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To investigate multishell models of multiwalled carbon nanotubes, we consider the buckling of a pair of
graphene layers interacting by van der Waals forces. The layers are modeled as continuum sheets whose
interaction is determined by a Lennard-Jones interatomic potential. Important in our treatment is the effect of
nonequilibrium spacing between the layers, an issue whose physical and technological importance is suggested
by a number of recent articles �see in particular, J. Zou et al., Nano Lett. 6, 430 �2006�, and the references
therein�. Using standard local bifurcation techniques, we construct bifurcation curves that describe the defor-
mation of the layers as the edges of the layers are compressed. The bifurcation curves agree qualitatively with
the sequence of deformations predicted by atomistic simulations. This agreement suggests the validity of
multishell continuum models of multiwalled carbon nanotubes.
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I. INTRODUCTION

Carbon nanotubes have remarkable mechanical proper-
ties, most notably an extraordinary tensile strength combined
with the flexibility to sustain large compressive loads and
bending deformations elastically.1–3 These properties natu-
rally suggest certain applications, for example, using nano-
tubes as reinforcing fibers in composite materials or as
probes in atomic force microscopy. Such applications have in
turn motivated many investigations of how carbon nanotubes
deform and buckle under axial loads.

Axial buckling problems have been studied for both
single-walled and multiwalled nanotubes. Such problems for
single-walled nanotubes are more readily described because
of the relatively simple structure of a single-walled tube.
Basic to this structure is graphene, a two-dimensional array
or sheet of carbon atoms in a periodic hexagonal arrange-
ment. A single-walled carbon nanotube can be visualized as a
rectangular section cut from a larger graphene sheet and
wrapped into the shape of a hollow cylinder. One of the first
papers to treat the axial buckling of single-walled nanotubes
is Ref. 4, in which the authors use molecular dynamics �MD�
simulations to address two questions: what is the basic shape
of an axially buckled single-walled nanotube, and can this
buckling be accurately described by modeling the nanotube
as a continuum. The authors conclude that linearly elastic
shell theory can qualitatively predict the deformations ob-
served in their MD simulation as well as the critical axial
strains at which buckling occurs.

Other work on the axial buckling of a single-walled nano-
tube includes Refs. 5 and 6. These papers, similar in spirit to
Ref. 4, contain the use of MD simulations or experiments to
determine the basic geometry of compressively loaded nano-
tubes as a function of the length, diameter, and thickness of
the tube. In particular, atomistic studies predict that under
compressive loading, a nanotube with small aspect ratio

buckles like a thin shell, a nanotube with an aspect ratio
above a certain threshold buckles like a rod, and a nanotube
with a very large aspect ratio undergoes a “wire-like” buck-
ling with folding patterns similar to patterns observed in bio-
molecules such as DNA, RNA, and peptides. This interesting
folding behavior has been explored in more detail in Ref. 7.

The treatment of axial buckling problems for multiwalled
nanotubes is more challenging. A multiwalled nanotube is
formed by nesting from two to as many as fifty single-walled
nanotubes of different diameters along a common axis. The
walls of adjacent tubes in a multiwalled nanotube are typi-
cally only a few angstroms apart. Consequently, adjacent
walls interact through van der Waals forces, which are inter-
atomic forces between pairs of nonbonded carbon atoms. Al-
though these forces are much weaker than the forces between
the covalently bonded neighboring carbon atoms within the
wall of a given tube, van der Waals interactions appear to
strongly influence the deformation of a multiwalled nanotube
during axial compression and bending.

To explore the importance of van der Waals interactions
for axial buckling, Ru in Ref. 8 proposed modeling each wall
of a multiwalled nanotube as a thin linearly elastic shell. The
equation for the radial displacement of each wall contains
terms that describe the van der Waals forces between that
wall and each of its nearest neighbors as a linear function of
the relative radial displacement between the walls. By spe-
cializing these equations to a double-walled nanotube and
using standard buckling analysis, Ru concludes in Ref. 8 that
if the two tubes buckle in the same manner and if the two
tubes are at their equilibrium spacing prior to buckling, then
the critical axial strain at which buckling occurs for a
double-walled tube is the same as the corresponding strain
for just a single tube with the same elastic moduli. Ru9,10 and
Wang et al.11,12 apply the same multishell model to explore
the axial buckling of multiwalled nanotubes embedded in an
elastic medium, or subject to external or internal pressure.
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For these various cases, the authors determine the critical
axial buckling strain, compare this strain to the correspond-
ing strain for a single-walled tube, and explore conditions
under which it is accurate to model the multiwalled tube as a
single thick-walled elastic tube.

