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Far- and near-field second-harmonic scanning optical microscopy �SOM� of molecular quasi-one-
dimensional aggregates, such as molecular nanoneedles, is modeled in the frame of the effective susceptibility
concept formulated beyond the near-field approximation. Far- and near-field SOM images of molecular nanon-
eedles are calculated at both fundamental and second-harmonic frequencies for different polarization combi-
nations. Far-field two-photon luminescence SOM is also considered, and the simulated images are found
qualitatively consistent with the available experimental results.
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I. INTRODUCTION

Intensive studies of organic molecules and their nanoag-
gregates as basic elements for future optoelectronic and elec-
tronic devices have been carried out utilizing different meth-
ods for adequate characterization of their properties.1–3

Among these methods optical investigations are prevalent
due to their versatility, noninvasiveness, spectral selectivity,
and self-descriptiveness. Organic molecules can often be
highly polarizable and assemble at the surface of a solid into
large ordered noncentrosymmetric aggregates. In particular,
the molecules can stack, producing quasi-one-dimensional
forms. As a result, structures consisting of nanoneedles
achieving hundreds of nanometers in length can be formed at
the surface of a solid.4,5 For example, the chemical formulas
and structural forms of nanoaggregates of para-hexa-
phenylene6 and metal-substituted phthalocyanine7 are shown
in Fig. 1. Considering the interaction of molecular aggre-
gates with optical radiation, the knowledge of local-field dis-
tributions becomes very important for their investigation, be-
cause the local field at the molecules determines their optical
and electrical characteristics.8–10 In this connection, scanning
optical microscopy �SOM�, especially near-field SOM, is a
convenient instrument for visualization of local-field distri-
butions at molecular structures such as nanoneedles.11–13 Or-
ganic molecular aggregates are often characterized by strong
nonlinearities,14–16 which can be probed and studied using
nonlinear optical processes, e.g., second-harmonic genera-
tion. In particular, SOM at the second harmonic �SH� fre-
quency can be successfully used for investigations of the
properties of molecular systems.17,18 The first experiments
with near-field SH SOM �Refs. 19–21� demonstrated the ef-
ficiency of this technique for the visualization of local-field
distributions and gave rise to intensive studies of different
objects with SH scanning near-field optical microscopy
�SNOM�.22–25 Subsequent advances in SH SOM experimen-
tal techniques14–16 required the development of adequate the-
oretical modeling tools for simulation and interpretation of
the SH SOM images. Thus, the standard method of solving
the Lippmann-Schwinger equation to find the self-consistent
fields based on a discretization scheme was first used.26,27

Another approach is based on the effective susceptibility
concept, which allows one to obtain an analytical solution of
the Lippmann-Schwinger equation.28–31 It is important to
note that, in later studies,28–33 the procedure of self-
consistency for fields at both the fundamental harmonic �FH�

FIG. 1. �Color online� The chemical formulas and structural
forms of organic molecular aggregates of para-hexaphenylene �a�
and metal-substituted phthalocyanine �b�.
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and SH frequencies was implemented. All these methods in-
voke the near-field approximation, and, strictly speaking, are
applicable only for microscopy of objects whose linear di-
mensions are �much� smaller than the pump �FH� light wave-
length. In order to model the SOM of objects whose linear
dimensions are larger than the wavelength the above men-
tioned methods have to be reformulated.

In this work we report on modeling of both SH SNOM
and SH scanning far-field optical microscopy �SFOM� of
molecular quasi-one-dimensional aggregates, i.e., nanoneed-
les, based on the approach developed in our previous
work.28–31 In order to extend our approach beyond the near-
field approximation, we use a series expansion for the photon
propagator, including both near-, middle-, and far-field
terms.

