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We use a quantum Monte Carlo method to calculate the Néel temperature TN of weakly coupled S=1/2
Heisenberg antiferromagnetic layers consisting of coupled ladders. This system can be tuned to different
two-dimensional scaling regimes for T�TN. In a single-layer mean-field theory, �s

2D�TN�= �z2J��−1, where �s
2D

is the exact staggered susceptibility of an isolated layer, J� the interlayer coupling, and z2=2 the layer coor-
dination number. With a renormalized z2, z2→k2z, we find that this relationship applies not only in the
renormalized-classical regime, as shown previously, but also in the quantum-critical regime and part of the
quantum-disordered regime. The renormalization is nearly constant; k2�0.65−0.70. We also study other
universal scaling functions.
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Antiferromagnets with effectively low dimensionality,
consisting of weakly coupled chains �quasi-one-dimensional
�quasi-1D�� or layers �quasi-2D�, offer unique opportunities
to study quantum mechanical collective behavior. A multi-
tude of quasi-1D and quasi-2D antiferromagnetic compounds
have been discovered, or deliberately designed, and they ex-
hibit a wide range of ordered and disordered phases. At the
same time, new and improved experimental techniques en-
able increasingly sophisticated studies of their properties. It
is thus possible to test in detail microscopic quantum spin
models and theoretical quantum many-body concepts, such
as quantum-critical scaling.1 Motivation for studying these
systems often come from phenomena directly associated
with low dimensionality. Real materials, however, almost al-
ways have some 3D couplings that cannot be completely
ignored at low temperatures. The ways in which these cou-
plings change the physics, e.g., leading to phase transitions
or dimensional crossovers,2 are also governed by the physics
of the 1D or 2D units. Studies of 3D effects can therefore
also provide important insights.

The Néel temperature in systems of coupled antiferro-
magnetic layers was studied earlier by Lines using Green’s
functions.3 More recently, Sengupta et al. used a QMC
method to study TN and the dimensional crossover in the
specific heat.4 Yasuda et al. calculated TN more systemati-
cally at very small ratio J� /J of the inter- and intralayer
couplings, for S=1/2 as well as higher spins.5

Previous work focused on spatially isotropic layers. In
this paper we investigate TN of a quasi-2D S=1/2 Heisen-
berg model consisting of layers of coupled ladders. In the
absence of interlayer couplings, the Mermin-Wagner theo-
rem dictates that the system can have long-range order only
at T=0.6 The 2D Heisenberg model with spatially isotropic
nearest-neighbor couplings J has an ordered ground state.7,8

At low temperatures, in the renormalized classical �RC� re-
gime, its spin correlation length is exponentially divergent.8

Systems with a coupling pattern favoring formation of
nearest-neighbor singlets,9 e.g., coupled two-leg ladders,10

can be tuned through a quantum phase transition into a quan-
tum disordered �QD� state. This T=0 transition and its asso-
ciated T�0 quantum-critical �QC� scaling regime have been

studied in detail, using field-theoretical approaches11 and
quantum Monte Carlo �QMC� simulations.10,12,13

Our motivation to study the coupled-ladder system comes
from recently proposed scaling functions relating TN and
various 2D and 3D staggered susceptibilities.14,15 We focus
in particular on interladder couplings for which the system is
near-quantum-critical in the absence of interlayer couplings.
This system is also relevant to layered cuprates. Recent neu-
tron scattering studies show a univeral magnetic response in
La2−xBaxCuO4 and YBa2Cu3O6+x,

16 which can be explained
by the coupled spin ladders near the quantum critical point.
Our main finding is that two of the scaling functions are
almost constant and do not change appreciably between the
RC and QC regimes. In particular, the coordination number
renormalization introduced by Yasuda et al. changes from
k2�0.65 in the RC regime5 to k2�0.68 in the QC regime.
This minute change implies that the Néel ordering takes
place almost exactly at the same temperature at which the
planes start to correlate appreciably, and that these correla-
tions are almost completely governed by the magnitude of
the static staggered susceptibility of the planes. The nature of
the fluctuations, RC or QC �for which the dynamic suscepti-
bilities are completely different11�, does not play a major
role.