In a related paper,13 Ru explores similar questions using
Euler-Bernoulli beam theory rather than linear shell theory to
model a multiwalled nanotube as a collection of interacting
beams. We note that the equations Ru uses in Ref. 13 are
similar to those used in this paper, although, as seen below,
the interpretation is different.

Recently, Han and Lu14 modified Ru’s multishell ap-
proach to treat torsional buckling, and Shen15 used the mul-
tishell approach with a more sophisticated shell theory to
treat the axial buckling and post-buckling behavior of multi-
walled carbon nanotubes. Also, Refs. 16 and 17 treat multi-
shell models in which the van der Waals interaction is per-
mitted between all shells, not just nearest neighbors, and in
which the van der Waals constants depend on the radii of the
interacting cylindrical shells. Other recent work on buckling
of multiwalled carbon nanotubes includes Refs. 18 and 19, in
which questions about the relation between buckling patterns
and aspect ratios are explored using a combination of atom-
istic simulations, continuum modeling, and finite element
methods.

Little experimental work has focused explicitly on the ef-
fect of van der Waals interaction on the axial buckling of
multiwalled nanotubes. However, recently Nishio et al.20

presented a set of experiments in which a multiwalled nano-
tube is compressed between the tips of two probes of the
type used in atomic force microscopy. Using this setup, the
authors plot force versus displacement curves and, in particu-
lar, determine axial buckling loads. Then, using a novel ex-
perimental technique, Nishio et al.20 remove the inner tubes
of the multiwalled nanotube and repeat the axial buckling
experiment on the remaining outer tubes. They thereby di-
rectly measure the effect of changing the number of walls.
The authors report that the critical buckling force before and
after the removal of the inner tubes are very close.

To explore the validity of the multishell modeling of mul-
tiwalled nanotubes, in this paper we consider the axial com-
pression and buckling of a pair of parallel graphene layers
that interact through a nonlinear van der Waals force. See
Figs. 1 and 2. One can view these layers as small pieces
excised from adjacent walls in a large multiwalled nanotube.
As an alternative motivation, we note that recently developed
techniques for isolating and manipulating individual

graphene layers21–24 and related theoretical work25,26 suggest
that graphene could become an important component in
composite materials as well as in the design of nanoscale
machines and devices. Hence there is a need to understand
the mechanics of interacting graphene layers.

Because of its planar rather than cylindrical geometry, the
formulation of this problem is simpler than that of the axial
buckling for the full tube. We further simplify the problem
by assuming that each of the two parallel graphene layers is
infinitely wide and that the deformations are identical in each
cross section perpendicular to the infinitely wide direction.
Hence the transverse deflection of each cross section can be
determined using the Euler-Bernoulli beam equation. Fol-
lowing Ru’s approach, we model the van der Waals force by
coupling the equations for each layer through a term that
depends nonlinearly on the relative transverse displacements
of the layers. The equilibrium equations are

�u1�� − Tu1� = f�u1 − u2 + d + �a� , �1a�

�u2�� − Tu2� = − f�u1 − u2 + d + �a� , �1b�

in which u1, u2 are the transverse displacements of the layer,
� is the bending stiffness of each layer, T is the applied axial
force per unit width, f is a nonlinear function describing the
van der Waals force per unit area, � is a small positive pa-
rameter, and a and d are constants the meanings of which are
discussed shortly. Figures 1 and 2 depict the basic geometry
of the problem. These equations are closely related to those
studied in Ref. 13. However, Ru used the equations to model
nested cylinders with a large aspect ratio and his work fo-
cuses mostly on the case �=0. Here we model parallel layers
and consider both �=0 and 0���1.

FIG. 1. Loading of interacting graphene lay-
ers. For each layer, a compressive load is applied
along a pair of opposite edges. In the atomistic
simulations, periodic boundary conditions are ap-
plied along the other edges. �a� View of the top
layer from above. �b� Side view of the interacting
layers.

