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The effect of the spin-phonon coupling on the spin-1 Heisenberg antiferromagnetic chain is investigated.
Using the framework of the modified spin-wave theory, we show that the gap is increased when the coupling
between spins and phonons is considered.
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I. INTRODUCTION

As pointed out by Affleck,1 it was quite a shock to the
physics community when Haldane2 argued in 1983 that there
was a qualitative distinction between integral and half-
integral spin antiferromagnetic Heisenberg chains. At first,
the rather esoteric nature of Haldane’s original arguments
made the field rather impenetrable and, most of all, very
attractive. Therefore, quantum antiferromagnetism became a
very exciting field. For several reasons, it would be desirable
to have quantum systems exhibiting a phase with Néel order
separated from a phase with quantum disordered ground
state by a critical fixed point. It is not always possible to find
such systems but quantum spin chains represent a class of
systems where it is natural to expect a quantum disordered
ground state and, accordingly, a gap in the excitation spec-
trum. As shown by Haldane,2 Heisenberg integer spin chains
can be mapped into the quantum nonlinear � model �NL�M�
and the quantum critical fixed point occurs at zero coupling
g*. It is well known that the O�3� � model is a relativistic
theory of a triplet of massive interacting particles. The gap
corresponds, then, to the mass of the triplet which is propor-
tional to the inverse of the correlation length, and, therefore,
it is expected to increase with temperature.3 The temperature
dependence of the gap with temperature has been measured
experimentally,7,8,10,9 and the results agree qualitatively with
the predictions obtained by using the NL�M.

By now, the existence of an excitation gap and a finite
correlation length in integer spin one-dimensional Heisen-
berg antiferromagnets �1DHAF�—but not in half-integer spin
chains—is very well established theoretically,1

numerically,4–6 and experimentally.7–10 The numerical esti-
mate for the gap energy for the 1DHAF, with spin 1, is �
=0.4105J.

The peculiar behavior of 1DHAF contributed to enhanc-
ing the research on low-dimensional magnetism, and in the
last two decades, we have witnessed remarkable discoveries
of quantum phenomena in strongly correlated systems in low
dimensions. It is now known that, besides the 1DHAF with
integer spin—also called Haldane-gap system—there are
other low-dimensional Heisenberg antiferromagnets �AFs�
exhibiting a finite energy gap above the singlet ground state.
Examples of such systems are the spin S=1/2 linear chain
with bond alternation �dimerized chain or spin Peierls
system11� and the spin S=1/2 two-leg spinladder. The
1DHAF system with integer spin can also have a gapless

quantum phase when an external magnetic field H between
the first Hc1 and second critical field Hc2 is applied. At H
=Hc1, the system starts to develop magnetization and the gap
is destroyed; at H=Hc2 the system is completely magnetized.
Nowadays, there has been great interest in understanding the
spin dynamics of this field-induced gapless quantum phase in
1DHAF.12

The experimental research in this field discovered materi-
als that could not always fit exactly in the models studied
theoretically. The CsNiCl3 compound,7 for example, is
highly isotropic in its spin coupling but is only moderately
one dimensional, while the compound known as
Ni�C2H8N2�2NO2�ClO4� �NENP� is much more one dimen-
sional but shows significant planar anisotropy.8 As cited
above, there is also great interest in understanding the behav-
ior of low-dimensional magnets when external magnetic
fields are applied. Therefore, a great number of theoretical
studies have been devoted to the understanding of the prop-
erties of low-dimensional AFs when features such as inter-
chain coupling, anisotropies, and external fields are included
in the model. Particularly, the Haldane gap in spin S=1 HAF
chains when terms describing an easy-axis anisotropy,2 an
applied magnetic field,13,14 exchange and/or single-site
anisotropies,15 and dimerization15 are included has been the
subject of many works. However, the effect that the coupling
between the spins of the magnetic system and the phonons of
the lattice can have on the energy of the Haldane gap has not
been taken into account. This is the aim of the present work.