In a single-layer mean-field theory �also referred to as
RPA�,17 the 3D couplings of a layer l=0 are taken into ac-
count by a static staggered magnetic field arising from the
ordered moments of the two adjacent planes l= ±1. The self-
consistent Néel temperature is then obtained by solving the
equation

�s
2D�TN� = �z2J��−1, �1�

where z2=2 is the layer coordination number and �s
2D is the

staggered susceptibility of a single layer, the T dependence
of which is known from studies of the quantum nonlinear �
model. In the RC regime, T�4��s,

8

�s
2D�T� � Te4��s/T, �2�

where �s is the spin stiffness. Using numerically exact QMC
results for �s

2D and TN, Yasuda et al.5 found that the mean-
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field expression �1� accurately captures the J� /J�1 depen-
dence of TN, if z is replaced by a renormalized coordination
number z2k2;

�s
2D�TN� = �k2z2J��−1. �3�

Moreover, the renormalization, k2�0.65, was found to be
independent on the spin S. This intriguing result prompted
Hastings and Mudry to carry out a detailed renormalization
group �RG� study of the anisotropic O�N� nonlinear sigma
model.14 Instead of a constant coordination number renor-
malization, they argued that the quantity

F1 = �k2z2�−1 = J��s
2D �4�

is a universal function of x=c�TN	2D�TN��−1 when J� /J�1.
Here 	2D is the correlation length of a single isolated layer
and c the spin wave velocity. They concluded that the reason
for the near constant k2 is that the single layer is in the RC
regime for all S at low T, whence x is exponentially small
and F1�x→0� is constant. In the QC and QD regimes F1

should approach other constant values. A quantity involving
the susceptibility ��Q� of the full 3D system at wave-vector
Q= �� ,� ,0� was also introduced

F2 = J����,�,0� . �5�

To leading order in an 1/N approximation, Praz et al.15

found that F2=1/4 in all regimes when J� /J→0. This pre-
diction should be easier to test experimentally because it
involves only properties of the actual quasi-2D system. They
also proposed a third universal quantity

F3 = J�S��,�,0�TN
−1, �6�

where S�Q� is the static spin structure factor. This function
was shown to distinguish between the RC, QC, and QD re-
gimes already at the N=
 level.

Since the J� /J→0 values of F1, F2, and F3 were evalu-
ated at the N=
 level or including only order-1 /N correc-
tions, significant higher-order corrections to these results
were expected.15 Unbiased numerical results would therefore
be useful. The previous QMC results by Yasuda et al. for
k2= �2F�x→0��−1 in the RC regime, k2�0.65,5 falls between
the N=
 and 1/N values; k2=1/2 and 1.01.15 F2 and F3
have not yet been calculated in the RC regime, and none of
the predictions have been tested against numerical results in
the QC and QD regimes. The universal constants could be
very useful for extracting interlayer couplings experimen-
tally.

In the coupled-ladder system, the individual layers can be
tuned through a quantum-critical point. We can thus obtain
numerical results for F1–F3 in all three 2D temperature re-
gimes. The Hamiltonian we study is

H = J1 �
�i, j�1

Si · S j + J2 �
�i, j�2

Si · S j + J� �
�i, j�3

Si · S j , �7�

where �i , j�1 denotes a pair of nearest-neighbor spins in the
same ladder, �i , j�2 in different ladders of the same layer, and
�i , j�3 in adjacent layers. For simplicity, we define the cou-
pling ratios q=J2 /J1 and �=J� /J1.

The quantum phase transition of the single layer �J�=0�

has been studied by Matsumoto et al.10 The critical coupling
qc=0.31407�5�. The T�0 crossovers for an isolated layer
are shown schematically in Fig. 1. In the limit �→0, the
quantum-critical coupling of the quasi-2D system ap-
proaches qc of the single layer. In our study we focus on
values of q close to the 2D quantum-critical point, choosing
q=0.25, 0.30, 0.31407=qc, and 0.33. We also consider the
previously studied case q=1,5 to calculate also F2 and F3
deep inside the RC regime. We have obtained results for � in
the range 10−3 to 1.

