior is observed up to T0

*=0.9; this marks the
beginning of a non-Arrhenien behavior, which can be fitted
to the VTF law. At very low temperatures �under T*�0.4�,
the behavior of the relaxation time with 1/T* can also be
describe by an Arrhenius law. Even though the glass transi-
tion temperature is a kinetic notion �and, in this work, the
kinetics is not simulated�, we can suppose that Tg

* lies in the
temperature range where the VTF behavior and the Arrhen-
ius behavior at low temperature are no longer observed �be-
tween T*=0.46 and T*=0.4�. If we define the temperature Tg

*

as a temperature below which relaxation time vs 1/T* ceases
to be described by a VTF law, then we can conclude that
Tg

*�0.46.

FIG. 1. �Color online� Simulated dependence of the reduced
macroscopic polarization � on the temperature T* with no electric
field. The crosses determining the curve are the simulated points
obtained by isothermal equilibration of the fully ordered state in a
simulation box of size 128. Each cross corresponds to an averaged
value over 16 different simulations. The open circle corresponds to
the measurements in the case of a simulation box of size 200. The
curve formed by the dots is obtained by isothermal equilibration of
the disordered initial state in a simulation box of size 200. Tc

* marks
the temperature where the system becomes nonergodic.

FIG. 2. Simulated dependence of the relaxation time on the
inverse of T*. The VTF behavior is clearly observed. Non-
Arrhenius behavior of relaxation time with temperature starts at T0

*.
Tc

* indicates the temperature where the system becomes nonergodic.
At Tc

*�T�Tg
* a certain number of dipoles are frozen in the initial

configuration. For temperature T*�Tg
* the dynamics is controlled

by the slow process.
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The numerous experimental data12,33,34 show that Tc
�1.2Tg. Our numerical results are in good agreement with
this observation �Tc

*�1.25Tg
*�. It can be noted that no change

in the behavior of the relaxation time with 1/T* is observed
at Tc

*.
To relate the behavior of the polarization and the relax-

ation time to the spatial heterogeneities in the system, we
studied the 3D distribution of the dipoles. The 3D images
presented in Fig. 3 show the 3D distribution of the dipoles
and their orientation in the simulated volume at temperature
T* equal to 0.8 �Tc

* , �T*�T0
*�, to Tc

*=0.6, to 0.52 �T*�Tc
*�

and to T*=0.33�T*�Tg
*�. Not all the dipoles are represented

on these images. Only areas where at least 60% of the di-
poles are in the same orientation are visualized. These im-
ages clearly show the existence of heterogeneities that form
polar clusters. The size of the domains becomes higher as the
temperature decreases. An analysis of the simulated images
at each temperature indicates that the polar domains appear
for temperatures below T0

*=0.9. Below Tc
*, the size of the

polar domain increases markedly. The more the temperature
decreases, the more the domains in the initial orientation in


001̄� are prominent �Fig. 3� and at T*�Tg
*, most of the

dipoles are frozen in the initial configuration. The phenom-
enon of heterogeneity at the nanometric scale above Tc is

observed experimentally and predicted by simulation.35,36 In
our approach this phenomenon appears naturally. These polar
clusters can be associated with regions of cooperative rear-
rangement. All the dipoles in the clusters rotate together as a
“rigid” unit. To provide this rotation, the system needs much
more time than for a rotation of one isolated dipole and thus
becomes dynamically heterogeneous. The slow and fast ro-
tation dynamics coexist at the same time, as is shown in Fig.
4 and they are linked to the existence of spatial heterogene-
ities in the system.

The appearance of heterogeneities produces a broadening
of the distribution of relaxation times as is shown by the
frequency histograms of the relaxation time �Fig. 4�. In our
model, a typical relaxation time is strongly temperature de-
pendent and is determined by Eq. �10�. The activation barri-
ers for dipole flip depend on interaction of a local dipole with
other dipoles. This interaction occurs through polarization of
the host lattice. In the general case, if this interaction is ab-
sent �a dilute system, nd�1�, the typical relaxation process
for each local dipole and its clusters is determined by a
single relaxation time �0. In our case �nd=2.38� where the
correlation radius rcorr is commensurate with the average dis-
tance between local dipoles rd, the interaction between local
dipoles becomes large enough to split the single relaxation
time �0 into a spectrum of relaxation times �.