However, we may expect that the spin-phonon coupling
can influence the properties of one-dimensional HAF sys-
tems and, in particular, the energy gap. It is well known that
an AF spin-1 /2 chain coupled to optical phonons develops a
spin gap via a static deformation or dimerization: this is
known as the spin-Peierls instability.16,17 For temperatures
lower than TSP, the spin-Peierls transition temperature, the
system stays in the dimerized phase and for T�TSP, the
chain becomes undistorted and the gapless spin excitations
are recovered. This transition has been observed in several
quasi-one-dimensional organic materials18 and its existence
or not in the inorganic material CuGeO3 has been the subject
of a strong controversy. From the theoretical point of view,
most of the treatments directed to spin-Peierls systems11,16,17

have considered the phonons in a mean-field context ex-
pected to work when the phonon frequency can be neglected
in comparison to the spin gap. Therefore, mean-field treat-
ment is better suited to softer materials and cannot describe
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systems in which high-frequency phonons can couple to spin
excitations.19 Recently, Orignac and Chitra20 proposed a
method that is able to give a more quantitative description of
the mean-field theory of the spin-Peierls transition, obtaining
results for the thermodynamic properties of the system in a
whole range of temperature.

Although Schulz21 has shown that we cannot expect a
spin-Peierls instability for integer spin chains, we have rea-
son to expect that the effects due to the coupling between
phonons and spin excitations can be rather important in low-
dimensional magnetism. In this work, we will study the ef-
fect of this coupling on the energy gap of 1DHAF systems
with spin 1. The behavior of these systems is mainly domi-
nated by short-range fluctuations and the spin-phonon cou-
pling is an important source of frustration in the quantum
system. In addition, the study of such 1D systems must be
considered as an important step for understanding the fluc-
tuations intervening in two-dimensional systems �showing a
vanishing critical temperature� because of the close connec-
tion with the high-Tc superconductors.

This Brief Report is organized as follows. The model
Hamiltonian is presented in Sec. II, where we also discuss
the approximations used in our treatment. The results for the
gap energy dependence on the parameters related to the spin-
phonon coupling are given in Sec. III. Our conclusions are
presented in Sec. IV.

II. MODEL

We start from the following Hamiltonian for the spin-
phonon coupling system on a linear chain,

H = �
lonA

��J + ��ul − ul+a��Sl · Sl+a

+ �J + ��ul−a − ul��Sl−a · Sl� + Hph, �1�

where we assume that the lattice is divided in two sublattices
A and B and the sum runs over all sites of lattice A. J is the
usual exchange integral, Sl �Sl±a� is the spin-1 operator on
site l �l±a� of sublattice A �B�, a is the lattice constant, � is
the spin-phonon coupling, and ul is the displacement along
the chain. The harmonic lattice Hamiltonian is given by

Hph = �
lonA

�M

2
��u̇l�2 + �u̇l+a�2� +

K

2
��ul − ul+a�2

+ �ul−a − ul�2�	 , �2�

where M is the mass of the magnetic ion, K is the spring
constant, and u̇=du /dt.

This Hamiltonian, in two dimensions, was studied by Su
and Zheng22 by using the linearized spin-wave approxima-
tion in the two sublattice spaces and the second quantization
representation for phonon operators. The Hamiltonian is then
written as a sum of three terms,

H = Hsw + Hph + H1, �3�

where Hsw and Hph correspond, respectively, to the contri-
butions from spin waves and from phonons up to second
order and H1 corresponds to the interactions between these
two excitations.