FIG. 2. Interacting graphene layers.
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The system �1� is supplemented with classical “pinned-
pinned” boundary conditions:

ui�0� = ui�l� = 0, ui��0� = ui��l� = 0, for i = 1,2, �2�

in which l is the length of each layer.
We note that our formulation of the multishell model is

more general than Ru’s formulation �see references above�
because we include a nonlinear expression for the van der
Waals interaction between adjacent layers. Most of the ensu-
ing analysis is local in nature and hence uses information
only about f��d�, which is equivalent to Ru’s approach. How-
ever, to describe the branching solutions, we use the value of
f��d�; see �15�, �18� below.

As noted above, we include the nonlinear terms on the
right-hand side of �1� to describe the van der Waals interac-
tion between the graphene layers. This interaction arises be-
cause, when the layers are sufficiently close, every carbon
atom on, say, the bottom layer exerts a force on every carbon
atom on the top layer. We let f��� denote the total van der
Waals force per unit area exerted on a point on the top layer
by all the atoms on the bottom layer when the point and the
layer are a distance � apart. To find f , we assume the atoms
are continuously distributed on the bottom layer with an
atomic density � and we assume the bottom layer is infinite
in extent. �Hence this approach does not depend upon the
exact placement of atoms on the two layers. See Ref. 27 for
a discussion of this issue.� We then evaluate the improper
integral

W��� = �
0

2� �
0

	

�V���2 + r2�rdrd
 , �3�

where V�s�ªc12s
−12−c6s−6 is the van der Waals energy be-

tween two nonbonded carbon atoms a distance s apart and
�=38.177 nm−2. The constants in V are

c12 = 3.859 � 10−9 nN nm13, c6 = 2.43 � 10−6 nN nm7

�4�

�numerical values for c6, c12, and � are taken from Ref. 28�.
It follows that

f��� ª − �
�W���

��
= 2��2� c12

�11 −
c6

�5� . �5�

The graph of f is depicted in Fig. 3. Note that f has a unique
zero at d=0.341 nm, which corresponds to the unique equi-
librium spacing between the layers.

When considering the problem of compressive edge load-
ing of interacting graphene layers, we wish to allow the spac-
ing between the layers to deviate slightly from the equilib-
rium spacing d predicted by the van der Waals interaction.
Recent research suggests that such deviations are likely to be
important in the design and manufacture of nanoscale de-
vices. See Ref. 29 and the references therein. To describe the
spacing between the layers, we assume that the distance be-
tween the left edges of each layer and between the right
edges of each layer is d+�a, where a= ±1 and 0���1. See
Fig. 2. Hence d+�a is a small deviation from the equilibrium
spacing, with a=1 corresponding to a spacing slightly

greater than equilibrium and a=−1 corresponding to a spac-
ing slightly less than equilibrium. For a point x on the top
layer, u1�x�−u2�x�+d+�a is the vertical distance between
the two layers at x. Therefore f�u1�x�−u2�x�+d+�a�, the
nonlinear term on the right-hand side of �1a�, is the van der
Waals force per unit area exerted on a point x on the top
layer by the bottom layer. An analogous statement holds for
the nonlinear term on the right-hand side of �1b�.

In the next section, we present a straightforward analysis
of the two layer bifurcation problem. Section III compares
this analysis with the results of atomistic simulations of the
same problem. A final concluding section summarizes our
results and mentions several related problems.

II. LOCAL BIFURCATION ANALYSIS

In this section we construct bifurcation curves for the sys-
tem �1�. We first study the local bifurcations for the case �
=0, which corresponds to axial loading with the endpoints of
the layers fixed at the equilibrium spacing. To understand
how the spacing effects the buckling of the layers, we then
consider how solution branches perturb for 0���1, which
corresponds to the layers at a slight deviation from the equi-
librium spacing.

We begin with the observation that we can decouple the
system �1� by introducing the variables

w = u1 + u2, v = u1 − u2, �6�

which yields

�w�� − Tw� = 0, �7a�

�v�� − Tv� = 2f�v + d + �a� . �7b�

The variables w and v satisfy boundary conditions analogous
to �2�.

A. Bifurcations for �=0

The local bifurcation analysis for �7a� is elementary.
Seeking solutions of the form A sin�m�x / l�, we see that non-
trivial solutions are possible only at eigenvalues Tc=Tm,
where

FIG. 3. van der Waals force. The units on the horizontal axis are
nm and the units on the vertical axis are nN per nm2. d
=0.341 nm is the unique equilibrium interlayer spacing.
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Tm ª −
��2m2

l2 for m = 1,2, . . . . �8�

Note that all the eigenvalues are negative, that the smallest
eigenvalue in absolute value is T1, and that the linear equa-
tion �7a� admits solutions of arbitrary amplitude A at each of
its eigenvalues.

