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A ballistic strip of graphene �width W� length L� connecting two normal metal contacts is known to have a
minimum conductivity of 4e2 /�h at the Dirac point of charge neutrality. We calculate what happens if one of
the two contacts becomes superconducting. While the ballistic conductance away from the Dirac point is
increased by Andreev reflection at the normal-superconductor �NS� interface, we find that the minimum
conductivity stays the same. This is explained as a manifestation of pseudodiffusive conduction at the Dirac
point. As a generalization of our results for a ballistic system, we provide a relation between the conductance
GNS of an arbitrarily disordered normal-superconductor junction in graphene and its value GN when both
contacts are in the normal state.
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I. INTRODUCTION

The effect of a superconducting contact on the conduc-
tance of a metal is qualitatively different if the electrons
propagate ballistically or diffusively through the metal: A
superconducting contact doubles the conductance of a ballis-
tic metal, while the conductance of a diffusive metal remains
the same.1 The conductance doubling in a ballistic metal
happens because an electron incident on the superconductor
is Andreev reflected as a hole of opposite charge, hence dou-
bling the current. The effective length L of the conductor is
doubled as well because the hole has to make its way back,
and this effect cancels the conductance doubling in the case
of a diffusive metal.

These two competing effects are summarized by the ap-
proximate relation

GNS�L� � 2GN�2L� , �1�

between the conductance GNS of a normal-metal-
superconductor junction and its normal-state value GN. As
derived in Ref. 2 from a generalized Landauer formula, the
relation �1� holds if quantum corrections of order e2 /h can be
neglected. It also requires an ideal normal-superconductor
�NS� interface, without a mismatch of Fermi wavelengths
between N and S.

A novel transport regime called “pseudodiffusive” ap-
pears in an impurity-free carbon monolayer �=graphene� at
zero carrier concentration �=Dirac point�. Because of the
vanishing density of states the transmission through a strip of
undoped graphene �width W, length L� occurs entirely via
evanescent modes. For a short and wide strip there is a large
number Neff=W /L�1 of evanescent modes with transmis-
sion probability of order unity �open channels�. Several re-
cent investigations have found that the transport properties of
undoped ballistic graphene are similar to those of a diffusive
metal with the same number Neff of open channels: Both
systems have the same conductance3,4 G�Neffe

2 /h and the
same shot noise power4 �Fano factor 1 /3�. In a Josephson
junction both systems have the same current-phase relation-
ship, critical current, and current-voltage characteristic.5,6

This correspondence between evanescent modes in graphene
and diffusion modes in a disordered metal is not limited to a

carbon monolayer, but applies to a bilayer as well.7 The ef-
fect of disorder on the evanescent modes has also been
studied.8

In this paper we present one more manifestation of
pseudodiffusion in graphene by calculating the ratio
GNS/GN. Far from the Dirac point, at high carrier concentra-
tions, this ratio is between 1 and 2—as expected for a bal-
listic metal with a Fermi wavelength mismatch. At the Dirac
point, however, the ratio approaches unity—as in a diffusive
metal, but without any scattering by impurities or lattice de-
fects.

The outline of this paper is as follows. In Sec. II we
describe the scattering problem of a lightly doped graphene
strip between two heavily doped metal contacts. In Sec. III
we calculate the conductance GNS of the NS junction from
the probability of Andreev reflection, as a function of the
Fermi energy in the graphene strip. We compare with the
known results3,4 for GN in Sec. IV, demonstrating the equal-
ity GNS=GN at the Dirac point. This explicit calculation is
for a ballistic conductor. In the Appendix we derive a more
general relation between GNS and GN, valid also for a disor-
dered conductor.

II. SCATTERING MATRIX

We consider a graphene sheet having width W in the
y-direction, with regions x�0 �S region� and x�L �N re-
gion� covered by superconducting and normal electrodes, re-
spectively. The central region 0�x�L is lightly doped, with
Fermi energy � relative to the Dirac point. The contact re-
gions x�0 and x�L are heavily doped, with Fermi energy
�� much larger than both � and the superconducting gap 	0.
An electron incident on the superconductor at an energy 

just above the Fermi level is Andreev reflected as a hole at an
energy 
 below the Fermi level. �See Fig. 1.� The reflection
occurs predominantly via propagating modes for �
��v /min�W ,L� �with v the energy-independent carrier ve-
locity in graphene�. That regime was studied in Refs. 9 and
10. In the limit �→0 at fixed W, L only evanescent modes
remain. This is the regime studied here.

We calculate the scattering matrix of the NS junction us-
ing the Dirac-Bogoliubov-de-Gennes equation,9
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�vp · � + U 	

	* − vp · � − U
�� = 
� , �2�

where p=−i��� /�x ,� /�y� is the momentum operator and
�= �
x ,
y� is the isospin operator. The excitation energy 

�0 is measured relative to the Fermi level �set at zero�. The
electrostatic potential U and pair potential 	 have step func-
tion profiles,

U�x� = �− �� if x � 0 or x � L ,

− � if 0 � x � L ,
� �3�

	�x� = �	0 if x � 0,

0 if x � 0.
� �4�

Because there is only a single superconductor, we can take
	0 real without loss of generality.

