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A theory of electron spin relaxation in semiconducting carbon nanotubes is developed based on the hyperfine
interaction with disordered nuclei spins I=1/2 of 13C isotopes. It is shown that strong radial confinement of
electrons enhances the electron-nuclear overlap and subsequently electron spin relaxation �via the hyperfine
interaction� in the carbon nanotubes. The analysis also reveals an unusual temperature dependence of longitu-
dinal �spin-flip� and transversal �dephasing� relaxation times: the relaxation becomes weaker with the increas-
ing temperature as a consequence of the particularities in the electron density of states inherent in one-
dimensional structures. Numerical estimations indicate relatively high efficiency of this relaxation mechanism
compared to the similar processes in bulk diamond. However, the anticipated spin relaxation time of the order
of 1 s in carbon nanotubes is still much longer than those found in conventional semiconductor structures.
Moreover, it is found that the curvature effect and subsequent rehybridization of s and p orbitals in ultrathin
nanotubes may significantly impact the electron spin relaxation leading to its further suppression at certain
dimensions.
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Due to their unique electrical properties, carbon nano-
tubes �CNTs� are considered to be the ultimate structure for
continued “scaling” beyond the end of the semiconductor
microelectronics roadmap.1 Moreover, the unique electrical
properties of CNTs are enhanced by the equally unique struc-
tural properties. This combination assures the development
of CNTs for important applications and has largely been the
focus of attention to date �see Refs. 2 and 3 as well as the
references therein�. Recently, however, the researchers are
beginning to explore other important advantages that the
CNTs can offer. For example, the CNTs with naturally low or
no impurity incorporation allow, in addition to the more con-
ventional scaled transistor application, the injection and use
of electrons with polarized spin4,5 as an added variable for
computation. Thus CNTs are an ideal medium for the devel-
opment of the emerging field of spintronics.6,7 Further, the
anticipated long spin relaxation times allow coherent ma-
nipulation of electron spin states at an elevated temperature,
opening a significant opportunity for spin-based quantum in-
formation processing. Clearly, spin dependent properties of
CNTs warrant a comprehensive investigation from the point
of view of fundamental physics �see, for example, Refs. 8
and 9� and practical applications.

The objective of the present paper is to theoretically in-
vestigate the electron spin relaxation properties in the CNTs,
a crucial piece of information for any spin related phenom-
ena. Specifically, we consider the electron hyperfine interac-
tion �HFI� with nuclear spins I=1/2 of 13C isotopes �with the
natural abundance of 1.10%�. The HFI is thought to be one
of the most important spin relaxation processes in the CNTs;
strong radial confinement of electrons in the CNTs enhances
electron-nuclear overlap and subsequently the hyperfine in-
teraction compared to the bulk crystals �see, for example,
Ref. 10 and the references therein�. On the other hand, the
mechanisms related to spin-orbital interaction are expected
to be extremely weak in CNTs.11 In the following analysis,
the main emphasis will be on the single-walled semiconduct-
ing nanotubes.

The property of our interest is the longitudinal �T1� and
transversal �T2� spin relaxation time of an electron with the
position vector r� and spin S� in a CNT �see Fig. 1�. The
governing Hamiltonian caused by the Fermi contact HFI

with N nuclear spins I�j located at lattice sites R� j can be
expressed as12

Hhf = �0ahf�
j=1

N

S�I�j��r� − Rj
� � � �� S� , �1�

where the HFI constant ahf and the area of the graphene
sheet �0 are normalized per carbon atom. As indicated, Hhf

FIG. 1. Upper: Lattice structure of the grapheme sheet. The

carbon atoms are located at the vertices of hexahedrons. b�1 and b�2

are primitive translation vectors. L� is the chiral vector and M� de-

notes the direction perpendicular to L� . The lengths of the vectors are
b=�3aC-C; L=b�n1

2+n2
2+n1n2; aC-C is the distance between the

nearest carbon atoms. The figure depicts the particular case of n1

=4, n2=2. Lower: CNT as a tortile graphite sheet. � and � denote
the coordinates for the electronic states. The direction of the mag-

netic field B� is also shown.
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can also be expressed in terms of the fluctuating field opera-

tor �� that mediates spin relaxation. Due to the very small
magnitude of ahf ��0.1 �eV�, the interband scattering via
the HFI is neglected and the basis for the Hamiltonian is
restricted to a single semiconducting band.

