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Long-range empirical potential for the bcc structured transition metals
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A long-range empirical potential is developed for bcc transition metals in the present study and successfully
applied to Fe, Mo, W, V, Nb, and Ta. It is found that the lattice constants, cohesive energies, elastic constants,
vacancy formation energies, structural stabilities, and surface energies derived from the present model match
well with the experimental values or ab initio calculations. More importantly, the energies and forces repre-
sented by the present model can smoothly go to zero at cutoff radius, thus completely avoiding the unphysical

behaviors to emerge in simulations.
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In 1984, Finnis and Sinclair (FS) developed the first short-
range n-body potential for bee transition metals,! which can
reasonably reproduce the properties of the bcc metals yet
exhibits a “soft” feature when the atomic volume is less than
the equilibrium one. Five years later, Johnson proposed an
analytic embedded atom method (EAM) potential for bec
transition metals,? and successively, Adams developed an-
other EAM potential for bec metals.> Nevertheless, both po-
tentials are still short-range potentials. Later, other research-
ers, such as Pasianot, Doyama, Zhang, and Dai,*’ proposed
several short-range potentials for bcc metals. Although they
are different in their details, they are actually the modified
forms either of EAM or of FS models. The short-range mod-
els have an apparent problem, i.e., they frequently produce
the same calculated potential energy for the metastable fcc
and ideal hcp structures.” In order to overcome the problem,
researchers have tried to construct new models for bcc met-
als. For instance, by considering the angular contributions,
Baskes et al. proposed a modified EAM (MEAM) model for
bee metals.® The MEAM model resolves the problem men-
tioned above, however, it also brings more application prob-
lems at the same time, e.g., the potential parameters related
to the angular factors make it difficult to apply the model to
the disordered metal systems. In the tight-binding (TB)
theory, Finnis has mentioned that adopting a high-order mo-
ment approximation could improve the capability of the TB
potential in predicting the structural stability,” however, it is
difficult to obtain an analytic form in practice. Besides, the
short-range models for bcc metals also frequently encounter
another problem, i.e., the energy generally cannot smoothly
go to zero at the cutoff radius and more seriously the forces
will make a jump at the cutoff radius. (See the curves in
Fig. 1.) A large number of these events will spoil the energy
conservation or lead to some unphysical behaviors in simu-
lations. To avoid the problem, a truncation function should
be introduced, like Johnson, Adams, and Guellil have
done.>>10 Inspecting the curves derived by Johnson’s EAM
potential in Fig. 1, one sees that although a cubic truncation
function has been adopted, the problem has not yet been
solved. Naturally, if the potential can overcome the problem
without adopting any truncation function, the computation
program will significantly be simplified and much computer

1098-0121/2007/75(5)/052102(4)

052102-1

PACS number(s): 61.43.Bn, 61.82.Bg, 81.05.Bx, 02.70.Ns

time can be saved. In order to resolve the above two prob-
lems related to the short-range potentials, we propose, in the
present work, a long-range empirical potential (LREP) for
the bec transition metals under the framework of the second-
moment approximation of the tight-binding (TB-SMA)
theory.

According to the TB-SMA theory,!! the total potential en-
ergy E; of an atom i is expressed as

1
E= 5; Blry) - | /? o(ry), (1)
where r;;

j is the distance between atoms i and j of the system
at equilibrium state. In Eq. (1), 524;¢(ry) and —\Z(ry) are
the repulsive pair term and n-body term, respectively. ¢(ry)
is expressed by a Born-Mayer type in the original TB-SMA
scheme, while in the proposed LREP model, it is expressed
by a polynomial as follows:
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FIG. 1. Total energy and its first derivative as a function of
lattice constant calculated from the FS potential (Ref. 1) and EAM
potential (Ref. 2) for bec Ta.
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¢(rij) = 0.

where r.; is a cutoff radius and x,, x;, x5, x3, and x4 are the
potential parameters to be fitted. In the proposed LREP
model, ¢(r;) is expressed by

r,.
a(rij_rCZ)nexp|:_B<;u_1):|’ rierCZ’
0

O, rij>rc2,

(P(rij) =

3)

where r,, is also a cutoff radius and r is the first-neighbor
distance. o and B are two adjustable parameters, i.e., the
potential parameters. If necessary, r.;, 5, and r, can also be
treated as free parameters in the fitting procedure. m and n
are generally adopted with integer values and can be adjust-
able according to the specific element. From the forms ex-
pressed in Egs. (2) and (3), one sees clearly that if m>3 and
n>3, the terms of (r;;—r,)" and (r—rz)" can ensure ¢(r;),
@(ry) and their first derivatives smoothly go to zero at the
cutoff radii. In other words, the total energy and force in the
present potential can keep continuous and smooth in the
whole calculated range and thus completely remove the cut-
off problem taking place in the traditional short-range poten-
tials.

