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We calculate the density of states of electron-hole excitations in a superconductor–normal-metal–
superconductor �SNS� junction in graphene, in the long-junction regime that the superconducting gap �0 is
much larger than the Thouless energy ET=�v /d �with v the carrier velocity in graphene and d the separation
of the NS boundaries�. If the normal region is undoped, the excitation spectrum consists of neutral modes that
propagate along the boundaries—transporting energy but no charge. These “Andreev modes” are a coherent
superposition of electron states from the conduction band and hole states from the valence band, coupled by
specular Andreev reflection at the superconductor. The lowest Andreev mode has an excitation gap of E0

= 1
2 ��− ����ET, with �� �−� ,�� the superconducting phase difference. At high doping �Fermi energy ��ET�

the excitation gap vanishes �E0�ET /��2, and the usual gapless density of states of Andreev levels is recovered.
We use our results to calculate the � dependence of the thermal conductance of the graphene channel.
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I. INTRODUCTION

The two-dimensional layer of carbon atoms known as
graphene is a gapless semiconductor. A gap between conduc-
tion and valence bands opens up if the layer is confined to a
narrow channel.1 For a channel of width d the band gap 2E0
is set by the �ballistic� Thouless energy ET=�v /d, with v the
�energy independent� velocity of electron and hole excita-
tions in graphene. The size of the gap depends on the crys-
tallography of the channel edges. In particular, for edges in
the armchair configuration one has2,3

E0 = 	ET, �1�

with 	=0 if the channel is a multiple of three unit cells
across or 	=� /3 otherwise.

The interface with a superconductor provides an alto-
gether different way to confine the carriers. At energies be-
low the superconducting gap �0, the electron and hole exci-
tations in a superconductor–normal-metal–superconductor
�SNS� junction are confined to the normal region. In usual
metals this confinement leads to bound states known as An-
dreev levels.4,5 They consist of counterpropagating electrons
and holes converted into each other by Andreev retro-
reflection at the NS boundaries �see Fig. 1�a��. Andreev lev-
els carry an electrical current �a supercurrent� across the NS
interfaces, but they are “quasilocalized” along the interfaces.
More precisely, the group velocity of the Andreev levels
along the NS interface is much smaller than the Fermi ve-
locity, and weak disorder fully localizes them.6

As pointed out in Ref. 7, Andreev reflection in undoped
graphene is specular reflection instead of retro-reflection �see
Fig. 1�b��. The consequences were investigated in that paper
and in Ref. 8 for a single NS interface, and in Refs. 9 and 10
for a short SNS junction. Here we investigate the conse-
quences for a long SNS junction.

We find that the transition from retro-reflection to specu-
lar reflection is accompanied by a transition from quasilocal-
ized Andreev levels to propagating modes �“Andreev
modes”�, provided that ET
�0. This is the long-junction re-

gime. �The states remain localized in the opposite short-
junction regime ET��0, considered in Ref. 9.� The transi-
tion �governed by the ratio � /ET of the Fermi energy � in N
and the Thouless energy� has a drastic effect on the density
of states. While the excitation spectrum is gapless for �
�ET, a gap opens up for ��ET. The excitation gap

E0 =
1

2
�� − ����ET �2�

has the same form as the band gap �1� for confinement by
armchair edges—with the phase difference �� �−� ,�� of
the two superconductors taking over from the crystallo-
graphic phase 	.

The Andreev modes have the same dispersion relation as
the “armchair modes” for confinement by armchair edges,
and they are also constructed out of states taken from two
different valleys in the Brillouin zone. However, while the
armchair modes contain either electron states from the con-

FIG. 1. Three types of states in an SNS channel in graphene.
The solid and dashed lines show the classical trajectories of an
electron �filled circle� and a hole �open circle�, converted into each
other upon Andreev reflection at the superconductor. The transition
from a localized Andreev level �a� to a propagating Andreev mode
�b� occurs when the excitation energy � becomes larger than the
Fermi energy � in the normal region. These two types of states are
both charge neutral. Purely electronic states �c� exist near grazing
incidence. While the states of type �a� and �b� are sensitive to the
phase difference � of the two superconductors, the states of type �c�
are not.
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duction band or hole states from the valence band, the An-
dreev modes are a superposition of conduction and valence
band states. As a consequence, the Andreev modes transport
energy but no charge along the NS interface—so they will
play a role in thermal conduction along the interface but not
in electrical conduction.