To proceed further, �� must be expressed in terms of elec-
tronic Bloch states of the relevant energy bands. In an effec-
tive mass approximation, the eigenstates for the conduction
bands in the vicinity of the K point take the form3,13

�k� =
1

�2A0L
	B�,n�k�

1

ei�æ�,n�+k��, �2�

where A0 denotes the length of the CNT, L� �=n1b�1+n2b�2� the

chiral vector in terms of primitive translation vectors b�1, b�2

and integers n1, n2, and B�,n�k�= �æ�,n− ik� /�æ�,n
2 +k2 with

æ�,n= �2	 /L��n−� /3�; the quantum number n
=0, ±1, ±2, . . . distinguishes the energy bands, while � takes
one of the three integers −1,0 ,1 that makes �n1−n2−�� an
integer multiple of 3. As shown in Fig. 1, � and � represent

the coordinates for the axes directed along L� �i.e., the cir-

cumference� and the CNT �i.e., M� �, respectively. The eigen-
states �k�� for the K� valley can be readily obtained from Eq.
�2� by substituting B�,n→B−�,n

* , and k→k�. The wave num-
bers k and k� are determined from the K and K� points of the
Brillouin zone, respectively.

The corresponding dispersion relation for the �k� states
reads


n,k = ��æ�,n
2 + k2, �3�

where � is a transfer matrix element. Assuming that only the
lowest conduction band is occupied by electrons in a semi-
conducting CNT with �= +1 or −1, we restrict our consider-
ation to the n=0 case at a given temperature T. Then, Eq. �3�
in the vicinity of the K point can be approximated as


k =
Eg

2
+

�2k2

2m* �4�

with an effective mass m*=2	�2 /3L� and the band gap Eg
=4	� /3L. In the K� valley, a similar dispersion relation can
be obtained when k is substituted by k�. Although it is known

that the external magnetic field B� modifies the CNT elec-
tronic states, this effect is neglected as the relevant parameter

�d /2aH�2 �where d= �L� � /	 is the CNT diameter and aH

=�c� /eB the magnetic length� is practically very small.3,13

Hence we only consider the influence of B on electron spin
states through the Zeeman energy ��; �= ±1/2 is the spin

projection on the B� direction.
Utilizing the expressions given above, we can represent

the fluctuating field operator in a second-quantized form in
terms of the electron creation-annihilation operators ak,�

† and
ak,�,

�� =
aNT

A0
�

k1,k2,�
�
j=1

N

ei��k1−k2��j+�j�I�
j ak1,�

† ak2,�. �5�

Here k1 and k2 are any two states in the Brillouin zone �de-

fined from the centrum of the nearest valley�. Hence �� takes
into account the fluctuations caused by both intra- and inter-
valley transitions; � j accounts for the phase shift that arises
when k1 and k2 belong to different valleys.14 By convention,

the direction of the magnetic field B� is chosen as the z axis
�quantization axis� and two transversal directions as x and y
��=x ,y ,z�. In addition, aNT=ahf�0 /L and � j is the location
of the jth nuclear spin on the CNT axis.

Let us now consider the spin evolution caused by arbi-
trary random fluctuations ���t�. The time dependence of the
mean spin value s� can be described by the quantum kinetic
equation provided the spin relaxation times T1 and T2 are
much longer than the correlation time of the thermal bath
�which means in our case that the electronic scattering by
phonons and defects is much faster than the electron spin
relaxation�:15

d

dt
s��t� = � � s��t� − ��s��t� − s�0� , �6�

where � =B� / �B� � if the g-factor anisotropy is ignored and
the electron spin polarization at thermal equilibrium s�0 is
given as − 1

2 ẑ tanh�� /2kBT� �kB the Boltzmann constant�.
Finally, the matrix � of the relaxation coefficients can be
reduced to the Bloch-Redfield diagonal form16 with the lead-
ing diagonal elements �xx=T2

−1, �yy =T2
−1, and �zz=T1

−1:

T1
−1 = 2	n���xx�� , �7�

T2
−1 = 	��zz�0� + n���xx��� , �8�

where n��= �1+e−�/kBT� /2 and ����� is the Fourier trans-
formed correlation function of the operator ��,

����� =
1

2	�2
−�

�

���������ei�d� . �9�

Hence evaluation of the longitudinal T1 and the transversal
T2 relaxation times can be reduced to finding the relevant
���. In Eq. �9�, �����=exp�iHd� /���� exp�−iHd� /��, �¯�
=Tr�e−Hd/kBT