We use the stochastic series expansion �SSE� QMC
method18 to study periodic lattices with LxLyLz spins, with
Lx=Ly =L up to 128. To take into account, at least partially,
the fact that 	x,y �	z when ��1, we use aspect ratios L /Lz
up to 16. To determine the Néel temperature, we use the
finite-size scaling of the spin stiffness constants �s

 in the
three different directions, =x ,y ,z, of the spatially aniso-
tropic lattice. This approach was previously taken in Ref. 4.
For fixed aspect ratio, the stiffness at TN should scale as L−1.
We thus locate the point at which L��T� becomes asymp-
totically size-independent �extrapolating crossing points for
different size L to L→
�. For q=1, we use TN from Ref. 5.
For the calculations of the 2D staggered susceptibility �s

2D�T�
we have used L up to 800.

The � dependence of the Néel temperature for the differ-
ent q values is shown on a log-log scale in Fig. 2. When
q�qc, there is a minimum value �c of the inter-layer cou-
pling below which the system cannot order—�c�q�, where
q�qc, is the line of 3D quantum-critical points and �c�qc�
=0. In our results for q�qc we see a downturn of TN as
� decreases, reflecting the 3D quantum-critical point. From
our limited low-TN data we can only roughly extract
two points on the critical line; �c�q=0.30��0.001 and
�c�q=0.25��0.006.

For q�qc we can solve the mean-field equation �1� with
the RC form �2� of the correlation length, giving, to leading
order in �,

TN��� � − �ln����−1. �8�

As shown in Fig. 2, for q=1 this form does not yet apply
at �=10−3, but it should be the correct form for �→0.

FIG. 1. �Color online� Quantum regimes for a 2D layer of
coupled ladders with interladder coupling q. The curves indicate
crossover temperatures. We study T�0 properties of a quasi-2D
system �coupled layers� with q at and close to the 2D critical point
qc and at the isotropic point q=1.
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Yasuda et al. presented an empirical formula that works well
also at higher �.5 For q=0.33 we should also approach the
RC form when �→0, but here we instead observe an almost
perfect power law in the whole range of ��10−3. However,
the exponent is not the one expected in the QC scaling re-
gime �discussed further below�, and we expect the behavior
to eventually cross over to the log form.

In the QC regime, the 2D staggered susceptibility takes an
asymptotic T→0 power-law form,

�s
2D�T� � T−2+�, �9�

where ��0.038 �Ref. 19� is the correlation function expo-
nent of the 3D O�3� universality class. Using this form in the
mean-field equation �11� we get a corresponding power-law
behavior of TN;

TN��� � �1/�2−��. �10�

In Fig. 2 we can see that this quasi-2D quantum-critical form
accurately describes the results for q=qc below ��10−2. For
larger �, TN is still in the high-temperature regime where the
behavior is influenced by nonuniversal lattice effects.8,11 The
two q values close to qc, for which the reduced coupling
	g−gc	 /gc�0.05, are already too far from the critical point to
observe any distinct �asymptotic-form� QC behavior before
the crossovers occur.

Following Ref. 5, we study the coordination number
renormalization

k2��� = �2��s
2D�TN��−1 = �2F1�−1. �11�

In Fig. 3 we show our QMC results for the staggered sus-
ceptibility of the isolated 2D layers. Using these results and
the TN data shown in Fig. 2, we obtain the results for k2
shown in the upper panel of Fig. 4. For q=1, Yasuda et al.
found k2�0.65 for ��0.1.5 We here show q=1 results ob-
tained with their listed TN values and our own results for �s

2D.
The resulting k2 agree with the previous results. Surprisingly,
we hardly see any change in k2 when going to the near-
critical systems, except some small differences when
��0.1. At lower �, k2 is only a few percent larger for

q�qc than at q=1; k2�qc��0.68. Even for our q�qc points,
k2 remains close to this value, even though TN is seen cross-
ing over into QD behavior in Fig. 2. For the lowest � con-
sidered for q=0.25 and 0.30 we see a slight increase in k2,
but the effect is barely statistically significant. Note that for
q�qc, k2 is not defined for ���c�q�.

