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Nanosized spherical system of magnetic moments interacting indirectly via the Ruderman-Kittel-Kasuya-
Yosida mechanism is studied. The interaction energy that determines the temperature of the ferromagnetic
ordering depends strongly on the system size. Obtained in the mean-field approximation, dimensional and
concentration dependencies of the Curie temperature testify to the necessity of taking into account the finite
size of such systems to calculate their features. Results may concern both artificially constructed nanosystems
and naturally arising formations �such as clusters of magnetic ions in diluted magnetic semiconductors, etc.�.
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In systems with free carriers of high concentration �metals
or degenerate semiconductors�, indirect magnetic impurities’
interaction of Ruderman-Kittel-Kasuya-Yosida �RKKY� type
is considered as one of the basic mechanisms of the magnetic
ordering.1 There are a lot of papers dealing with RKKY in-
teraction in three-, two-, and one-dimensional systems of in-
finite size.1–4 However, to our knowledge, nobody considered
how that interaction should be modified for systems of the
finite size. It is actual because every potentially interesting
electronic device is either characterized by nanosizes or in-
cludes some nanosized formations.

For example, though two-dimensional structures represent
the most natural systems for the embedding in the traditional
semiconductor technology, almost all theoretical works �in-
cluding those “attached” to concrete experiments� are dealt
with the three-dimensional systems. In addition, it is known5

that magnetic impurities in diluted magnetic semiconductors
�DMS� incline to the correlation and can form nanosized
clusters. In this connection, the question arises concerning
the influence of the impurity correlation on their interaction
�for instance, by means of the RKKY mechanism�. In the
present paper, we consider that problem for the case of the
spherical system of the finite radius.

Estimating the energy w�r�=−J�r�S1S2 of the indirect
RKKY interaction of magnetic impurities with spins S1, S2
spaced at the distance r is based on making use of the ex-
pression

J�r� =
Jpd

2

N2 exp�− r/l��
q

��
k

eiq·r f�Ek�
Ek+q − Ek

, �1�

obtained in the second order of the perturbation theory.1

Here, N is the number of lattice sites, Jpd is the exchange
energy for the interaction of the impurity spin with a free
charge carrier, Ek is the carrier energy, and f�Ek� is the
Fermi-Dirac function which in the degenerate case equals
f�Ek�=1 at k�kF and f�Ek�=0 at k�kF, where kF is the
Fermi momentum. The prime by the sum over q means that
q�0. The exponent e−r/l in Eq. �1� reflects the finite carrier
mean free path l.

In the continual approximation, the summation in Eq. �1�
is replaced by the integration which performed usually over
all k�kF and �k+q��kF. Then the standard result corre-
sponding to the case of the infinite system reads1

J�r� = − I0��r�exp�− r/l� ,

��r� = �a

r
�4

���r�cos ��r� − sin ��r�� , �2�

where

I0 =
1

32�3�ma2

�2 Jpd
2 �, ��r� = 2kF0r , �3�

a is the lattice constant, and kF0= �3�2p�1/3 is the Fermi mo-
mentum of carriers of the concentration p.

In the case of finite system sizes or magnetic ions’ clus-
tering, the classic expression �2� for the energy of the RKKY
interaction should be rectified. For simplicity, we consider
the case when magnetic ions form the spherical cluster. Due
to the quasineutrality, its radius R determines not only the
area where ions are arranged but also the region where car-
riers, produced by those ions, are localized. In other words,
the carriers are contained in the potential well of the radius
R. Therefore, the carrier momentum k and its variation q are
limited by the intervals

k1 � k � kF, k1 � q � k2, �4�

where

k1 	 �/R, k2 	 �/a . �5�

In addition, due to the spatial quantization, the distance be-
tween the energy levels of carriers grows which leads to
increasing the Fermi energy and Fermi momentum while de-
creasing the well size: kF=kF�R�. Together, they complicate
calculations and the final expression for J�r� turns out to be
more bulky than the canonical expression �2�.