¯ � /Tr e−Hd/kBT, where Hd is the Hamiltonian of
the thermal bath. In our case, it takes the form

Hd = �
k,�


kak,�
† ak,� + �

j

�nIZ
j . �10�

The first term of Eq. �10� represents the kinetic energy of the
electron, which is basically the electron Hamiltonian after
the Zeeman energy �k,���ak,�

† ak,� is removed; as defined
earlier, ak,�

† and ak,� are the creation and annihilation opera-
tors of an electron with energy 
k �Eq. �4�� and � is the
electron spin quantum number. The second term accounts for
the magnetic energy due to the nuclear spin splitting �n in
a magnetic field.

As the electron momentum relaxation time �k is expected
to be shorter than the spin relaxation time, the correlation
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functions can be found from Eq. �9� in terms of �-functions
reflecting conservation of energy, when the average electron
kinetic energy �
k��kBT is much larger than the energy
broadening � of the order of h�k

−1 �i.e., kBT�h�k
−1�. To fur-

ther simply the formulation, the nuclear spin operator Ix con-
tained in the fluctuating field operator �x �Eq. �5�� is conve-
niently split into two parts Ix= �I++ I−� /2 with the raising and
lowering operators I±= Ix± iIy; correspondingly, �± is defined
from �x= ��++�−� /2 as a formal substitution for index �.
Then, by averaging the exponential factors in Eq. �5� over
the random distribution of N 13C isotopes �N→� ,N /A0

=const�, the Fourier transformation �±��� of the correlation
function ��±������ reads

�±��� = 2N
aNT

2

�A0
2 �I±I�� �

k,k�,�

fk,��1 − fk�,��

���±�n + 
k − 
k� + �� . �11�

The distribution function fk,�= �ak,�
† ak,�� for nondegenerate

electrons is e−uk,�/kBT /�k,�e−uk,�/kBT, where uk,�=uk+��, uk
=
k−Eg /2. Since �++��=�−−��=0 from �I+I+�= �I−I−�=0,
Eq. �11� allows one to find �xx��= ��+−��+�−+��� /4 as
well as n���xx�� in the form

n���xx�� =
1

8
��+−�� + �−+�� + �+−�−� + �−+�−�� .

�12�

Using Eqs. �11� and �12� and identity �I±I��= �Ix
2�

+ �Iy
2�± �Iz��2�Ix

2�, one can derive relaxation parameters in
Eqs. �7� and �8�. Under the assumption that the nuclear spin
splitting n is negligible compared to , it takes the form

	n���xx�� = N
aNT

2

�A0
2 �

k,k�,�

�Ix
2��f�1 − f�� + f��1 − f��

����� + 
 − 
��� , �13�

where 
=
k,�, 
�=
k�,�. Applying inequalities f = fk,��1,
f�= fk�,��1, Eq. �13� for nondegenerate electrons reduces to

	n���xx�� = 2N
aNT

2

�A0
2 �Ix

2� �
k,k�,�

fk,���� + 
k − 
k�� .

�14�

Similarly, we find

	�zz�0� = 2N
aNT

2

�A0
2 �Iz

2� �
k,k�,�

fk,���
k − 
k�� . �15�

Note that in the case of I=1/2, I�
2 = 1

2 1̂ that leads to �Ix
2�

= �Iz
2�=1/4 �1̂ is the unity matrix�.
One can see that the contribution of the elastic scattering

that does not involve electron and nuclear spin flip-flop �Eq.
�15�� differs from that of the inelastic process �Eq. �14�� by
� in the argument of the �-function. Subsequently, we fo-
cus on the calculation of �xx�� that covers the case of Eq.
�15� in the limit →0. The sum over the wave vectors in

Eqs. �14� and �15� can be calculated by integrating the en-
ergy u=
k−Eg /2 with the density of states D�u�. In the vi-
cinity of each valley,