The outline of this paper is as follows. The modes propa-
gating along the channel are characterized by their dispersion
relation in Sec. II. Both exact numerical and approximate
�but highly accurate� analytical results are given. From the
dispersion relation we determine the excitation gap in Sec.
III and the density of states in Sec. IV, contrasting in particu-
lar the low- and high-doping regimes. We derive the result
�2� for the excitation gap in the low-doping regime and show
numerically that the gap closes �E0�ET /��2 with increasing
doping. One way to measure the gap is by tunneling spec-
troscopy. Another way, which we analyze in some detail in
Sec. V, is by means of the thermal conductance of the chan-
nel �for heat flow parallel to the NS boundaries�. We con-
clude in Sec. VI.

II. DISPERSION RELATION

A. Quantization condition

To calculate the dispersion relation of the Andreev modes
we solve the Dirac-Bogoliubov-De Gennes �DBdG�
equation7 for the pair potential

��r� = � �0 exp�i�/2� if x 
 − d/2,

0 if − d/2 
 x 
 d/2,

�0 exp�− i�/2� if x � d/2.
� �3�

We seek plane-wave solutions ��x ,y�=��x�eiqy, with q the
component of the wave vector parallel to the NS interfaces at
x= ±d /2. The excitation energy ��0 of the mode is mea-
sured relative to the Fermi energy � in the normal region
�x�
d /2. �The superconducting regions are assumed to be
heavily doped, with Fermi energy ����.�

The dispersion relation follows from the quantization con-
dition derived from the DBdG equation in Ref. 9,

cos � = �cos �+ cos �− +
sin �+ sin �−

cos 	+ cos 	−
	cos 2�

+ � sin �+ cos �−

cos 	+
−

cos �+ sin �−

cos 	−
	sin 2�

− sin �+ sin �− tan 	+ tan 	−. �4�

The three angles 	± ,�± ,� are functions of � and q,

	± = arcsin� q

� ± �
	, �± =

� ± �

ET
cos 	±, �5�

� = arccos��/�0� . �6�

The quantization condition is invariant under �→−�, so
without loss of generality we may take ��0.

While Ref. 9 dealt with the short-junction regime ET
��0, here we are concerned with the long-junction regime
ET
�0. �Since the Thouless energy ET
�v /d, the latter
criterion is equivalent to the requirement that the separation
d of the NS interfaces is large compared to the superconduct-
ing coherence length �
�v /�0.� We furthermore restrict
ourselves to low-lying excitations, �
�0. The relative mag-
nitude of � and ET is arbitrary. For ease of notation we will
use units such that �v
1 in the intermediate calculations,
restoring the units in the final results.

For low-lying excitations �
�0 the quantization condi-
tion �4� simplifies to

cos � + cos �+ cos �− + r sin �+ sin �− = 0, �7�

where we have abbreviated

r =
1 + sin 	+ sin 	−

cos 	+ cos 	−
. �8�

The solutions to this equation can be represented in the form
�=�n

±�q�, where n=0,1 ,2 , . . . is the mode index due to the
quantization of the motion in the x direction and the super-
script � accounts for the different � dependence of the
modes.

B. Exact solution

The quantization condition �7� can be solved numerically.
Results are shown in Figs. 2, 3, and 4. Only positive q is
plotted, because �n

±�−q�=�n
±�q�.

The dispersion relation has three distinctly different
branches, indicated in Fig. 4, corresponding to the three
types of trajectories of Fig. 1.

�i� The branch with �v�q�
�−� �red� describes intra
band electron-hole states, corresponding to the Andreev
modes of Fig. 1�a�. The dispersion relation for these modes
has small oscillations as a function of q on the scale 1 /d,
around a smooth concave curve �see Fig. 3�. Similar oscilla-
tions in the dispersion relation of Andreev modes in meso-
soscopic samples were discussed recently in Ref. 11.