Writing the spin components in each sublattice in terms of
spin-wave operators Al and Bl±a,

Sl
† = 
2SAl, Sl

− = 
2SAl
†,

Sl
z = S − Al

†Al, Sl+a
z = − S + Bl+a

† Bl+a, �4�

Sl+a
† = 
2SBl+a

† , Sl+a
− = 
2SBl+a, �5�

we obtain

Hsw = − NJ + 2J�
k

�Ak
†Ak + Bk

†Bk + cos�k��Ak
†Bk

† + BkAk�� , �6�

where N is the number of lattice sites, and Ak and Bk are the
Fourier transforms of Al and Bl±a. Following Su and Zheng,22

we obtain for the phonon contribution,

Hph = �
q

��c�q�cq
†cq + �d�q�dq

†dq + 2� , �7�

where cq and dq are the phonon operators with frequencies

�c�q� = �D�sin�q

2

� ,

�d�q� = �D�cos�q

2

� . �8�

Here, we have used �D=
2K /M.
For the interaction term, we write

H1 = − i
�


MN
�
k,q
� sin�q/2�


�c�q�
�c−q

† + cq��k,q

−
cos�q/2�

�d�q�

�d−q
† + dq��k,q	 , �9�

where we have defined22

�k,q = cos�q

2

�Ak+q

† Ak + Bk+qBk
†�

+ cos�k +
q

2

�Ak+q

† Bk
† + Bk+qAk� ,

�k,q = sin�q

2

�Ak+q

† Ak − Bk+qBk
†�

+ sin�k +
q

2

�Ak+q

† Bk
† − Bk+qAk� . �10�

The next step is to use a Bogoliubov transformation for
the spin-wave operators in order to make Hsw diagonal, that
is,

Ak = cosh��k��k + sinh��k��k
†,

Bk = sinh��k��k
† + cosh��k��k. �11�

The expression for �k is determined in the context of the
modified spin-wave theory23 �MSWT�. We obtain

cosh�2�k� =
1


1 − 	2 cos2�k�
,

sinh�2�k� = −
	 cos�k�


1 − 	2 cos2�k�
. �12�
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The parameter 	 is determined by imposing the total stag-
gered magnetization to be zero,23 this is, basically, the es-
sence of the MSWT. This restriction leads to

�
l

�Al
†Al + Bl+a

† Bl+a� = NS . �13�

Finally, we obtain for the spin-wave Hamiltonian the ex-
pression

Hsw =
2JS

	
�

k

�
k − 1� +
2JS

	
�

k


k��k
†�k + �k

†�k� , �14�

where


k = 
1 − 	2 cos2�k� . �15�

Solving Eq. �13� for the Hamiltonian �Eq. �3�� leads to the
following equation:22

1

2N
�

k

�k�1 +
�2

NK�D
�

q

„�k
c�1 + cos�2k + q� − 	 cos�k�


�cos�k� + cos�k + q��� + �k
d�1 − cos�2k + q� + 	 cos�k�


�cos�k + q� − cos�k���…
 = 1, �16�

where the definitions

�k =
coth�J
1 − 	2 cos2�k�/�T	��


1 − 	2 cos2�k�
,

�k
c =

�sin�q/2��

��sin�q/2�� + �2J/�	�D���
1 − 	2 cos2�k� + 
1 − 	2 cos2�k + q���2
,

�k
d =

�cos�q/2��

��cos�q/2�� + �2J/�	�D���
1 − 	2 cos2�k� + 
1 − 	2 cos2�k + q���2
�17�

were used.24 It can be seen that the resulting Hamiltonian is
temperature dependent because the parameter � depends on
T: the effect of the temperature is to renormalize the param-
eters of the system when we consider interactions. The
MSWT is, in a sense, a self-consistent harmonic approxima-
tion where we substitute the exact Hamiltonian by an har-
monic one with renormalized, temperature-dependent, pa-
rameters. Thus, our estimate for the temperature dependence
of the gap is to be understood in the same spirit as the one
calculated by Jolicoeur and Golinelli.3

In order to obtain the spin-wave energy, our task in this
work, we numerically solved the self-consistent equation
�Eq. �15�� to obtain the parameter 	. The expression for the
spin-wave energy is then

��k� =
JS

	

1 − 	2 cos2�k� . �18�

The energy gap corresponds to ��k=0�=� and depends on
the temperature T, as explained above, on the spin-phonon
coupling parameter � and on the frequency �D, which is
determined by microscopic properties of the lattice as the
spring constant K and the mass M of the magnetic ion.