D�u� =
A0

	�
�2m*

u
�16�

that leads to the electron distribution function in the form

�
�

fk,� =
�

2A0
� 2	

m*kBT
e−uk/kBT. �17�

It can be shown that the double summation over k and k�
can be reduced to the summation over a single valley by
multiplying the result by the valley degeneracy lv=2.
Straightforward calculation of the integrals with the density
of states D�u� under the condition ��kBT results in

n���xx�� =
aNT

2 lv�m*

	�2�2	kBT

N

A0
ln

kBT

�
. �18�

In the limit →0, Eq. �18� reveals a logarithmic singularity.
This situation is not only typical for one-dimensional sys-
tems but also known in the galvanomagnetic effect in bulk
crystals.17 A standard recipe for removing such a divergency
consists of taking into account broadening of the energy lev-
els � due to the electron scattering processes discussed ear-
lier. In this work, we do not attempt to generalize the formu-
lation for those complicated cases. Instead, let us note that
once � becomes smaller than the broadening factor �, the
magnetic field dependence ln�kBT /�� becomes saturated at
ln�kBT /�� in Eq. �18�. Moreover, if we take into account the
finite length A0 of an actual CNT, the electron energy cannot
be less than �
��2 /m*A0

2, which substitutes � if �
��.
For simplicity, we assume hereinafter that the effect of finite
�
 is included in the parameter �. Note that a similar restric-
tion on the bottom limit of the electron energy u is applied to
D�u� in Eq. �16�. Therefore the condition for the validity of
Eq. �18� is satisfied by max�� ,���kBT.

In a manner similar to that discussed above, we can find
�zz�0�, which looks like Eq. �18� with �→�. The final
expressions for relaxation times �Eqs. �7� and �8�� take a
cumbersome form in terms of general functions. For practi-
cal purpose, however, it will suffice to apply the analytical
approximation

T1
−1 = �hf

−1 ln
kBT

��22 + �2
, �19�

T2
−1 =

�hf
−1

2 	ln
kBT

�
+ ln

kBT
��22 + �2
 , �20�

where the essential part �hf �that determines the order of
magnitude of the spin relaxation� can be expressed in terms
of the fundamental CNT parameters

�hf
−1 =

2lvx0ahf
2 �0

��3�L3kBT
. �21�

Here, x0 denotes the fractional composition of 13C isotopes.
Equations �19�–�21� exhibit an unusual temperature depen-
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dence for the spin relaxation rate; decreasing T enhances spin
relaxation in contrast to the three-dimensional case. Appar-
ently, this effect stems from the property of the one-
dimensional density of states, which increases as u decreases
to �. Equation �21� also shows that the geometrical proper-
ties of different CNTs manifest only via the length of the

chirality vector as a factor L−3/2 �L= �b�1��n1
2+n2

2+n1n2� pro-
vided the constant ahf does not depend on L.

Actually, ahf in a CNT of a finite diameter d=L /	 may be
affected by the curvature effect that induces the admixture of
the 2s and 2pz orbitals. This rehybridization phenomenon
was recently analyzed in Ref. 18 with regard to the Knight
shift of 13C nuclear magnetic resonance. When d is suffi-
ciently large, the contributions of the 2s and 1s electron spin
polarization �corresponding to the graphene sheet� domi-
nates. Since the spin of the 2pz orbital induces polarization of
s orbitals in the opposite direction, this mechanism results in
ahf with the negative sign. On the other hand, the rehybrid-
ization provides a contribution with the positive sign that
increases rapidly for ultranarrow CNTs.18 Consequently, two
mechanisms can fully compensate each other at a certain
CNT size, where ahf and, thus, the relaxation rate goes to
zero.

For the spin relaxation rates, it is essential to evaluate the
numerical values of ahf as a function of the CNT size. Based
on the calculation of the Knight shift, one can obtain
ahf /2	�=−21.1 MHz for thick CNTs.19 At the same time,
the curvature effect on ahf is extracted from the dependencies
of Knight shift and electronic density of states on d.18 The
dashed line in Fig. 2 plots the estimated ahf vs d. As men-
tioned earlier, ahf starts to show the impact of rehybridization
around d�0.9 nm and rapidly becomes more positive as d
shrinks. The full compensation is observed near d
�0.55 nm leading to ahf =0. The case of ultrathin CNTs with
d�0.47 nm is not pursued as the strong curvature effect
makes them metallic,20 which is beyond the interest of the
current investigation.