II. GENERAL SELF-CONSISTENT EQUATIONS

The general framework for modeling of the SH near- and
far-field imaging used in this work was developed
previously.28–31 The main problem in modeling of SOM con-
sists in taking into account nonlocal retarding interactions
between different parts of an object, e.g., a nanoneedle in our
case. This means that the Lippmann-Schwinger integral
equation

Ei�R� ,�� = Ei
�I��R� ,��

− i��0�
V

dR� �Gij�R� ,R� �,��� jl���El�R� �,�� , �1�

where � is the FH frequency, should be solved using the

Green’s function Gil�R� ,R� � ,�� with retardation being taken
into account, i.e., beyond the near-field approximation. It has
been shown28–31 that the solution of Eq. �1� can be written
via the effective susceptibility tensor

Xij�R� ,�� = ���ij����−1 + Sji�R� ,���−1 �2�

in the form

Ei�R� ,�� = Ei
�I��R� ,�� − i��0�

V

dR� �Gij�R� ,R� �,��

�Xjl�R� �,��El
�I��R� �,�� , �3�

where �ij��� is the susceptibility tensor �describing the linear
response on the local field� that characterizes the object
material and V is the object �nanoneedle� volume, and

Ei
�I��R� ,�� is the incident field which illuminates the object-

substrate system. The self-energy part Sji�R� ,�� can be rep-
resented in the form

Sji�R� ,�� = i��0�
V

dR� �Gji�R� ,R� �,�� . �4�

The illuminating field is connected with a long-range exter-

nal �incident from outside� field Ej
�0��R� ,�� by the relation

Ei
�I��R� ,�� = Iij�R� ,��Ej

�0��R� ,�� , �5�

where Iij�R� ,�� is the illumination tensor. In the case of
SNOM, where illumination of the object is realized by a

probe having coordinates R� p, the illumination tensor can be
presented in the form

Iij�R� ,�� = − i��0Vp�p���Gij
�0��R� ,R� p,�� , �6�

with Vp and �p��� being the volume and electric susceptibil-
ity of the probe, respectively. In the case of SFOM using a
Gaussian beam illumination, the illumination tensor is writ-
ten in the form

Iij�R� � = exp�−
�x − xc�2 + �y − yc�2

�0
2 	Uij , �7�

where Uij is the unit tensor, xc and yc are the coordinates of
the illumination spot center in the plane of the substrate sur-
face, and �0 is the characteristic diameter of the light spot.

It should be mentioned that the Green’s function in the
case of SNOM has to be written in the form29

FIG. 2. �Color online� Sketch of light scattering processes in the
object-probe system.

FIG. 3. �Color online� Schematics of the SOM systems under
consideration: Scanning far-field optical microscopy �a� and scan-
ning near-field optical microscopy �b�.
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Gij�R� ,R� �,�� = Gij
�0��R� ,R� �,�� − i��0Vp�p���

�Gil
�0��R� ,R� p,��Glj

�0��R� p,R� �,�� , �8�

which allows us to take into account the multiple scattering
processes inside the probe-object-surface �of the substrate�
system. Indeed, the first term of Eq. �8� describes the direct

light propagation from point R� � to point R� , but the second

term of Eq. �8� describes the light propagation from point R� �

to point R� via reradiation by the probe localized at point R� p
�see Fig. 2�. In the case of Gaussian beam illumination
one should use the pseudovacuum Green’s function

Gij
�0��R� ,R� � ,��,11 which characterizes the electrodynamical

properties of the substrate and surrounding medium �without
the object�.

As a result, the self-consistent FH field inside the object,
in both schemes of illumination �with the probe or the
Gaussian beam�, can be represented in the general form

Ei�R� ,�� = Lij�R� ,��Ej
�0��R� ,�� , �9�

with the local-field factor given by

Lij�R� ,�� = Iij�R� ,��

− i��0�
V

dR� �Gik�R� ,R� �,��Xkl�R� �,��Ilj�R� �,�� .

�10�

The knowledge of the self-consistent FH field is the first step
toward determination of the self-consistent SH field. The
main idea when finding the SH field is based on representing
the effective SH current density inside the object as a sum of
two parts29

Ji�R� ,2�� = Ji
�L��R� ,2�� + Ji

�N−L��R� ,2�� , �11�

where the linear contribution Ji
�L��R� ,2�� to the SH current

density is driven by the self-consistent SH field, and the non-

linear contribution Ji
�N−L��R� ,2�� is induced �via SH genera-

tion� by the self-consistent FH field. These two contributions
can be then expressed as follows:

Ji
�L��R� ,2�� = �ij�2��Ej�R� ,2�� �12�

and

Ji
�N−L��R� ,2�� = �ijk

�2���,�;2��Ej�R� ,��Ek�R� ,�� . �13�

Applying the general framework developed previously,29–31

one obtains for the self-consistent SH field

Ei�R� ,2�� = Lilk
�SH��R� ,�,�;2��El

�0��R� ,��Ek
�0��R� ,�� , �14�

where the SH local-field factor is given by

Lijk
�SH��R� ,2�� = Iijk

�SH��R� ,2�� − i2��0�
V

dR� �Gim�R� ,R� �,2��

�Xml�R� �,2��Iljk
�SH��R� �,2�� , �15�

with the effective susceptibility �Eq. �2�� calculated at the SH

frequency. The illumination tensor Iijk
�SH��R� ,2�� connects the

external field and incoming SH field

Ei
�incoming��R� ,2�� = Iijk

�SH��R� ,2��Ej
�0��R� ,��Ek

�0��R� ,�� ,

�16�

and is given by

Iijk
�SH��R� ,2�� = − i2��0�

V

dR� �Gim�R� ,R� �,2��

��mng
�2� ��,�;2��Lnj�R� ,��Lgk�R� �,�� ,

�17�

where �ijk
�2��� ,� ;2�� is the local nonlinear �second-order�

susceptibility tensor.
Indeed, substituting Eqs. �12� and �13� in the equation for

the self-consistent SH field, one obtains

Ei�R� ,2�� = Ei
�incoming��R� ,2��

− i2��0�
V

dR� �Gij�R� ,R� �,2��� jl�2��El�R� �,2�� ,

�18�

where the incoming SH field is

FIG. 4. �Color online� Scheme of the nanoneedle considered in
the calculation.

FIG. 5. �Color online� Laboratory �needle� and molecular coor-
dinate frames.

FIG. 6. �Color online� Near-field images of the short �1.8 �m�
needle calculated at the FH �a� and SH �b� frequencies for xx po-
larization and depicted in units of the FH wavelength used
�750 nm�.
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Ei
�incoming��R� ,2�� = − i2��0�

V

dR� �Gim�R� ,R� �,2��

��mjl
�2� ��,�;2��Ej�R� �,��El�R� �,�� .

�19�

Once the self-consistent FH field is determined �via Eq. �9��
the incoming field in Eq. �18� becomes known and can thus
be used for solving the problem of self-consistency at the SH
frequency.

III. IMAGE FORMATION IN FAR- AND NEAR-FIELD
MICROSCOPY

In this work we consider, for simplicity, the experimental
setup typical for SOM operating in reflection mode �Fig. 3�.
Let us assume that the external field E� �0� is linearly polarized
along either the x or y axis. To obtain expressions for the
field intensity being recorded with a detector �as a function
of the scanning coordinates�, we separately consider the two
cases of the detected signal being at the FH and SH fre-
quency, respectively.

A. Imaging at the fundamental harmonic frequency

A scanning probe �Gaussian beam�, which is moved along
the plane parallel to a substrate surface, induces currents at
the FH frequency inside the object and substrate. These cur-
rents �connected with the local field via the constitutive

equation� create the FH field Ei
FF�R� d ,�� at the �remote� de-

tector situated in the far-field �FF� zone:

Ei
FF�R� d,��

= − i��0�
V

dR� �Gim�R� d,R� �,���mn�R� �,��En�R� �,�� .

�20�

The dependence of the FH field intensity at the detector on
the scanning coordinates forms the near- or far-field image of
the object �nanoneedle�. Let us take into account that the

distance between the object and detector 
R� d−R� obj
 is consid-
erably larger than the linear dimensions of the object. Then,
in the coordinate system having the origin coinciding with
the nanoneedle center, one can use the following approx-

imation for all R� ��V :Gij�R� d ,R� � ,���Gij�R� d−R� obj ,��

�Gij�R� d ,��. The FH field intensity at the detector


Ei
FF�R� d ,��
2 can then be written down as follows:

W�R� d,�� = 
Gii
�0��R� d,��
2���0�

V

dR� ��in���Lnj�R� �,���2

�
Ej
�0����
2. �21�

The first factor on the right-hand side of Eq. �21� charac-
terizes the experimental setup and plays the role of a setup
function, which is constant during the scanning and can be
considered as a normalizing factor. This implies that the FH
images �obtained with SNOM or SFOM� can be described
with the following expression keeping the essential terms of
Eq. �21�:

Pij�R� d,�� = ���0�
V

dR� ��in���Lnj�R� �,���2

. �22�

B. Imaging at the second-harmonic frequency

The scanning probe �Gaussian beam� induces currents in-
side the object and substrate at both FH and SH frequencies

resulting in the self-consistent SH field Ei�R� ,2�� �Eq. �14��,
which can be related, in turn, to the self-consistent current at
the SH frequency:

Ji
�s−c��R� ,2�� = �ij�R� ,2��Ej�R� ,2�� . �23�

The SH field Ei
FF�R� d ,2�� at the detector in the far-field zone

induced by the above SH current can then be written in the
form

Ei
FF�R� d,2�� = − i2��0�

V

dR� �Gim�R� d,R� �,2��

��mn�2��En�R� �,2�� . �24�

Taking again into account that the distance between the scan-
ning area and the detector is much larger than the object’s
linear dimensions, one can �analogously to the previous case�
reduce the expression for the SH field intensity at the detec-
tor �Eq. �24�� to the following form:

FIG. 7. �Color online� Far-field SH image of a single
3.6-�m-long nanoneedle calculated for xx polarization.

FIG. 8. �Color online� Near-field images of the short �1.8 �m�
needle calculated at the FH �a� and SH �b� frequencies for xy
polarization.
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W�R� d,2�� = 
Gii
�0��R� d,2��
2

��2��0�
V

dR� ��in�2��Lnjj
�SH��R� ,2���2


Ej
�0����
4.

�25�

Note that, within these approximations, nondiagonal compo-
nents of the Green’s dyadic being negligibly small in com-
parison with the diagonal ones are omitted. As a result, one
can conclude that the SH image, i.e., the dependence of the

SH field intensity W�R� d ,2�� / 
Ej
�0����
4 at the detector as a

function of the scanning probe �or a center of the Gaussian
beam� coordinates is determined by the expression

Nij�R� d,2�� = �2��0�
V

dR� ��in�2��Lnjj
�SH��R� ,2���2

.

�26�

The tensor structure of Nij and Pij has a clear physical mean-
ing, viz., the value of the corresponding tensor component is
proportional to the intensity of the local-field component po-
larized along the i axis and with the external field polarized
along the j axis.

Finally, we would like to remark that, while the value of
Nij determines the near- or far-field SH image, the near- or
far-field images in the case of two-photon-absorption-
induced luminescence are determined by the value of Pij.
Indeed, the process of two-photon luminescence �TPL� con-
sists of two stages. The first stage is the absorption of two
photons of frequency � by the system. The second stage is
the transition of the excited system to the ground state with
emission of a photon �of frequency ����. The process of
two-photon absorption is defined by the square of the local-
field intensity.34–36 The intensity of TPL is thereby propor-
tional to the local-field intensity squared, implying that the

TPL images are proportional to the value of Pij�R� d ,��2. The
calculation of the spatial distributions of Pij and Nij is the
main task of the present consideration.

IV. NUMERICAL CALCULATIONS

In order to explore the main features of SOM of nanon-
eedles, we consider hypothetical quasi-one-dimensional mo-
lecular aggregates, choosing the parameters that would allow
us to clearly see the characteristic traits of SNOM and SFOM
images of nanoneedles and, at the same time, to compare the