For the pure bcc transition metals, the potential param-
eters are determined by fitting their basic physical properties
obtained from experiments, i.e., the cohesive energy, lattice
constant, elastic constants, and vacancy formation energy.
Besides, when a metal is in equilibrium, the first derivative
dE of potential energy and the stress o of each unit cell
should equate to zero, so dE(a)|a=a0=0 and a(a)|a=a0=0 have
been regarded as the two fitting conditions in the present

TABLE 1. The potential parameters of six bce transition metals
derived in present study. m=4, n=6, r.j, r.», and ry expressed in A.
Xg» X1, Xo, X3, X4, and « are expressed in 10 eV A7, 10 eV A-m-1

m 2 3 4
(rij = re)) ™ (Xo + X173+ Xor + X375+ X4775),
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i =7.,
ij cl (2)
rl'j>rc1,

study so as to confirm the equilibrium state of a structure.
Different from the short-range potential, we adopted the
longer cutoff radii for all the bcc metals, i.e., r.y>r; and
ro>r¢, Where r3 and rg are the third- and sixth-neighbor
distances, respectively. Table I displays all the fitted potential
parameters for six selected bcc metals, i.e., Fe, Mo, W, V,
Nb, and Ta. It is noted that the reproduced properties, i.e.,
lattice constant, cohesive energy, elastic constants, and va-
cancy formation energy, completely match with their experi-
mental values. In addition, the derivative and stress are very
small, indicating that the fitted structures of the six studied
metals are very close to the equilibrium states.

To evaluate the relevance of the constructed potentials, we
first calculate the energies of the metastable structures, i.e.,
the fcc and ideal hep structures of the six bce metals at equi-
librium by using the constructed potentials. The fcc and hep
structures are first optimized using the constructed potentials
and then the potential energies, lattice constants of the meta-
stable structures, are calculated. It is noted that the atomic
volume is allowed to vary during the present optimization,
differing from other constant-atomic-volume methods, in
which the atomic volume is assumed to be constant in vari-
ous structures. Table II shows the energy differences between
the bec, fcc, and ideal hep structures predicted by the LREP
model for the six bcc metals. For comparison, the results
derived from the ab initio calculations and the results calcu-
lated from the FS and EAM potentials are also listed in Table
IL. In the present study, the ab initio calculations are carried
out using the well-established Vienna ab initio simulation
package (VASP).!2!3 In the calculation, the projector aug-
mented wave (PAW) method'# and the plane-wave basis to-
gether with fully nonlocal Vanderbilt-type ultrasoft pseudo-
potentials are employed.”> The exchange and correlation
items are described by the generalized-gradient approxima-
tion (GGA) proposed by Perdew and Wang.!® The integra-
tion in the Brillouin zone is done in a mesh of 11X 11X 11

10 eV A_m_z’ eVA™T, 107 eVAT, and 107 eV AT, TABLE II. Energy differences AE (meV) between three simple
respectively. structures for Fe, Mo, W, V, Nb, and Ta, respectively. The results of
FS and EAM are calculated from the potentials in Refs. 1 and 2.
Fe Mo W v Nb Ta The values of ¢/a for all hep structures are 1.632 99,
reg 4540 4.700 4.800 4.650 5.020 5.079 Fe Mo W v Nb  Ta
reo  6.600 6.600 6.800 6.700 6.700 6.700
xo 0.6676 29973 28576 0.7396  0.8503  0.6618 AEpec fec LREP 48 486 364 144 209 188
x; —-1.0212 -4.1933 -3.9805 -1.0602 -1.1104 -0.8748 Ab initio 124 423 478 255 326 243
x, 05893 21966 2.0772 05730 0.5462  0.4370 AEpeepep LREP 75 491 425 151 214 199
x3 —1.5190 -5.0972 -4.8066 -1.3743 -1.1905 -0.9714 Ab initio 62 460 563 292 351 314
x; 14745 44138 4.1581 1.2275 09645 0.8081 AEfec opep LREP 27 6 61 7 5 5
ro 24855 27280 2.7366  2.6241  2.8579  2.8579 Ab initio -61 37 84 36 24 71
B -1.5958 -0.1903 -1.3373 1.8017 1.6823  0.1175 FS 0 0 0 0 0 0
a 03479 14774  1.7151  0.8295  2.9256  3.1530 EAM 0 0 0 0 0 0
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TABLE III. Surface energies (J/m?) of three low-index faces for
Fe, Mo, W, V, Nb, and Ta, respectively.