In �7b�, setting �=0 yields

�v�� − Tv� = 2f�v + d� . �9�

We start the local bifurcation analysis of �9� by noting that
v	0 is a solution for all T. In the usual way, we seek local
descriptions of the solutions that bifurcate from this trivial
branch. Hence we introduce the expansions

T = T̃c + l1 + l2
2

2
+ ¯ , v = v1 + v2

2

2
+ ¯ ,

�10�

and consider the sequence of linear problems generated by
substituting �10� into �9�. The O�� equation is

�v1�� − T̃cv1� − 2f1v1 = 0, �11�

where f1ª f��d�. Note that v1 satisfies pinned-pinned bound-
ary conditions like �2�. Equation �11� along with the bound-
ary conditions imply that solutions bifurcate from the trivial

branch at eigenvalues T̃c= T̃m of the form

T̃m ª −
��2m2

l2 +
2f1l2

�2m2 for m = 1,2, . . . . �12�

As seen in Fig. 3, f1�0 and hence T̃m�0. We let T̃mi
denote

the ith smallest eigenvalue in absolute value, so that 0

� T̃m1
� T̃m2

�¯.

From �11� we also discover that for T̃c= T̃m, v1�x�
=A�m�x�, where

�m�x� ª �2/l sin�m�x/l� . �13�

To choose the amplitude A of v1, we define the parameter 
in �10� as the projection of the bifurcating solution onto the
normalized eigenvalue �m. Hence

 ª �
0

l

v�x��2/l sin�m�x/l�dx , �14�

which implies that A=1.

Taking T̃c= T̃m, we see that the O�2� equation for �10� is

�v2�� − T̃mv2� − 2f1v2 = 2l1v1� + 2f2v1
2, �15�

where f2ª f��d�. To determine l1, we apply the usual solv-
ability condition to �15�, which requires that

�
0

l

�2l1v1� + 2f2v1
2��m�x�dx = 0. �16�

Upon noting that

�
0

l

sin3�m�x/l�dx = 
0 for m even,

4l

3m�
for m odd, � �17�

we solve �16� and find

l1 = 
0 for m even,

16

3�2

l3/2f2

m3�3 for m odd. � �18�

We assume f2�0 �see Fig. 3�, so that l1�0 if m is odd.
To summarize these computations, for m odd we have

T̃ = T̃m +
16

3�2

l3/2f2

k3�3  + ¯ , �19a�

v = �m + ¯ , �19b�

where T̃m is defined by �12�. Note that there is a transcritical

bifurcation at T̃m.

B. Analysis for ��0

To study the perturbation in � of the trivial branch of
solutions for �9�, we seek a solution to �7b� of the form

V = V1� + O��2� . �20�

Inserting �20� into �7b� yields the O��� equation

�V1�� − TV1� − 2f1V1 = 2af1, �21�

where V1 satisfies boundary conditions like �2�. One can
check that

V1 = c1�cos �1x +
1 − cos �1l

sin �1l
sin �1x�

+ c3�cos �2x +
1 − cos �2l

sin �2l
sin �2x� − a , �22�

where

�1 ª�− T + �T2 + 8�f1

2�
, �2 ª�− T − �T2 + 8�f1

2�
,

�23�

c1 ª a
�2

2

�2
2 − �1

2 , c3 ª − a
�1

2

�2
2 − �1

2 . �24�

We note that

�1 − cos �l

sin �l
�→ 	 if and only if � → m�/l with m odd.

�25�

Also, one can check that � j =m� / l for j=1 or if and only if T

in �23� equals T̃m from �12�. Hence V is small in amplitude

unless T is near T̃m for some m.
In the next subsection, we describe how one can use �22�

to construct small amplitude solutions to �1�. Two such so-
lutions are plotted in Figure 4 below.
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C. Bifurcation diagrams

In this subsection we construct bifurcation diagrams for
the system �1�. Recall that T1 is the first eigenvalue for �7a�
and that T̃m1

is the first eigenvalue for �9�. Equations �8� and

�12� imply that T̃m1
�T1.