calculated images with those obtained experimentally. Con-
sequently, we have chosen sufficiently large values of non-
linear susceptibilities of the molecular aggregates, assuming
that only three susceptibility components play an essential
role in forming the response from the molecular aggregates
at the SH frequency. The numerical calculations were carried
out with the following system parameters �Fig. 4�. The
nanoneedles were considered to be shaped as elliptical cyl-
inders with half-axes r=18 nm �parallel to the substrate sur-
face� and r�=1.8 nm �perpendicular to the surface�. Two
kinds of needles were considered; a short needle with the
length l=1.8 �m and a long needle with the length l
=3.6 �m. It has been supposed that the nanoneedles were
formed as sets of molecular sticks whose main axis is rotated
by an angle �=72° relative to the main axis of the
nanoneedle37,38 as shown in Fig. 5. Because organic mol-
ecules interacting with the surface of a solid are often
strongly polarized, one should take into account that the po-
larizability component normal to the surface will differ from
its lateral components �even for spherically symmetric mol-
ecules�. On the other hand, the nanoneedle represents a
monoaxial structure. Under these circumstances, we consid-
ered that the linear susceptibility tensor of the nanoneedles
has the following components: �xx=0.71, �yy =0.18, �zz
=0.2. As mentioned above, it was assumed that the nano-
needles are formed by molecular sticks with relatively large
nonlinearity so that the corresponding nonlinear susceptibil-
ity tensor has only three nonzero components: �

x�x�x�
�2�

=0.001 and �
y�x�x�
�2� =�

z�x�x�
�2� =0.0005 �given in arbitrary units�.

Here, the coordinate axis x� is directed along the long mo-
lecular axes, and the axes y� and z� are located in the plane
perpendicular to the x� axis so that the z� axis is perpendicu-
lar to the substrate surface. Bearing in mind that the mol-
ecules are oriented with their long axes at the angle �=72°
with the nanoneedle axis �see Fig. 5�, one should use the
usual expressions �ij =cii�cjj��i�j� and �ijk

�2�=cii�cjj�ckk��i�j�k�
�2�

�cjj� is the cosine of the angle between the j axis in the
laboratory and the j� axis in the molecular coordinate sys-
tem�, which relate the susceptibility tensor components of
the nanoneedles in the molecule coordinate system to those
in the laboratory coordinate system. As a result, both linear
and nonlinear susceptibility tensors become rather compli-
cated; namely, there are five nonzero and different compo-
nents of the linear susceptibility tensor, �xx, �xy, �yx, �yy, and
�zz, and 12 nonzero components of the nonlinear second or-
der susceptibility tensor, �xxx

�2� , �xxy
�2� , �xyx

�2� , �xyy
�2� , �yxx

�2� , �yxy
�2� , �yyx

�2� ,
�yyy

�2� , �zxx
�2� , �zxy

�2� , �zyx
�2� , and �zyy

�2� .

FIG. 9. �Color online� Far-field SH image of two parallel long
nanoneedles separated by a distance of 0.18 �m �schematically
shown as gray lines� and calculated for xx poloarization.

FIG. 10. �Color online� Far-field SH image of inhomogeneous
long nanoneedle calculated for xx polarization. The region of high
values of susceptibilities is schematically shown as dark gray.
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In the case of SNOM imaging, we considered that the
probe having a radius rp=15 nm and electrical susceptibility
�p=3.7 was scanned along the plane Zp=325 nm. In the case
of SFOM imaging, the diameter of the Gaussian beam was
chosen to be �=325 nm. The FH wavelength of the incom-
ing field was set to 750 nm. To correctly take the multiple
scattering processes inside �rather long� nanoneedles into ac-
count, one has to go beyond the near-field approximation and
employ the complete form of the Green’s dyadic, viz.,

GJ�0��R� ,R� �,�� =
1

4	k0
2��−

1

R
−

ic

�R2 +
c2

�2R3	UJ

+ � 1

R
+ i

3c

�R2 −
3c2

�2R3	e�Re�R�ei��/c�R,

�27�

including all terms. The real and imaginary parts of the near-
and middle-field contributions to the Green’s dyadic have the
following form:

Re GJNF+MF
�0� �R� ,R� �,�� =

1

4	k0
2

− 3R� · R� + R2UJ

R3

�� 1

�k0R�2 +
1

2
−

1

8
�k0R�2	 ,

Im GJNF+MF
�0� �R� ,R� �,�� =

1

4	k0
2

− 3R� · R� + R2UJ

R3

��1

3
�k0R� −

1

24
�k0R�3	 , �28�

with the corresponding parts of the far-field contribution be-
ing as follows:

Re GJFF
�0��R� ,R� �,�� =

1

4	k0
2

R� · R� − R2UJ

R3

��1 −
1

2
�k0R�2 +

1

24
�k0R�4	 ,

Im GJFF
�0��R� ,R� �,�� =

1

4	k0
2

R� · R� − R2UJ

R3 ��k0R� −
1

6
�k0R�3	 ,

�29�

with R2= �x−x��2+ �y−y��2+ �z−z��2 and k0=� /c. It has
been shown39 that taking into account a linear substrate leads
only to small rescaling of the SH near-field images. There-
fore, for the sake of simplicity, we assumed in this work that
the influence of a substrate on the formation of the local field
can be described within the near-field approximation and
used the indirect part of the Green’s dyadic in the form

Iij�R� ,R� �,�� = − ����
1

R̃5� R̃2 − 3�x − x��2 3�x − x���y − y�� 3�x − x���z − z��

− 3�x − x���y − y�� R̃2 − 3�y − y��2 3�y − y���z − z��

− 3�x − x���y − y�� − 3�y − y���z − z�� − R̃2 + 3�z − z��2
� , �30�

with

���� =
1

4	k0
2


2��� − 1


2��� + 1
�31�

and

R̃ = ��x − x��2 + �y − y��2 + �z + z��2, �32�

where 
2��� is the dielectric function of the substrate.
Many integrals that should be calculated in order to find

the self-consistent field are improper due to singularity of the
Green’s dyadic function at R=0. This problem is well known
and related to the radiation reaction of the field. The problem
can be solved by making use of the concept of exclusion
volume.40,41 The main idea is to introduce the exclusion vol-
ume V� whose depolarizing properties are accounted for by a
special source tensor. For example, when calculating the
self-consistent field the following relation should be applied:

Ei�R� � = − i��0lim
�→0
�

V−V�

dR� �Gil�R� ,R� ��Jl�R� �� −
1

i��0
LilJl�R� � ,

�33�

where Lil is the source tensor, which depends solely on the
geometry of the exclusion volume V�. For cylinder length l
and radius rn, Lil has three nonzero components

Lxx = 1 −
l

�l2 + rn
2
, Lyy = Lzz =

l

2�l2 + rn
2

. �34�

One should note that, because the solutions of the near- and
far-field image visualization problem at both FH and SH fre-
quencies were obtained analytically, the numerical calcula-
tions were reduced to simple tabulation of the functions in
the right parts of Eqs. �22� and �26�. Consequently, only the
problem of correct numerical calculations of the three-
dimensional 3D integrals, as discussed above, was nontrivial.
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V. RESULTS AND DISCUSSION

The near- and far-field SOM images of molecular nanon-
eedles at both FH and SH frequencies were calculated for
different polarization configurations. Here we use the follow-
ing notation. ij polarization means that the external illumi-
nating field is polarized along the j axis of the laboratory
coordinate system, and the field detected in the far-field zone
is polarized along the i axis. Aiming at a qualitative analysis
of near- and far-field images of different configurations of
the nanoneedles, we shall not compare the intensity values at
the detector, but restrict ourselves to considering only the
image appearances. As usual, the brightness in the presented
images is proportional to the field intensity at the �remote�
detector. The near-field FH and SH images calculated for the
short �1.8 �m� needle are shown in Figs. 6 and 7 for the
main polarization configurations.

The appearance of the FH near-field image calculated for
a co-polarized configuration are rather anticipatory being
very similar to previous FH images for the objects with
simple shapes.29,42 On the other hand, the SH near-field im-
ages demonstrate a strong localization of the SH field to the
object. Similar results were obtained for other polarization
configurations. As an example, Fig. 8 shows the near-field
FH and SH images of a single short nanoneedle, calculated
for a cross-polarized xy configuration. Note that the maxima
of the local field intensity for both FH and SH images are
located outside the object, but the SH local-field distribution
has maximal values almost along the entire side of the
nanoneedle. Obviously, this can be explained by a rather
strong nonlinear polarization for this configuration, being
supplied mainly by the �xyy

�2� component. It should be noted

that, due to the complicated tensor structure of both the lin-
ear and nonlinear susceptibilities for the considered nano-
needles, one cannot make a simple analysis of the SH images
based on symmetry aspects.