In the RG study by Praz et al.,15 different expressions for
F1 �k2� were obtained in saddle-point approximations for the
RC, QC, and QD regimes. No numerical values were given,
however, except for k2=1/2 in the RC regime. Corrections to
the constant behavior were expected �and calculated to order

FIG. 2. �Color online� Néel temperature vs interlayer coupling
at different interladder couplings q. The q=1 results are from Ref.
5. The solid �black� and dashed �red� lines show the expected
�→0 forms in the RC and QC regimes.

FIG. 3. �Color online� Staggered susceptibility �s
2D vs tempera-

ture for 2D systems composed of coupled two-leg ladders with
different interladder coupling ratios q. The dashed line shows the
asymptotic QC power-law behavior, Eq. �10�.

FIG. 4. �Color online� Coupling dependence of the quantities
�4�–�6�. The horizontal dashed lines show our extracted values for
the QC regime.
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1/N in the case of the RC regime, then giving k2=1.01�.
Furthermore, significantly different constants were expected
for the three regimes. The near constant k2�0.65−0.70 we
find here for such a wide range of q values, spanning all
three temperature regimes, is thus quite remarkable.

We now turn to the second scaling function, Eq. �5�. As
seen in the middle panel of Fig. 4, we obtain an almost
constant F2=���� ,� ,0��0.22−0.23 for all q and for a
wide range of �. In the N=
 approximation, F2=1/4 in all
three temperature regimes,15 remarkably close to what we
find here. However, also in this case the actual values in the
RC, QC, and QD regimes were expected to differ markedly
once 1/N and higher corrections are included.

The third scaling function, Eq. �6�, distinguishes between
the RC, QC, and QD regimes already at the N=
 level.15 In
the RC regime S�Q�=T��Q� to leading order8 and thus F3

=F2=1/4. Our results for the RC regimes �q=1�, shown in
the bottom panel of Fig. 4, are slightly lower than the pre-
dicted value for ��0.1. There is also still a decreasing trend
as � decreases and we cannot reliably extract the asymptotic
constant RC value �for �=10−3 our calculations for q=1 are
not completely size converged and we therefore do not show
them here�. For q=0.33, which also should give RC behavior
for �→0, the results are still quite far from the q=1 curve
for all �, but the decreasing trend is consistent with the same
asymptotic value. For F3 we also see clear differences in
behavior in the three regimes. There are distinct crossovers
from QC to RC or QD behavior. The results for q=qc, 0.30,
and 0.33 all fall on the same universal QC curve for � down
to �0.05, below which the q=0.25 curve splits off. The
q=qc and 0.3 curves coincide to even lower �. The
asymptotic value at qc is �0.27. For q�qc we expect a

divergence at �c�q�, as S�� ,� ,0� must converge to a con-
stant when q�qc and TN→0. We see clear signs of this
divergence.

In conclusion, we have presented results for the quantities
��s

2D
1/2k2, ���� ,� ,0�, and �S�� ,� ,0� /T, at T=TN for a
quasi-2D system of coupled ladders. For weak interlayer
coupling, �→0, these quantities have been predicted to take
different universal constant values in the RC, QC, and QD
regimes.14,15 We have investigated the dependence on � for
10−3���1, with the goal of extracting the constants and
investigate the ��0 corrections. We find a remarkably
stable value of the coordination number renormalization k2
and ���� ,� ,0�: For ��0.1 they are almost independent on
� and do not change appreciably between the RC, QC, and
QD regimes. Significant differences in the three regimes
were anticipated based on the previous RG study of the non-
linear � model by Praz et al.15 Only in �S�� ,� ,0� do we see
distinct differences. It would be useful to extend the calcula-
tions to still lower interlayer couplings, but reaching signifi-
cantly below �=10−3 with QMC requires prohibitively large
lattices.

The almost constant F1 and F2 imply that the correlations
between layers is predominantly governed by the magnitude
of the static staggered susceptibility of the layers. The range
of temperatures for which the system is 3D critical is almost
negligible, regardless of the nature of the 2D fluctuations—
RC or QC—that initially lead to correlations between the
layers.
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