Before constructing the bifurcation diagrams, we note that
�6� implies that

u1 =
w + v

2
, u2 =

w − v
2

. �26�

Hence if w=0, then u1=v /2 and u2=−v /2=−u1. In particu-
lar for T1�T�0, where T1 is given by �8�, and for 0��
�1, the solution to �1� is antisymmetric, small in amplitude,
and u1=�V1+O��2�, where V1 is defined by �22�. Two ex-
amples of such antisymmetric solutions are plotted in Fig. 4.
To plot these solutions, we assume that �=0.2 nN nm, a
value consistent with those commonly used in the
literature,30,31,4 and f1=−84.08 nN/nm3 �see �5�, �4� and re-
call that f1ª f��d��.

Also from �26�, it is clear that if w is large and v is
small, u1 is approximately equal to u2. Therefore, a solution
w to �7a� with large amplitude corresponds to a symmetric
deformation of the two layers.

The expansions constructed in the previous two subsec-
tions imply that solutions to �7� can be represented by the
bifurcation curves in Fig. 5. To construct Fig. 5, we have

assumed that T̃m1
�T2.

Figure 5�a� shows the bifurcation diagram for �=0. The
vertical axis is the amplitude of u1. The labeling of the rel-
evant branches indicates the corresponding amplitude of u2.
From the figure we see that the trivial branch u1=u2=0 bi-
furcates to large amplitude symmetric solutions at T=T1. We
suspect that a linear stability analysis would show that the
trivial branch loses stability at T1 and that hence the antisym-

metric bifurcation at T= T̃m1
is never observed. This conclu-

sion is supported by the simulation results presented in the
next section. When 0���1, Fig. 5�b� shows that the trivial
branch u1=u2=0 perturbs to a small-amplitude antisymmet-
ric solution, as indicated by �20� and �22�. However, as T
approaches T1, this small-amplitude antisymmetric solution
bifurcates to a large amplitude symmetric solution. In the
next section we compare these qualitative observations,
which are based on continuum modeling, with the buckling
patterns predicted from atomistic simulations.

Note that we have assumed in constructing Fig. 5 that m1

is odd. If m1 were even, the transcritical bifurcation at T̃m1
in

Fig. 5�a� would instead be a pitchfork bifurcation. How the

bifurcation at T̃m1
breaks because of small deviations from

the equilibrium spacing is studied in detail via imperfect bi-
furcation techniques in Ref. 32.

III. ATOMISTIC SIMULATIONS

In this section, we present the results from atomistic simu-
lations of interacting graphene layers subject to compressive
edge loading. These results agree qualitatively with the
analysis of the previous section based on continuum model-
ing.

We discuss results from three simulations. In each of
these, two parallel graphene layers are spaced D angstroms
apart, with D=3.1 Å in the first simulation, D=3.41 Å in the
second simulation, and D=3.6 Å in third simulation. To cre-
ate the atomic model of the stacked graphene layers, an ideal
graphite structure corresponding to ABAB¯ stacking was
used. The width of the bottom layer, i.e., the distance be-
tween the pair of opposite edges subject to compressive load-
ing, is 34.08 Å in all three simulations. Because of how the
layers are stacked, the corresponding width of the top layer is
32.7 Å in all three simulations. Along the other pair of op-
posite edges the boundary conditions are periodic and each
layer can be viewed as infinite in this direction. See Figs. 1
and 6.

Figure 6 shows the top graphene layer from the simula-
tions. In each simulation, the positions of narrow strips of
atoms at the left and right edges of each layer were pre-
scribed. The two strips at the left edges of the layers were
kept fixed. To simulate compressive edge loading, the two
strips at the right edges were incrementally moved toward
the left while being kept parallel to each other and the fixed
distance D apart. All the other atoms in both layers were free
to relax. The atoms in the edge strips on the right were each
moved leftward in 0.001 Å increments, after which the free
atoms between the strips were relaxed using a code based on
the molecular dynamics �MD� code by Brenner. Annealing

FIG. 4. Antisymmetric solutions predicted by continuum mod-
eling. The units on both the vertical and horizontal axes are ang-
stroms �10 Å=1 nm�. The length of the layer is 3.4 nm and the
compressive load is T=−.05 nN/nm. �a� shows the transverse dis-
placement of only the top layer u1 to O��� when a=−1 nm and �
=0.03, which corresponds to the two layers spaced approximately
0.3 Å less than the equilibrium spacing of 3.41 Å. �b� shows the
transverse displacement of the top layer u1 to O��� when a=1 nm
and �=0.02, which corresponds to the two layers spaced approxi-
mately 0.2 Å greater than the equilibrium spacing. Cf. Figs. 7 and
10 below.