The far-field images were calculated for the long
�3.6 �m� nanoneedles and the main results are shown in
Figs. 8–13. As in the case of the near-field images �Figs. 6
and 7� the far-field SH image of a single nano-needle �Fig. 7�
shows that the SH field is strongly localized at the object.
The SH local field maximum appear as a homogeneous
bright area, spread along the needle. It should be noted that,
since the linear dimension of the molecular aggregates form-
ing the nanoneedle is less than the wavelength, one can as-
sume the needle to be a homogeneous structure. Despite the
fact that in a real situation the nanoneedles of para-
hexaphenylene aggregates are structures consisting of nu-
merous molecular sticks, using this approximation qualita-
tively gives rather acceptable results close to those obtained
experimentally.38 However, these experiments also showed
some variations of the nonlinear signal along the needles.38

In order to explain such features, we calculated the far-field
images from two parallel needles separated by a distance of
0.18 �m. The SH image of these needles, calculated for
xx-polarization, is shown in Fig. 9. As seen, the interference
between the local fields caused by each of the needles shifts
the high field density to the ends of the needles. Another
possible reason for variations in the SH intensity can be in-
homogeneities of the needle along its main axis. To visualize
such an effect, we calculated the far-field SH image from a
3.6-�m-long nanoneedle having a central piece �1.8 �m
along the main axis� characterized by twice the usual suscep-
tibility values �Fig. 10�. As seen from Fig. 10, there is an
area of increased SH intensity along the inhomogeneous
nano-needle. It is interesting to note that the far-field FH
image, calculated for the pair of nanoneedles, actually has
the domain of strong field localization between the needles
�see Fig. 11�. The common influence of inhomogeneity and

FIG. 11. �Color online� Far-field FH image of two parallel and
long nanoneedles separated by a distance of 0.18 �m �schemati-
cally shown as gray lines� and calculated for xx polarization.

FIG. 12. �Color online� Far-field SH image calculated for xx
polarization from a pair of parallel nanoneedles, of which one is
inhomogeneous along its main axis. The separation between the
nanoneedles is 0.18 �m as shown schematically by gray lines and
with the domain having increased susceptibility values marked as
dark gray.

FIG. 13. �Color online� Far-field SH image of the two parallel
long nanoneedles separated by a distance of 0.18 �m �schemati-
cally shown as gray lines� and calculated for xy polarization.

FIG. 14. �Color online� Far-field TPL images �4.65
�2.25 �m2� of a single long nanoneedle �a� and of two nano-
needles �b� both calculated for yy polarization.
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interaction between needles can lead to different appearance
of the images. Figure 12 shows the far-field SH image from
a pair of parallel nanoneedles, of which one is inhomoge-
neous along its main axis. The location of the inhomoge-
neous domain and the distance between the needles were
chosen as in the previous case, but with a selected difference
in susceptibility values along the inhomogeneous nanoneedle
of only �7%. As seen from Fig. 12, the domain of high SH
intensity is located near the susceptibility jump. This means
that the variations in the experimentally obtained SH inten-
sity distribution along the nanoneedles can be explained by
interference between the fields caused by different inhomo-
geneous nanoneedles situated closely to each other. A similar
situation arises in the case of cross polarization. Figure 13
shows the far-field SH image from a pair of homogeneous
nanoneedles calculated for xy polarization. The circumstance
that the domains of strong local SH fields are shifted slightly
toward one of the needles can probably be related to inter-
ference between the SH fields and strong anisotropy of the
system under consideration. Indeed, the respective compo-
nents of the nonlinear response tensor have the form �xyy
=0.27�x�x�x�−0.87�y�x�x� and �yxx=0.09�x�x�x�+0.03�y�x�x�.
This means that the molecular aggregate responses to the y
and x components of the incoming fields are very different.
In the case under consideration, the interactions between
nanoneedles, which are characterized by strong anisotropic
nonlinear susceptibilities, apparently could lead to a nonsym-
metric distribution of the local SH field. This fact could be
considered as a reason for that uncommon view of the SH
far-field image shown in Fig. 13. We would like to empha-
size that, regardless of the fact that the needle diameter is
much less than the needle length, the widths of the SH spot
along the x and y axes are comparable. This can be explained
by two reasons. The first of them is connected with the tensor
structure of the nanoneedle, for which the �yxx

�2� component is
comparable with the �xxx

�2� component. The second reason is
the interference between self-consistent SH fields induced by
SH currents in different parts inside the nanoneedle. Due to
this interference, which is mainly realized via the environ-

ment, the area of strong SH field localization is appreciably
large.