FIG. 3. �Color online� 3D images of the distribution of the dipoles within polar domains defined as clusters of dipoles in the six possible
orientations. Only areas where at least 60% of the dipoles are in the same orientation are visualized. Thus all the dipoles are not represented.
The initial orientation of the dipoles was �00−1�. �a� T*=0.8; �b� T*=0.6; �c� T*=0.52; �d� T*=0.33.
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The vertical line �see Fig. 4� corresponds to the value of

H*=T*. At high temperature, the greater part of the relax-
ation time distribution is on the left of the vertical line. The
great majority of the flips are nonthermally activated �the
energy barrier 
H* is lower than thermal agitation�. More-
over, the mean of the distributions varies slowly with the
temperature, the macroscopic polarization vanishes �Fig. 1�,
and no polar clusters are observed: this corresponds to a
liquidlike state. When the temperature decreases, the jumps
from one configuration to another start to be thermally acti-
vated: a slow dynamics appears which is associated with the
appearance of the spatial heterogeneities �polar clusters�: be-
low T0

*, the large time tail of the distribution develops. Our
interpretation of T0

* is in excellent agreement with the T0
defined in landscape theory.17 This theory predicts that the
relaxation involves only a fast process at high temperature.
At T�T0, the dynamics is governed by nonbarrier diffusion
because the activation barriers are small in height: below T0,
the local minima of the potential energy start to decrease and
the potential-energy landscape starts to influence the dy-
namic behavior.35 Under Tc, we clearly observe the two
maxima which correspond to a mixed regime where both fast
and slow processes coexist. There is a progressive crossover
from a regime of fast dynamics at high temperature in the
polar liquid to one of slow dynamics which is controlled by
the polar cluster. With decreasing of temperature, slow pro-
cesses become dominant. The displacement of the maximum
of the peak for the slow processes is the signature of the
increase in size of the polar cluster. When the system is
almost frozen, the high-frequency maximum of the relax-
ation time distribution function disappears. In a landscape
scenario, at low temperature the dynamics in the system is
also controlled by over-barrier jumps, which result from the
increasing height of the acting barriers.

The simulated dependence on temperature of the shape of
the relaxation time distribution, shown in Fig. 4, is in very
good agreement with experimental curves obtained in glassy

freezing of a deuteron dipole glass.36 Berthier et al.37 observe
similar frequency distributions of relaxation times by Monte
Carlo simulation. They have used a coarse grained approach
which takes into account the dynamics heterogeneities. The
basis of their work relies on two observations: �i� at low
temperature, very few particles are mobile, �ii� when the
macroscopic region of space is mobile, it influences the dy-
namics of neighboring regions, enabling them to become
mobile too. This is the concept of dynamic facilitation.38,39 In
the work of Berthier et al., Tc

* is the temperature at which the
fast process disappears. In our work, Tc

* does not have the
same meaning. It marks the temperature of loss of ergodicity.
At Tc

*, the fast process is always the main process observed.
When the fast process disappears, the system is in a glassy
polar state. This is confirmed by the simulated dependence of
the relaxation time on the inverse of temperature T* shown in
Fig. 2. For the temperature range corresponding to the cross-
over regime, a VTF behavior is clearly observed up to T*

=0.46. These results clearly show that the non-Arrhenius be-
havior of the relaxation time is induced by the coexistence of
both slow and fast dynamics, which is a consequence of
spatial heterogeneity. Arrhenius law is observed when only a
fast �or slow� process is observed. Under Tg

*=0.46, the fre-
quency distribution of relaxation times shows a majority of
slow processes. In other words, the glass transition is ob-
served when the slow dynamics dominates.

The results obtained for this specific model of randomly
located flipping dipoles with the long-range screened dipolar
interaction seems to be a prototype for a wide class of ran-
dom systems such as systems with deviation from stoichiom-
etry, the randomly distributed atoms, or static defects.40–42

A common feature producing the spin-glass behavior in
any system is the presence of spatially static randomly dis-
tributed defects that are dynamically orientated, the dilution
of these defects being such that the average distance between
the defects is of the order of an effective interaction radius.

The spin-glass behavior should be observed in systems if
�i� the dynamic equations of motion of different particles are
randomly different, but time-invariant �i.e., dynamic equa-
tions such as Newton or other mechanical equations of mo-
tion do not explicitly depend on time, and �ii� the distinction
between the parameters of the dynamic equations for differ-
ent particles is significant �the potential-energy barrier is
commensurate with the heat energy kT�.

Condition �i� is satisfied in our model because the poten-
tial barrier for the mechanical motion of each particle is
static and different for each particle. Condition �ii� is satis-
fied if the distance between particles is commensurate with
their interaction radius, nd�1. Otherwise, if the distance be-
tween particles is much greater than the interaction radius
�nd�1, diluted system� the potential energy of the equation
of motion is static but the same for all particles. Thus the
system is conventional: it is ergodic and is described by the
Gibbs thermodynamics.