FIG. 5. Bifurcation diagrams.

CONTINUUM AND ATOMISTIC MODELING OF… PHYSICAL REVIEW B 75, 045418 �2007�

045418-5



and quenching simulations were performed using the MD
technique with the Nordsieck predictor-corrector integration
algorithm. However, vibrational relaxations were present at
even very low temperatures �1�10−4 K�. Thus, the simula-
tions were continued with only energy minimization calcula-
tions. The minimization routines were based on steepest de-
scent algorithms and conjugate gradient algorithms. �For our
structures, the best minimization was obtained using the
steepest descent algorithm.�

In our calculations, the Tersoff-Brenner empirical poten-
tial energy function33 was used to model the interactions be-
tween bonded atoms within each layer. This potential, which
reproduces lattice constants, binding energies, elastic con-
stants, etc. of graphite and diamond very well, is widely used
to explore the properties of graphite and the fullerenes. See
Refs. 34 and 4 and the references therein.

Because a fundamental input into any atomistic simula-
tion is the definition of the interatomic potential, we note

several other possibilities for carbon nanotube or graphene
systems. These include first-principles electronic structure
methods based on density functional theory �DFT�,35

quantum-based interatomic potentials based on tight-binding
�TB� representations of electronic structure,36 hybrid
ReaxFF-Tersoff models,37 and methods based on harmonic-
type potentials.29 Choosing a particular method entails a
trade-off between accuracy and computational effort. �See
Ref. 38 for an overview of this trade-off.� We use the
Tersoff-Brenner potential because, computationally, it is rela-
tively less costly and because it is widely accepted as pro-
ducing accurate results for equilibrium or near-equilibrium
situations.

For our calculations, we use also Girifalco’s Lennard-
Jones potential V, defined immediately following �3� with the
same constants as given in �4�, to model the interlayer van
der Waals interactions. The cutoff radius for the potential
was approximately 8.5 Å.

Results from the first simulation, with D=3.1 Å, are de-
picted in Fig. 7. Note that the figure shows a side view of the
layers, so that each dot on a layer represents several carbon
atoms that align across the width of the layer. Fig. 7�a� shows
the layers after they were relaxed from their initial parallel
configuration but before the edges were moved. Figure 8�a�
shows a part of Fig. 7�a� rescaled so that one can see more

FIG. 7. Atomistic simulation, D=3.10 Å. �s is the displacement
of the edge strips. �ª−�s /34 is the compressive strain, where
34 Å is the length of the bottom layer. The units on both the vertical
and horizontal axes are angstroms. See also Fig. 8�a�.

FIG. 8. Displacements prior to edge compression. Figure �a�
above is the same as part of Fig. 7�a� but rescaled to show more
clearly the shape of the top layer. Likewise, �b� above is a rescaling
of part of Fig. 9�a�, and �c� above is a rescaling of part of Fig. 10�a�.
The units on both the vertical and horizontal axes are angstroms.

FIG. 6. Top view of the top graphene layer. The positions of
atoms on the left and right edges of each layer are prescribed during
the simulation. Atoms in the middle are free to relax after each
displacement of the right edge.
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clearly the shape of the transverse displacement prior to
compression. Figures 7�b�–7�d� correspond to edge compres-
sions of 0.04 Å, 0.1 Å, and 0.3 Å. In Figs. 7�a� and 7�b�, we
see a small-amplitude, antisymmetric deformation. Note that
the two layers bow outward, as one would expect because
the spacing is less than the equilibrium spacing and hence
the van der Waals force between the layers is repulsive. Fig-
ure 7�c� shows the onset of a large-amplitude symmetric bi-
furcation, while Fig. 7�d� shows the symmetrically buckled
layers. This sequence of deformations is consistent with the
predictions of Fig. 5�b�. Also, a comparison of Figs. 7�a� and
7�b� �see also Fig. 8�a�� and 4�a� shows that for small com-
pressive loads the continuum and atomistic approaches agree
on the qualitative shape of the antisymmetric deformation of
the layers.