The Fermi wavelength �F� =hv /�� in the contact regions
is sent to zero by taking the limit ��→�. The infinitely large
mismatch with the Fermi wavelength �F=hv /� in the central
region would fully suppress Andreev reflection of nonrelativ-
istic electrons.11 It is a special property of the relativistic
wave equation �2� that a nonzero Andreev reflection prob-
ability remains regardless of the Fermi wavelength
mismatch.9

For aspect ratios W�L the boundary conditions in the
y-direction are irrelevant. We take periodic boundary condi-
tions for simplicity. Different wave vectors qn=2�n /W �with
n=0, ±1, ±2, . . .� in the y-direction are not coupled, so we
can consider each transverse mode separately. In the normal
regions there are four eigenstates of Eq. �2� for each n and 
,
corresponding to electrons and holes propagating in either

the +x or −x direction. In the superconducting region there
are two eigenstates that decay for x→−�. These eigenstates
are given in Ref. 9. By matching them at x=0 and x=L for
an electron incident from the normal contact we obtain the
reflection amplitudes ree

�n��
� and rhe
�n��
�. Matching for an in-

cident hole gives the amplitudes rhh
�n��
� and reh

�n��
�. Together
these four reflection amplitudes determine the scattering ma-
trix

S�n��
� = �ree
�n��
� rhe

�n��
�
reh

�n��
� rhh
�n��
�

� . �5�

The result of this calculation is

reh = rhe =
1

X
ei� cos �e cos �h, �6a�

ree = Ye/X, rhh = Yh/X , �6b�

X = e2i��cos �e cos �e − i sin �e��cos �h cos �h − i sin �h�

− sin �e sin �e sin �h sin �h, �6c�

Ye = e2i� sin �e sin �e�cos �h cos �h − i sin �h�

− sin �h sin �h�cos �e cos �e + i sin �e� , �6d�

Yh = e2i� sin �h sin �h�cos �e cos �e − i sin �e�

− sin �e sin �e�cos �h cos �h + i sin �h� . �6e�

We have defined the angles

�e = arcsin� �vqn


 + �
�, �h = arcsin� �vqn


 − �
� , �7a�

�e =
L�
 + ��

�v
cos �e, �h =

L�
 − ��
�v

cos �h, �7b�

� = arccos�
/	0� . �7c�

One can verify that S�n��
� is a unitary matrix for 
�	0.

III. CONDUCTANCE

The linear response conductance GNS=limV→0 �I /�V is
given by the Blonder-Tinkham-Klapwijk formula12

GNS = g0	
n


1 − �ree
�n��0��2 + �rhe

�n��0��2� = 2g0	
n

�rhe
�n��0��2.

�8�

�In the second equality we used the unitarity of the scattering
matrix.� The conductance quantum is g0=4e2 /h, where the
factor of 4 accounts for the twofold spin and valley degen-
eracies in graphene. The sum over modes runs from
−��W /hv to +��W /hv. In the regime ��→�, W /L→� of
interest here, the sum over modes may be replaced by an
integration over the transverse wave vector q,

FIG. 1. �Color online� Top panel: geometry of a graphene sheet
�G� with one normal �N� and one superconducting contact �S�. Bot-
tom panel: Spatial dependence of the Dirac point �solid line�. The
Dirac point is far below the Fermi level �at zero energy� in the
heavily doped contact regions x�0 and x�L. In the lightly doped
central region 0�x�L the Dirac point is much closer to the Fermi
level. An electron incident from the normal contact �N� above the
Fermi level �closed circle� is Andreev reflected by the supercon-
ducting contact �S� as a hole below the Fermi level �open circle�. In
the limit � ,
→0 the electrons and holes are transmitted through
the central region via evanescent modes.
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GNS = 2g0

−�

�

RA�q�
W

2�
dq . �9�

with RA�qn�= �rhe
�n��0��2 the probability for Andreev reflection

at the Fermi level.
From Eq. �6� we obtain the expression

RA�q� =
k4


��/�v�2 − q2 cos�2kL��2 , �10�

with k=��� /�v�2−q2 the longitudinal wave vector. For �q�
� ��� /�v the longitudinal wave vector is imaginary, corre-
sponding to an evanescent mode. Substitution of Eq. �10�
into Eq. �9� gives the conductance versus Fermi energy plot-
ted in Fig. 2. The asymptotes are

GNS = ��−1g0W/L for ��� � �v/L ,

0.38g0���W/�v for ��� � �v/L .
� �11�

IV. COMPARISON WITH A NORMAL JUNCTION

In Refs. 3 and 4 the geometry of Fig. 1 was studied in the
case that both contact regions are in the normal state. The
transmission probability T from one contact to the other in
that case was found to be given by4

T�q� =
k2

k2cos2�kL� + ��/�v�2 sin2�kL�
. �12�

As before, q is the transverse wave vector and k
=��� /�v�2−q2 the longitudinal wave vector. In the limit �
→0 of undoped graphene we have T=1/cosh2�qL�, while
RA=1/cosh2�2qL�. The effective doubling of the length in
the case of a superconducting contact is consistent with the
physical picture described in the Introduction.