The calculations of TPL were done for the long nano-
needles. Figure 14 shows the far-field TPL images calculated
for one and two nanoneedles. Here we chose the Gaussian
beam radius to be 0.2� in order to have the relations between
the needle width and wavelength of the scanning beam close
to the experimental situation. Comparing the far-field TPL
image from a single nanoneedle calculated for yy polariza-
tion �Fig. 14�a�� to the same obtained experimentally �see
Fig. 15�, there is an apparent qualitative agreement between
these images. On the other hand, comparing the TPL images
for two closely situated needles calculated here �Fig. 14�b��
and obtained experimentally �Fig. 16�, one can see some
differences. The main difference is the absence of bright
spots in the calculated TPL image. The appearance of these
spots in the experimental TPL images can be explained by
several reasons. We think that the main reason is inhomoge-
neity of the needles. Indeed, calculations of the TPL image
for a two needles where one of them has a domain charac-
terized by �6% higher susceptibility values produce results
�not shown here� very close to the experimental ones �see
Fig. 17�. The increased TPL intensity from the left part of the
needles in Fig. 16 can be explained by the slightly decreasing
space between the needles causing stronger field interaction
and local-field enhancement. Numerical calculations per-
formed for such coupled nanoneedles situated close to each
other give us similar results �not shown here�. The cross
polarized experimental TPL images were often characterized
by bright spots along the nanoneedle area �Fig. 17�. The
numerical calculations for cross-polarized configurations
produce similar results �Fig. 18�. This suggest that, similar to
the case of yy polarization, the far-field TPL images obtained
for cross polarization are influenced both by interference of
the local field related to coupled needles and by intrinsic
properties of the formation of local fields.

In conclusion, the proposed approach for modeling near-
and far-field scanning optical microscopy gives a qualita-

FIG. 15. �Color online� Experimental far-field TPL image
�7.24�2.93 �m2� of a single molecular para-hexaphenylene nano-
aggregate obtained for yy polarization.

FIG. 16. �Color online� Experimental far-field TPL image
�8.45�2.93 �m2� of two molecular para-hexaphenylene nanoag-
gregates obtained for yy poloarization.

FIG. 17. �Color online� Experimental far-field TPL image
�7.24�2.93 �m2� of two molecular para-hexaphenylene nanoag-
gregates obtained for xy polarization.

FIG. 18. �Color online� Far-field TPL image �4.65�2.25 �m2�
of a single long nanoneedle calculated for xy polarization.
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tively good agreement with the experimentally obtained im-
ages of molecular nanoneedles. The approach is based on the
effective susceptibility concept, which allows one to write
the analytical solution for self-consistent fields at both
fundamental- and second-harmonic frequencies. In addition,
the TPL effects can be calculated in the frame of the devel-
oped approach. It should be noted that calculations of the SH
field at the detector and the field caused by TPL processes
are performed within different schemes: That is, the field
radiated to the detector by TPL is calculated as a non-self-
consistent field caused by the currents connected with the
self-consistent FH field. On the other hand, the SH field de-
tected in the far-field zone was calculated as a self-consistent
field caused by both nonlinear and linear contributions of the
currents. Moreover, the proposed approach in fact allows us
to obtain the analytical solution of the self-consistent proce-
dure and the numerical calculations were finally reduced to

simple tabulation of the analytical formula. This circum-
stance leads to considerable reduction of computing time,
which is an important feature of the approach. Moreover,
because the method is based on the effective susceptibility
concept, the main information about interactions inside the
considered system is contained in the self-energy part. The
approximations used during analytical estimations may have
only quantitative and not qualitative influence on the results.
This fact allows us to expect that the proposed approach
could be useful for modeling near- and far-field images of
rather complicated molecular or solid nanoneedles.
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