The second simulation, in which the interlayer spacing is
3.41 Å, is depicted in Fig. 9. Figure 9�a� shows the layers
after they have relaxed from their initial parallel configura-
tion but before the edges were moved. Figure 8�b� shows a
part of Fig. 9�a� rescaled so that one can see more clearly the
shape of the transverse displacement prior to compression.
Figures 9�b�–9�d� correspond to edge compressions of
0.16 Å, 0.18 Å, and 0.3 Å. In Figs. 9�a� and 9�b�, we see
essentially no transverse displacement of the layers, as one
would expect because the layers are at their equilibrium
spacing. Figure 9�c� shows the onset of a large-amplitude
symmetric bifurcation, while Fig. 9�d� shows the symmetri-

cally buckled layers. This sequence of deformations is con-
sistent with the predictions of the continuum model for �
=0; see Fig. 5�a�.

The interlayer spacing was 3.6 Å for the final simulation.
Figure 10�a� shows the layers after they have relaxed from
their initial parallel configuration but before the edges were
compressed. Figure 8�c� shows a part of Fig. 10�a� rescaled
so that one can see more clearly the shape of the transverse
displacement prior to compression. Figures 10�b�–10�d� cor-
respond to edge compressions of 0.05 Å, 0.1 Å, and 0.3 Å.
In Fig. 10�a� and 10�b�, we see a small-amplitude, antisym-
metric deformation in which the two layers are bowed in-
ward, as one would expect because the interlayer spacing is
greater than the equilibrium spacing and hence the van der
Waals force between the layers is attractive. As in the previ-
ous two simulations, we see in Fig. 10�c� the onset of a
large-amplitude symmetric bifurcation, while in Fig. 10�d�
we see the symmetrically buckled layers. Again, we note that
Figs. 10�a� and 10�b� �see also Fig. 8�a�� and 4�b� show good
agreement on the shape of the transverse displacement of the
layers.

For any comparison of the atomistic and continuum re-
sults, it is important to note the mismatch between the ap-
parent boundary conditions in the atomistic simulations and
those used in the continuum problem. As described in Sec. I,
classical hinged-hinged boundary conditions are enforced in
the continuum problem. See �2�. We use these boundary con-

FIG. 9. Atomistic simulation, D=3.41 Å. �s is the displacement of the edge strips. �ª−�s /34 is the compressive strain, where 34 Å is
the length of each layer. The units on both the vertical and horizontal axes are angstroms.
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ditions because they are perhaps the most familiar for Euler-
Bernoulli beam buckling and lead to the simplest expressions
in our series expansions for solutions.

Describing the boundary conditions in the atomistic simu-
lation is more subtle. As noted above, during the simulation
the positions of several rows of atoms at the left and right
edges of each layer is prescribed. See Fig. 6. To determine
the boundary conditions, one perhaps should ignore these
prescribed atoms. Hence one could place the boundary at the
interior most rows of prescribed atoms, i.e., the fourth dot in
from the left and the fourth dot in from the right for each of
the layers depicted in Figs. 7–10. The transverse displace-
ment at these points is zero. However, numerical approxima-
tion of the data from the simulations shows that the second
derivative of the transverse displacement is nonzero at the
end points. We believe that this discrepancy explains in part
the difference between the deformed shapes of the layers
predicted by the continuum model and the atomistic simula-
tion.

In this paper, where we focus on qualitatively comparing
the continuum and atomistic approaches, we do not consider
different boundary conditions for the beam equation. Doing
so would not change the qualitative buckling pattern pre-
dicted by the continuum model. On the other hand, we are
currently exploring quantitative comparisons of the con-
tinuum model and atomistic simulations.39 For this, we nu-
merically solve the beam equation with zero transverse dis-

placements and a nonzero bending moments M at the
boundaries. We then fit numerically the bending stiffness �
and the moment M by minimizing the differences between
the displacements predicted by the atomistic simulation and
those predicted by the numerical solution of the boundary
value problem. For the values of M and � determined by this
minimization, we obtain excellent agreement between the
deflected shapes predicted by the continuum and atomistic
approaches.

Figure 11 presents an energy analysis of the second ato-
mistic simulation, for which D=3.41 Å. The drop in energy
at about 0.18 Å corresponds to the start of the buckling ob-
served in Figs. 9�c� and 9�d�. The corresponding drop in
energy for the first and third simulations is difficult to discern
and we do not present the corresponding graphs.