The finite mean free path l results in smearing energy
levels of carriers due to their collisions. Therefore, the lowest
value k is defined by the system size and equals k1	� /R
only if the collision broadening � /� of levels is less than the
energy �2�2 /2mR2 of the first level. That condition could be
written in the form

�2

R2 −
2kF

l
� 0, �6�

meaning that our approach relates to the small enough sys-
tems only. If, for instance, l /a=10 and akF=1, then R
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	10a. In the general case, one could use the value

k1 =

max���2

R2 −
2kF

l
�,0� �7�

as the left boundary of inequalities �4�.
To proceed one should estimate how the Fermi momen-

tum depends on the cluster size. The total number of free
carriers in the cube of the size R with the spherical Fermi
surface is defined by the number of cells of the volume �2��3

in the phase space and in the limit of kFR→
 equals
NF
kF

3R3 / �2��3. For a finite kFR value, the number of car-
riers is defined by the number of points in the wave number
space with coordinates divisible by �2� /R�. As none of those
coordinates could equal zero, in that case

NF 
 �kFR/2��3 − ��kFR/2��2,

where the correction �proportional to �
1� is associated
with the “forbidden” points, positioned in the coordinate
planes of the wave number space and with the “correct”
points neighboring the Fermi surface but not fallen inwards,
as well. For the carrier concentration n=NF /R3, it follows
that n
kF

3�1−� /kFR�. For n=const and kFR�1 that leads to

kF�R� − kF0 	
�

3R
,

where kF0�kF�
� is the Fermi momentum in the infinitely
large system. Everywhere below, we use kF to mean the
value

kF�R� = kF0 +
1

R
. �8�

Let us turn now to calculating the energy of the RKKY in-
teraction. Assuming Ek=�2k2 /2m, Ek+q=�2�k+q�2 /2m and
designating the angle between r and q as �, and the angle
between k and q as 
, we obtain

J�r� =
2mJpd

2

�2N2 exp�− r/l�a4�
q

�
eiqr cos �

q
�

k

f�Ek�
2k cos 
 + q

,

�9�

or, in the continual approximation,

J�r� =
4

�
I0 exp�− r/l�a4�

k1

k2

q dq�
0

�

eiqr cos �

�sin �d��
k1

kF

k2dk�
0

� sin 
d


2k cos 
 + q
. �10�

Noncomplicated but laborious calculations lead to rather
cumbersome results which could be represented in the rela-

tively simple form by the help of the operator L̂ determining
the value of the double definite integral �k1

kFdk�k1

k2�. . .�dq with
the primitive function ��k ,q�:

L̂��k,q� = ��k1,k1� − ��kF,k1� + ��kF,k2� − ��k1,k2� .

Then

J�r� =
1

�
I0 exp�− r/l��akF�4L̂�r�k,q� , �11�

where

�r�k,q� =
1

�2kFr�4 ��1�k�c1�k,q� − �2�k�c2�k,q� + �3�k,q�� ,

�12�

�1�k� = 2kr cos 2kr − sin 2kr ,

�2�k� = 2kr sin 2kr + cos 2kr , �13�

c1�k,q� = Si��2k + q�r� − Si��2k − q�r� ,

c2�k,q� = Ci��2k + q�r� − Ci��2k − q�r� , �14�

�3�k,q� = cos qr�1 + 2k2r2�ln�2k + q

2k − q
�

+ qr�sin qr −
1

2
qr cos qr��ln�2k + q

2k − q
� −

4k

q
� ,

�15�

Si�x� = �
0

x sin t

t
dt, Ci�x� = − �

x


 cos t

t
dt . �16�

To the traditional situation �R→
� there correspond k1→0
and k2→
. In that case, c1→�, c2→0, �3→0, and

L̂� →
�

�2kFr�4�1�kF� = �
2kFr cos 2kFr − sin 2kFr

�2kFr�4 .

Hence Eq. �11� reduces to the standard expression �2�. For
finite values k1 and k2, the interaction energy J�r� should be
calculated with Eqs. �11�–�15�.

The local effective RKKY-field HRKKY, generated in a
given point, is defined by the relation �HRKKY=�iJ�ri�,
where ri is the distance from that point to the ith magnetic
impurity and � is the impurity magnetic moment. In the
continual approximation, the sum could be replaced by the
integral �HRKKY=�J�r��d3r�, where the integration is spread
over the volume occupied by impurities. Contrary to the in-
finite system, the value of that integral depends on the posi-
tion of the considered point. For the spherical system, the
effective field could be characterized by the value

�HRKKY
0 = 4��

rmin

R

J�r�r2dr �17�

of that integral in the center of the sphere. Here rmin is the
minimum distance between impurities determined by the dis-
creteness of the crystal lattice �for instance, the minimum
distance between extrinsic Mn atoms, replacing Ga atoms in
GaAs lattice, amounts to rmin=a /
2	4 Å�.
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One could judge how much the local field HRKKY would
be nonuniform inside the sphere by making note that in the
case with the interaction length l being comparable or shorter
than the radius R, the local field at the surface of the sphere
should be approximately half as large as its value in the
center of the sphere. It is not hard to show that for any point
inside the sphere being offset by the distance h�R from its
center, one could employ the relation