III. RESULTS

If we neglect the spin-phonon interaction, that is, taking
�=0, we obtain the gap energy for the 1DHAF studied by
Haldane.2 For T=0 and S=1, the value estimated by the

MSW theory is ��T=0�=�0=0.178J, which is in close
agreement with the value of 0.17 obtained by Arovas and
Auerbach25 by using the Schwinger boson method. For �
=0 and T=0, Eq. �16� becomes

S =
1

�
K�	� , �19�

where K�	� is the complete elliptic integral of the first kind.
Using asymptotic expansions for K�	�, we obtain

�0 � 8Se−�S, �20�

for the gap dependence on the spin value at T=0. This be-
havior is in good agreement with the result obtained by ap-
plying the renormalization group technique on the NL�
model, which gives �0=CS2 exp�−�S�, where C is a con-
stant independent of the spin value. This remarkable agree-
ment between two completely different theories, the MSW
and the renormalization group, was pointed out by Arovas
and Auerbach.25 However, it is important to mention, as dis-
cussed in Ref. 25, that the MSW approach has some draw-
backs, for example, the inability to explain the gaplessness of
all half-odd-integer AFs chains.

Despite the fact that the MSW and Schwinger boson
method estimates for the gap energy agree quite well, we
have to note that this estimated value of �0.18J is quite
smaller than the numerical value of 0.41J. As it is very well
known, up to the present moment, no analytical approach,
including the NL� model and more sophisticated theories, is
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able to predict the correct value for �0. Therefore, what is
usually obtained in theoretical approaches is a set of expres-
sions for finite temperatures involving ratios such as
��T� /�0 and T /�0.

We now turn back to the main subject of this work: the
influence of the spin-phonon coupling on the gap energy. In
Eq. �16�, we see that �, the parameter describing the strength
of the spin-phonon coupling, appears combined with K and
�D. In order to isolate the effects due to �, the spin-coupling
parameter, and the elastic properties of the chain �assuming
M as a constant�, we write �2 / �K�D�=2�2 / �M�D

3 � and per-
form our calculations varying 2�2 /M and J /�D. Figure 1
shows the gap energy at T=0 as a function of 2�2 /M for two
different values of �D. First, we see that the effect of the
spin-phonon coupling is to stabilize the gap because the en-
ergy increases with �. The coupling influence is greater for
smaller �D, as could be expected: a large value of �D means
a more rigid system, in which the interaction between spin
waves and the phonons of the system is low: in fact, �d
→� must recover the incompressible ��=0� chain results.

The temperature dependence of the gap, for three pairs of
� and �D values, is shown in Fig. 2, where it can be seen that

the temperature dependence of the gap does not vary appre-
ciably as these parameters are changed. The dashed and con-
tinuous curves correspond to the same spring constant �M
taken as a constant� and to different values for �: as ex-
pected, the gap is larger for the largest value of the spin-
coupling parameter. Again, comparing the dot-dashed ��
=0.50, �D=1.5� and the continuous ��=0.50, �D=1.0�
curves, we see that a softer chain provides a larger gap.

IV. CONCLUSIONS

In this work, we have considered the effect of the cou-
pling between the spin waves of the 1DHAF model and the
lattice phonons on the energy gap expected for the model.
Our results show that the effect of this coupling is to enhance
the gap. However, the temperature dependence of this gap is
not affected by the coupling. We hope our results can stimu-
late further numerical investigation that can check these pre-
dictions.
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FIG. 1. Gap at zero temperature, ��T=0�, as a function of the
spin-phonon coupling �. The results for two different values of the
parameter �D are shown.

FIG. 2. Gap, ��T�, as a function of the temperature: the con-
tinuous curve corresponds to �=0.5 and J�D=1.0, the dashed line
is for �=0.25 and J�D=1.0, and the dot-dashed line corresponds to
�=0.50 and J�D=1.5.
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