For arbitrary �, we find by comparing Eqs. �10� and �12�
that the probability for Andreev reflection RA is related to the
normal state transmission probability T by

RA =
T2

�2 − T�2 . �13�

This relation, derived here from the Dirac-Bogoliubov-De
Gennes equation, is the same relation as for the usual �non-
relativistic� Bogoliubov-De Gennes equation.2 In the Appen-
dix we show that this relation is not restricted to ballistic NS
junctions, but can be generalized to arbitrary disorder in the
normal region.

The conductance

GN = g0

−�

�

T�q�
W

2�
dq �14�

in the normal case has asymptotes3,4

GN = � �−1g0W/L for ��� � �v/L ,

1

4
g0���W/�v for ��� � �v/L . � �15�

Comparison with the asymptotes �11� shows that the conduc-
tance is enhanced at large ��� when one of the contacts be-
comes superconducting, as expected for a ballistic junction.
The enhancement by a factor of 1.5 is below the factor of 2
enhancement expected for an ideal NS interface because of
the mismatch of Fermi wavelengths. For �→0 the enhance-
ment disappears and GNS becomes precisely equal to GN, as
a manifestation of pseudodiffusive conduction.

Since the first experiments on induced superconductivity
and Andreev reflection in graphene have now been
reported,13,14 our theoretical predictions may well be tested
in the near future.
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APPENDIX: GENERAL RELATION BETWEEN THE
CONDUCTANCE OF AN NS JUNCTION IN GRAPHENE

AND ITS NORMAL-STATE VALUE

In Ref. 2 a general relation was derived between the con-
ductance GNS of an NS junction and its normal-state value
GN, on the basis of the Bogoliubov-De Gennes �BdG�
equation.15 Here we show that the same relation holds also
for an NS junction in graphene, described by the Dirac-
Bogoliubov-De Gennes �DBdG� equation.9

The relation of Ref. 2 is expressed by the pair of equa-
tions

GNS = 2g0	
n

Tn
2

�2 − Tn�2 , GN = g0	
n

Tn, �A1�

where g0=se2 /h is the conductance quantum �including an
s-fold spin and valley degeneracy factor�. The transmission
eigenvalues Tn are the eigenvalues of the matrix product tt†,
with t the transmission matrix at the Fermi level when both
contacts are in the normal state. The region in between the

FIG. 2. Conductance of the NS junction vs Fermi energy, cal-
culated from Eqs. �9� and �10�. The dotted lines are the asymptotes
�11�.
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two contacts may be arbitrarily disordered, so t is no longer
a diagonal matrix 
as in the ballistic case considered in the
text, leading to Eq. �13��. We also allow for intervalley scat-
tering, in which case g0 includes only the spin degeneracy
�s=2�.

The relation �A1� relies on a separation of length scales
on the superconducting side of the NS interface: The first
length scale �F� =hv /�� determines the distance over which
the step �4� in the electrostatic potential U�x� affects the
wave functions in S. The second length scale �=�v /	0 de-
termines the distance over which the step �4� in the pair
potential 	�x� affects the wave functions in S. Since �F� ��,
we may treat the scattering by U and 	 independently of
each other.

Setting first 	�0, we consider the normal-state scattering
problem, including the electrostatic potential U and any dis-
order in the region x�0. This determines the scattering ma-
trix S0�
� for electrons and its counterpart S0

*�−
� for holes.
There is no mixing of electrons and holes for 	�0, so the
full normal-state scattering matrix has the form

SN�
� = �S0�
� 0

0 S0
*�− 
�

� . �A2�

The basis of hole states �h is chosen such that it is the time
reversed of the basis of electron states �e: �h�
�= �
z

� �x��e
*�−
�, with Pauli matrices 
i and �i acting, respec-

tively, on the isospin and valley degree of freedom.9 The
normal-state reflection and transmission matrices are subma-
trices of S0,

S0 = �r t�

t r�
� . �A3�

Since we assume zero magnetic field, S0 is symmetric as well
as unitary.

Setting then U�0, we consider the Andreev reflection by
the superconductor at x�0 �in the absence of any disorder
for x�0�. The scattering matrix for Andreev reflection at
subgap energies 
�	0 is given by

SA�
� = ��
��0 1

1 0
�, ��
� = exp
− i arccos�
/	0�� .

�A4�

This has the same form in the BdG and DBdG equation.
The total reflection matrix S is constructed from SN and

SA in the same way as in Ref. 2. We need the submatrix

rhe�
� = ��
�t*�− 
�
1 − �2�
�r�
�r*�− 
��−1t��
� . �A5�

Setting 
=0 and using the symmetry and unitarity of S0, the
conductances

GNS = 2g0 Tr rhe�0�rhe
† �0�, GN = g0 Tr t�0�t†�0� �A6�

take the form of Eq. �A1�.
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