�HRKKY = 4��
rmin

R+h

J�r�r2F�r�dr, F�r�

= �1, r � R − h ,

R2 − �h − r�2

4rh
, R − h � r � R + h , � �18�

instead of Eq. �17�. In particular, for the field at the sphere
surface �h=R�, one could find

�HRKKY
S = 2��

rmin

2R

J�r��1 − r/2R�r2dr . �19�

The results of numerical calculations �see Fig. 1� with
rmin=a /
2, l=3a, and kF0a=1 show that for R=10a the part
of the sphere where the effective field differs from HRKKY

0 by
no more than 20% amounts to about 85% of its volume and

the average field H̄RKKY= �3/R3��0
RHRKKY�h�h2dh

	0.93HRKKY
0 �the same for R=3a amounts to H̄RKKY

	1.14HRKKY
0 �. Hence one could, in the first approximation,

ignore the nonuniformity of the effective field and consider it

as nearly uniform and equal to H̄RKKY	HRKKY
0 .

In the mean-field theory, Curie temperature TC of the fer-
romagnetic state arising due to the RKKY interaction is de-
fined by the simple relation1

FIG. 1. Spatial distribution of the local effective field HRKKY

within the sphere of the radius R=10a and R=3a at l=3a and
kF0a=1.

FIG. 2. Dependencies TC�R� of the Curie temperature on the
radius of spherical systems with various carrier concentrations. Up-
per panel: l=3a; lower panel: l=10a. Dotted lines indicate the val-
ues TC�R=
�; dashed curves show the “standard” �corresponding to
k1=0� behavior of the dependencies TC�R� at small R.

FIG. 3. Dependencies TC�kF0� of the Curie temperature on the
carrier Fermi momentum for spherical systems of various radii.
Upper panel: l=3a; lower panel: l=10a. Arrows indicate where the
condition �6� is reached.
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kBTC 
 �H̄RKKY 	 �HRKKY
0 . �20�

It is of interest to understand how the so-defined Curie tem-
perature depends on the system size R at kF0=const or varies
with the carrier concentration �determined by the Fermi
momentum6� in systems of fixed �but different� sizes.7 Cor-
responding dependencies are shown in Figs. 2 and 3.

The dependence TC�R� turns out to be nonmonotone, with
pronounced oscillations of the period 2a at higher kF0 values.
They resulted from that part of the interaction energy J�r�
which is defined by the function �3�k ,q� given by Eq. �15�,
namely, by the terms sin qr and cos qr with q=k2=� /a. That
provides for the observed period.

At R
 l, the Curie temperature noticeably exceeds its
value for R→
 �shown by dotted lines in Fig. 2�. But the
most significant distinction of the dependence TC�R� �associ-
ated with accounting the finite k1 value� is observed at small
R. As soon as the condition �6� is reached, the drop of TC is
observed, as compared to the “standard” �corresponding to
k1=0� dependence �shown by dashed curves in Fig. 2�. How-
ever, that does not indicate the impossibility of existing fer-
romagnetism due to RKKY interaction in small clusters. Let
us consider, for example, two DMS samples of GaAS�Mn�-
type with magnetic impurities that supply charge carriers re-
sponsible for the interaction. Let the first one be the sample
where magnetic impurities of the relative concentration
x
10−3 are uniformly distributed over the volume and the
Fermi momentum equals kF0a	0.5, and the second one the
sample where the same number of impurities �per unit vol-
ume� are gathered in spherical drops with x�
10−1 resulting

in kF0� a	2.6 It follows from Fig. 2 that if R=3–7a the Curie
temperature in the “drop case” could be much higher than in
the uniform sample.

As for the dependence TC�kF0�, the Curie temperature in-
creases almost monotonously with kF0 �i.e., with raising the
carrier concentration�. In that case also, reaching the condi-
tion �6� results in considerably decreasing TC �down to zero
at some finite size R
 l� as compared to the TC�kF0� depen-
dence for R→
.

Of course, it would be instructive to study the considered
problem for two-dimensional systems as well. Unfortunately,
so far we have not succeeded in obtaining the relevant ex-
plicit relations, though one would expect similar dimensional
effects for a quasi-2D case �the film of the finite nanosized
thickness� too.

In conclusion, we studied nanosized spherical systems of
magnetic moments interacting indirectly via the RKKY
mechanism. The interaction energy which determines the
temperature TC of ferromagnetic ordering depends strongly
on the system size. Obtained in the mean-field approxima-
tion, dimensional and concentration dependencies of the Cu-
rie temperature testify to the necessity of taking into account
the finite size of such systems to calculate their features.
Results may concern both artificially constructed nanosys-
tems and naturally arising formations �such as clusters of
magnetic ions in diluted magnetic semiconductors,8,9 etc.�.
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