Fe Mo \%% \% Nb Ta

(1100 EAM* 1535 2.127 2599 1.683 1.807 1.800
MEAMP 2356 2.885 3.427 2636 2490 2778

LREP  1.717 2229 2967 1.676 1.792 1.909

Expt.® 1.683 2019 2275 1.827 1.859 2.019

(100)  EAM* 1.685 2.284 2.809 1.831 1.968 1.990
MEAMP 2510 3.130 3.900 2.778 2715 3.035

LREP 1.899 2459 3.223 1929 2101 2223

Expt.c 2388 2868 3221 2596 2.628 2.868

(111) MEAM® 2.668 3.373 4.341 2931 2923 3.247
LREP 2.076 2.803 3.628 2.161 2343 2.480

4Reference 10.
PReference 8.
‘Reference 19.

special k points determined according to the Monkhorst-Pack
scheme, as such integration is proved to be sufficient for the
computation of the simple structures.'” From Table II, one
sees clearly that the values of AEp.. .. and AEy.. pep pre-
dicted by the present model match well with those derived
from the ab initio calculations. Both the present model and
ab initio calculations indicate that the bce structure has the
lowest potential energy, reflecting well the fact that the equi-
librium states of the six studied metals are in bcc structures.
As for the relative stability of the metastable fcc and ideal
hep structures, the values of AE. .y, predicted by the FS
and EAM potentials are equal to zero, indicating that the two
traditional short-range models cannot distinguish the energy
difference between the two structures. Inspecting the values
of AEfe._hep predicted by the LREP model, one sees that the
energy differences of Mo, W, V, Nb, and Ta are qualitatively
match with those derived from ab initio calculations. The
only exception is that of Fe, showing an opposite sign to that
derived from the ab initio calculations. The exceptional re-
sult possibly comes from the special property of element Fe,
i.e., its ferromagnetic property.

Based on the constructed potentials, we also calculated
the surface energies for the six bcc transition metals. Regard-
ing the surface energy calculation, the results obtained by
Foiles have proven that the relaxation would only result in a
minor reduction to the surface energy and would not greatly
affect the calculation results.'® We therefore only calculated
the unrelaxed surface energies for three low-index faces, i.e.,
(110), (100), and (111). The results calculated by the LREP
model, by EAM potential, and by MEAM potential, respec-
tively, as well as the experimental values are all listed in
Table III. It can be seen that for all the studied metals, the
energy sequence of these faces is completely consistent with
the results obtained by various computation methods, i.e., the
close-packed (110) face has the lowest energy, followed by
the (100) and then the (111) faces, which are in good agree-
ment with the experimental observations.?>?! In general, for
the (110) face, the results derived from the LREP model and
EAM potential are closer to the experimental values than
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FIG. 2. Total energy (E,), repulsive term (ER), n-body term

(EP), and the first derivative of total energy as a function of lattice
constant for bce Ta.

those obtained from the MEAM potential. For the (100) face,
the results from the MEAM and those from the LREP model,
respectively, show a little greater and less than the experi-
mental values, while those from the EAM potential show the
maximum departure comparing with the experimental val-
ues. In short, the surface energies of the six bcc metals de-
rived from the LREP model match well with the experimen-
tal results, suggesting an apparent improvement comparing
with those calculated from the empirical short-range poten-
tials proposed previously.

Another approach to evaluate the relevance of the con-
structed potential is to derive the equation of state (EOS)
from the potential and then compare it with the EOS ob-
tained from theory or from experiment. As an example, the
EOS, i.e., the potential energy as a function of the lattice

Pressure (MBar)

0+ T T T T T T T T T T T T T T
060 065 070 075 0.80 085 090 095 1.00
Relative Volume (V/V,))

FIG. 3. The relationships of pressure vs relative volume ob-
tained from the present model and experiments, respectively, for Fe,
Mo, W, V, Nb, and Ta. The solid curves are from the present model,
and the scattered points are from experiments. For each curve, the
value of the cross point with the vertical axis is zero. The experi-
mental values are from Refs. 23-26.
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constant for Ta, is therefore derived from the LREP model
and the Rose equation,?” respectively, and shown in Fig. 2.
One sees from Fig. 2 that the repulsive term, n-body term,
and the total energy derived from the LREP model can keep
smooth in the whole calculated range, and that the calculated
total energy matches well with that derived from the Rose
equation, indicating that the proposed LREP model can rea-
sonably describe the interatomic interaction of a system even
in a far from equilibrium state. In addition, the derivative of
the total energy as a function of the lattice constant is also
derived from the LREP model and shown in Fig. 2. From
Fig. 2, one sees that the derivative curve derived from the
LREP model is smooth in the whole calculated range, indi-
cating that the proposed LREP model can avoid the unphysi-
cal behaviors to emerge in simulations. Furthermore, we also
calculated the relationships of the pressure vs volume for the
six bcc metals based on the LREP model and compared them
with their respective experimental values in Fig. 3. It is
clearly shown that the agreement between the calculated re-
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sults and experimental values is good, indicating that the
LREP model can reasonably describe the P-V relationships
in the bce metals even at a nonequilibrium state.

In summary, a LREP model has been developed for the
bee transition metals and the LREP model can satisfactorily
reproduce the properties of the bcc metals as well as can
reasonably describe the interatomic interactions in the bcc
metals. Unlike the MEAM model or high-order-moment TB
models, the proposed LREP model has a simple analytic
form and can be widely applied in the metals, alloys (includ-
ing their order and disordered states), and in the large-scale
simulations.
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