If the distance between the particles is much smaller than
the interaction radius �nd�1, concentrated system�, then the
particle interacts with many neighboring particles within the
interaction radius sphere and thus interacts with the well-
averaged �mean-field� potential produced by all these neigh-
bors. The greater the number of these neighboring particles

FIG. 4. Frequency distribution of relaxation times for different
temperatures. The vertical line corresponds to the value 
H*=T*.
Tc

* marks the appearance of a shoulder in the distribution of relax-
ation times. For Tg

*�T*�T0
* slow and fast dynamics coexist. Under

Tg
* the dynamics is controlled by slow processes.
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around a test particle, the smaller the relative difference be-
tween this potential and potentials acting on other test par-
ticles. In other words, in the nd�1 case, the average static
deviations from the same average potential acting on each
defect is small and can be neglected. This is a situation de-
scribed by the mean-field approximation for the potential.
Then, when the potential �dynamic equation of motion� for
each particle is the same, the particles are again described by
the ergodic Gibbsian thermodynamics.

In the case of nd�1 alone, the difference between the
neighbor-generated potentials acting on each particle is of
the same order as the average potential and the entire statis-
tical thermodynamics becomes non-Gibbsian and noner-
godic. This is the spin-glass case.

All these systems show the same features, viz. a diffuse
character of phase transition from high to low temperature,
spatial and dynamic heterogeneities in the crossover region,
and a kinetics slowdown.

V. CONCLUSION

In this paper, we have studied the diffuse ferroelectric
transition in a dipolar system that was simulated by ran-
domly distributed dipoles coupled with strong long-range in-
direct dipole-dipole interactions. We have focused on the
temperature dependence of macroscopic polarization as well
as on the relaxation behavior of the system. Both initially
ordered and disordered configurations of dipoles were con-
sidered. When the temperature decreases, three different re-
gimes have been observed. At high temperature, the dynam-
ics is liquidlike. The relaxation process is fast and no spatial
heterogeneities are observed. All the dipoles are free to ro-
tate. An Arrhenius behavior of the relaxation time is ob-
served. Under T0

*, small polar regions are nucleated. This
leads to the appearance of the slow dynamics. A certain num-
ber of jumps from one configuration to another become ther-
mally activated. The height of some activated barriers is
larger than the thermal energy. This temperature T0

* can be
compared to the temperature T0 of the landscape. The nucle-
ation of heterogeneities does not induce a loss of ergodicity,
but markedly influences the behavior of the relaxation time:
a VTF law is observed.

Under Tc
*, the system loses its ergodicity. This corre-

sponds to the definition of TC given by MCT and by land-
scape. With decreasing temperature, the clusters become big-
ger and slow dynamics becomes more and more dominant.

From T*�Tc
*, the thermal energy becomes insufficient to

overcome most of the energy barriers. A certain number of
dipoles are frozen in the initial configuration. Around Tg

*, the
slow process dominates.

The VTF behavior observed for Tg
*�T*�T0

* is directly
related to the mixed dynamics. For temperature T*�Tg

* the
dynamics is controlled by the slow process.

In our model the relaxation time distribution appears natu-
rally from the distribution of activation barriers for dipoles in
the system studied. At high temperature, where fast pro-
cesses are dominant, the distribution is Gaussian. With de-
creasing of temperature, there are two peaks in the distribu-
tion, reflecting the coexistence of polar clusters with a
liquidlike state. This model relates the microscopical struc-
ture of the glassy state with the macroscopical behavior of
the system. Computer simulations explain the origin of the
diffuse nature of the glass transition. The reduced total po-
larization � per site gradually vanishes by asymptotically
approaching zero. It can be interpreted as a “diffuse” phase
transition typical of a spin-glass transition.

Finally, it is worth noting that indirect dipole-dipole inter-
actions in the polar media can explain the most important
characteristics of glass transition in the dipolar amorphous
state. The strength of this interaction is controlled by rcorr
which is a key physical factor controlling the fragility. This
model is generic and has been used to describe the phenom-
enology of a wide variety of systems.

Finally, we note that the present paper has focused on the
qualitative description of glass transition, rather than on re-
producing real relaxation curves. In principle, this model
could be extended to yield a quantitative description of glass
transition. However, this would require introducing some
models to describe the evolution of the activation barrier
with the temperature and the temperature dependence of
static susceptibility �rcorr�, which is not yet known for the
dipolar glass systems.

ACKNOWLEDGMENTS

This work was supported by the computer-time Grant No.
2014006 of the Centre de Ressources Informatiques de
Haute Normandie �CRIHAN�. The financial support of NSF
Grant No. DMR-0242619 for A.G.K. is gratefully acknowl-
edged. We wish to thank J-M. Saiter for fruitful discussions
and Dilys Moscato for her precious help and for carefully
reading the manuscript.