The estimated ahf is adopted to calculate the electron spin
relaxation rate via the HFI as a function of d. Figure 2 �solid
line� provides the result with B=0, where T1=T2. The tem-
perature is assumed to be 4 K and �=1 �eV. Other param-
eters used in the calculation are x0=0.011, �0=�3b2 /4, b
=0.249 nm, �=�0�0 /b, and �0=3.013 eV.2 Clearly, the re-

laxation rate exhibits the strong influence of the curvature
effect in the narrow CNTs including the rapid change near
d�0.55 nm, where the compensation of polarization and re-
hybridization contributions can sufficiently suppress the effi-
ciency of the HFI mechanism. The peak at d�0.9 nm is the
work of two competing factors, ahf and L−3/2 �i.e., d−3/2�.
Beyond this point, the relaxation rates for a variety of semi-
conducting CNTs can be estimated by using the scaling rule
T1,2

−1 �d−3/2. As for the magnetic field dependence, it appears
in Eqs. �19� and �20� as the parameter �, which interplays
with �. When ���, the calculation predicts gradual reduc-
tion of the spin relaxation rate as B increases. On the other
hand, no magnetic field influence can be expected once �
drops below �.

To analyze the temperature effect on the electron spin
relaxation, we consider a CNT of �n1 ,n2�= �8,4� �d
=0.839 nm� along with �=1 �eV. Figure 3 presents the cal-
culated relaxation rates T1

−1 and T2
−1 as a function of tempera-

ture at various magnetic field strengths. Clearly, spin relax-
ation becomes slower with the increasing temperature as
mentioned previously. T1 is always longer than T2 with the
exception of the zero-field case �B=0�, where the longitudi-
nal and transversal relaxations are indistinguishable. The ori-
gin of the inverse temperature dependence �i.e., T−1/2 from
�hf

−1 in Eq. �21�� is the particularity of the one-dimensional
density of states D�u��1/�u �Eq. �16��. Note that similar
proportionality to the electron density of state was observed
in the Korringa relation for the HFI-induced nuclear spin
relaxation in metals21 as well. In Fig. 3, both relaxation rates
T1

−1 and T2
−1 also show a gradual decrease as B increases,

following the prediction given above. With the relaxation
time of about 1 s, these characteristics are readily observable
by experiments.

To illustrate the effect of radial confinement on spin re-
laxation, we also calculate the spin-flip rate Wd in bulk dia-
mond. Generally, Wd=nv̄�sf, where n=2x0 /�d is the nuclear
spin concentration ��d is the unit cell volume of diamond�,
v̄=�8kBT /	m the mean electron velocity at temperature T,

FIG. 2. Calculated HFI constant �ahf /2	�, dashed line� and spin
relaxation rate �T1,2

−1 , solid line� as a function of CNT diameter at
zero magnetic field and T=4 K.

FIG. 3. Calculated spin relaxation rates �a� T1
−1 and �b� T2

−1 in a
�8,4� CNT as a function of temperature for different values of mag-
netic field B. The CNT diameter of 0.839 nm corresponds to the
relatively “thick” case in Fig. 2, where ahf is near the plateau. The
strength of the magnetic field is indicated in units of tesla.
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and m=�3 m�m�
2 the density of states effective mass. As usual,

m� and m� denote the longitudinal and transversal effective
masses in each of the diamond X valleys with sixfold degen-
eracy �i.e., lv=6�. The spin-flip cross section for electron
scattering with a localized spin moment calculated in the first
Born approximation is known to be �sf =

2
3	�4 I�I

+1�lvahf
2 �d

2m2.22 Taking into account that �d=5.67�10−24

cm3, m� =1.4m0 and m�=0.36m0 �m0 is the free electron
mass�, one can estimate the spin-flip relaxation time Wd

−1

=4.7�103 s. This value exceeds the CNT relaxation time at
T=4 K and B=0 by at least four orders of magnitude, dem-
onstrating the significance of the radial confinement effect in
a CNT.

In summary, we consider electron spin relaxation in a
single-walled semiconducting CNT through the HFI with
nuclear spins of 13C isotopes. The analysis reveals the pecu-
liarities in spin relaxation inherent to one-dimensional sys-

tems at low temperatures and/or weak magnetic fields. As a
result, it becomes dependent on the nonmagnetic electron
scattering. Numerical estimations illustrate the relative im-
portance of this relaxation mechanism in a CNT compared to
the similar processes in bulk diamond and other carbon-
based structures; strong enhancement due to the radial con-
finement of electrons helps making the HFI dominant over
the spin-orbital interactions, particularly at weak magnetic
fields and low temperatures. However, the anticipated spin
relaxation time of the order of 1 s in CNTs is still much
longer than those found in conventional semiconductor struc-
tures. It is also noted that the curvature effect may have a
significant influence in ultrathin CNTs leading to suppression
of the HFI mechanism at certain nanotube dimensions.
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