We close this section with a remark on the buckling loads
in each of the three simulations. As depicted in Fig. 7�c�, in
the first simulation the symmetric buckling begins at an edge
displacement �s of about 0.1 Å. Using data from the simu-
lation, one can compute that the total compressive force on,
say, the left edge of the top layer for �s=0.1 Å is approxi-
mately 0.09 nN/nm. For the other two simulations, one can
likewise compute that the compressive loads at the start of
the buckling �Figs. 9�c� and 10�c�� are approximately
0.17 nN/nm and 0.09 nN/nm. Now recall that the con-
tinuum analysis predicts that the symmetric buckling occurs
at the critical load T1, which is given by �8� with m=1.

FIG. 10. Atomistic simulation, D=3.60 Å. �s is the displacement of the edge strips. �ª−�s /34 is the compressive strain, where 34 Å
is the length of each layer. The units on both the vertical and horizontal axes are angstroms.

WILBER et al. PHYSICAL REVIEW B 75, 045418 �2007�

045418-8



Taking �=0.2 nN nm and l=3.4 nm yields T1
=−0.1708 nN/nm. This value agrees well with the buckling
load observed in the second simulation, in which the inter-
layer spacing corresponds to the equilibrium spacing. How-
ever for the other two simulations, in which the interlayer
deviates slightly from the equilibrium, the continuum analy-
sis fails to accurately predict the symmetric buckling load.
One possible explanation is that the bending stiffness � de-
pends on the interlayer spacing; as noted above, part of our
current research explores this question.

IV. CONCLUSION

In this paper we consider two parallel graphene layers that
interact by a nonlinear van der Waals force. To study the
buckling of these interacting layers under compressive edge
loading, we carry out both a bifurcation analysis based on
continuum mechanical modeling as well as atomistic simu-
lations. The continuum description is motivated by a multi-
shell model of multiwalled nanotubes proposed in Ref. 8.

Our basic conclusion is that the sequence of deformations
observed in the atomistic simulations matches qualitatively
the bifurcation diagram constructed by an analysis of the
continuum model. Specifically, both the continuum and ato-
mistic approaches predict the following. When the initial

spacing between the layers is slightly less than the equilib-
rium spacing predicted by the van der Waals force, the layers
exhibit small amplitude, antisymmetric deformations for
small compressive edge loads. Both the continuum and ato-
mistic results predict that these antisymmetric deformations
are bowed outward. See Figs. 4�a�, 7�a�, and 7�b�. The anti-
symmetric solutions buckle to large amplitude symmetric de-
formations as the compressive force approaches some critical
load. See Figs. 5�b�, 7�c�, and 7�d�. On the other hand, when
the initial spacing between the layers equals the equilibrium
spacing predicted by the van der Waals force, both con-
tinuum and atomistic approaches predict no deformation up
to the critical load, at which the trivial solution bifurcates to
large amplitude symmetric deformations. See Figs. 5�a� and
9�a�–9�d�. The case in which the initial spacing between the
layers is slightly greater than the equilibrium spacing pre-
dicted by the van der Waals force is analogous to the
slightly-less-than-equilibrium case, except that the small am-
plitude antisymmetric deformations bow inward. See Figs.
4�b�, 10�a�, and 10�b�. The agreement between the con-
tinuum model and the atomistic simulations provides some
verification of the multishell model for carbon nanotubes.

In Ref. 32 we study an interesting variation on the prob-
lem considered here. Namely, we consider a pair of interact-
ing graphene layers where only one layer can deform. The
other layer is required to remain flat. In this case the equi-
librium equation for the deformable layer is essentially the
same as �7b� and hence the buckling is described by the
antisymmetric branch in the bifurcation diagram in Fig. 5.
Using the mathematical tools of imperfect bifurcation theory,
we make a careful study of this bifurcation problem, and we
compare these results to the predictions of atomistic simula-
tions.

We close by noting that the strong qualitative agreement
between the continuum modeling and the atomistic simula-
tions of this problem suggests more careful, quantitative
comparisons. Part of our current research39 includes numeri-
cal work to compare the exact shape of deformations and the
buckling loads predicted by continuum and atomistic ap-
proaches. This work is described briefly in the discussion of
boundary conditions in the previous section. Here we note
that to further test the validity of continuum models, our
quantitative comparisons39 include a study of how the pre-
dicted stiffness of the layer depends on the interlayer spac-
ing.
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