1 M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 �2000�.
2 K. Binder, J. Baschnagel, and W. Paul, Prog. Polym. Sci. 28, 115

�2003�.
3 L. Berthier and J. P. Garrahan, Phys. Rev. E 68, 041201 �2003�.
4 M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100,

13200 �1996�.
5 E. Bertin, J.-Ph. Bouchaud, and F. Lequeux, Phys. Rev. Lett. 95,

015702 �2005�.

6 U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, and
H. W. Spiess, Phys. Rev. Lett. 81, 2727 �1998�.

7 E. Vidal-Russel and N. E. Asraeloff, Nature �London� 408, 695
�2000�.

8 T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. B 36, 8552
�1987�.

9 G. Parisi, M. Picco, and F. Ritort, Phys. Rev. E 60, 58 �1999�.
10 M. A. Moore and B. Drossel, Phys. Rev. Lett. 89, 217202 �2002�.

MONTE CARLO SIMULATION OF COOPERATIVE… PHYSICAL REVIEW B 75, 054102 �2007�

054102-7



11 M. A. Moore and J. Yeo, Phys. Rev. Lett. 96, 095701 �2006�.
12 W. Götze and L. Sjörgen, Rep. Prog. Phys. 55, 241 �1992�.
13 C. A. Angell, J. Phys. Chem. Solids 49, 863 �1988�.
14 G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 �1965�.
15 J. H. Gibbs, in Modern Aspects of the Vitreous State, edited by J.

D. McKenzie �Butterworths, London, 1960�.
16 M. Goldstein, J. Chem. Phys. 51, 3728 �1969�.
17 S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature �London�

393, 554 �1998�.
18 G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 �1923�.
19 G. Tammann and W. Hesse, Z. Anorg. Allg. Chem. 156, 245

�1926�.
20 H. Vogel, Phys. Z. 22, 645 �1921�.
21 D. Viehland, J. F. Li, S. J. Jang, L. E. Cross, and M. Wuttig, Phys.

Rev. B 46, 8013 �1992�.
22 A. E. Glazounov and A. K. Tagantsev, Appl. Phys. Lett. 73, 856

�1998�.
23 C.-C Su, B. Vugmeister, and A. G. Khachaturyan, J. Appl. Phys.

90, 6345 �2001�.
24 C.-C Su, Ph.D. thesis, Rutgers University, 2001.
25 B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. 62, 993

�1990�.
26 S. Fazekas, J. Kertész, and D. E. Wolf, Phys. Rev. E 68, 041102

�2003�.
27 C. Eisenmann, U. Gasser, P. Keim, G. Maret, and H. H. von

Grunberg, Phys. Rev. Lett. 95, 185502 �2003�.

28 H. Zhang and M. Widom, J. Magn. Magn. Mater. 122, 119
�1993�.

29 H. Zhang and M. Widom, Phys. Rev. B 51, 8951 �1995�.
30 D. Wei and G. N. Patey, Phys. Rev. Lett. 68, 2043 �1992�; Phys.

Rev. A 46, 7783 �1992�.
31 J. J. Weis, D. Levesque, and G. J. Zarragoicoechea, Phys. Rev.

Lett. 69, 913 �1992�.
32 S. Ikeda, H. Suzuki, and S. Nagami, Jpn. J. Appl. Phys., Part 1

Part 1 31, 1112 �1992�.
33 H. Sillescu, J. Non-Cryst. Solids 243, 81 �1999�.
34 E. Leutheusser, Phys. Rev. A 29, 2765 �1984�.
35 F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 �1982�;

28, 2408 �1983�; Science 255, 983 �1984�.
36 Y.-S. Choi and J.-J. Kim, Europhys. Lett. 65, 55 �2004�.
37 L. Berthier and J. P. Garrahan, Phys. Rev. E 68, 041201 �2003�.
38 G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 53, 1244

�1984�.
39 G. H. Fredrickson and H. C. Andersen, J. Chem. Phys. 83, 5822

�1985�.
40 P. W. Anderson, in Ill-Condensed Matter, edited by R. Balian

et al. �North-Holland, Amsterdam, 1979�.
41 S. Semenovskaya and A. G. Khachaturyan, Acta Mater. 45, 4367

�1997�.
42 S. Sarkar, X. Ren, and K. Otsuka, Phys. Rev. Lett. 95, 205702

�2005�.

PAREIGE, ZAPOLSKY, AND KHACHATURYAN PHYSICAL REVIEW B 75, 054102 �2007�

054102-8