�ii� The branch with �v�q�
�−� �blue� describes inter
band electron-hole states, corresponding to the Andreev
modes of Fig. 1�b�. The dispersion relation is convex without
oscillations.

�iii� The branch with �v�q�� ��−�� �green� corresponds
to the purely electronic states12 of Fig. 1�c�. The hole com-
ponent of the wave function cannot propagate along the
channel because the reflection angle 	− of the hole is imagi-
nary on this branch. The dispersion relation on branch �iii�
does not have oscillations, and is joined to branch �i� or �ii�
by a cusp singularity.

After these exact results we continue with an approxi-
mate, but highly accurate, analytical solution of the quanti-
zation condition. We consider separately the electron-hole
modes with �v�q�
 ��−�� and the electron modes with
�v�q�� ��−��.
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C. Electron-hole modes

For �q�
 ��−�� �setting again �v
1� we define the trans-
verse momentum p by the relation

�+ − �− = 2p/ET. �9�

The solution to this equation is given by

� = p�1 −
q2

�2 − p2 . �10�

The condition �q�
 ��−�� is equivalent to �q�
 ��− p2 /��

qc. The momentum qc is the location of the cusp in the
dispersion relation, beyond which the hole component of the
mode vanishes.

If we express � in terms of p with the help of Eq. �10�, we
can write

r =
��2 − p2�2 + ��q�2

��2 − p2�2 − ��q�2 , �11a�

FIG. 2. Dispersion relation of the SNS junction, calculated nu-
merically from Eq. �7� for three values of the superconducting
phase difference � at � /ET=0.1. The lowest modes �n

±�q� with n
=0,1 ,2 are nearly degenerate for �=0 and nondegenerate for �
=� /2 �thicker lines correspond to �n

+�. For �=� all modes are
nearly degenerate except the lowest one �0

−.

FIG. 3. Same as in Fig. 2 for � /ET=100. The smoothed disper-
sion relation �14� is indicated by dashed lines.

FIG. 4. �Color online� Dispersion relation of the SNS junction,
calculated numerically from Eq. �7� for �=0 and � /ET=100. The
curves show �n

+�q� with n=5,10,15, . . .60. The three types of states
from Fig. 1 are color coded; red=type a, blue=type b, green
=type c.
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�+ + �− =
2�

ET
�1 −

q2

�2 − p2 . �11b�

This allows us to recast the quantization condition �7� as

cos � + cos�2�

ET
�1 −

q2

�2 − p2	
= ��2 − p2

�q
	2

�cos � + cos�2p/ET�� , �12�

which defines the quantization of the transverse momentum
p= pn

±.
For �q�
qc, the solution to Eq. �12� is given by

pn
± = �ET�n +

1

2
±

�

2�
	 , �13�

with n=0,1 ,2 , . . . and �� �−� ,��. As q approaches the
cusp at qc, the first term in Eq. �12� causes the dispersion
relation ��q� to oscillate rapidly around a smooth curve �̄�q�.
This smoothed dispersion relation is obtained by substitution
of Eq. �13� into Eq. �10�, resulting in

�̄n
± = �ET�n +

1

2
±

�

2�
	

��1 −
q2

�2 − ��ET�2�n +
1

2
± �/2�	2 ,

�q� 
 qc = �� −
��ET�2

�
�n +

1

2
±

�

2�
	2� . �14�

The smoothed dispersion for the lowest modes is indicated in
Fig. 3 by a dashed line.

To determine also the rapid oscillations, we proceed as
follows. The quantization condition for p can be written as

pn
± = �ET�n +

1

2
±

�n
±

2�
	 , �15�

where the phases �n
± can be determined by iteration from Eq.

�12�. The first iteration turns out to be already highly accu-
rate in the high-doping regime ��ET. It is given by

�n
± = arccos
�1 −

��q�2

��2 − p2�2	cos �

−
��q�2

��2 − p2�2 cos�2�

ET
�1 −

q2

�2 − p2	� , �16�

where the momentum p on the right-hand side is taken in the
zeroth approximation �13�. The difference between the ap-
proximate analytical results of Eqs. �10�, �15�, and �16� and
the exact numerical results plotted in Fig. 3 are not visible on
the scale of that figure.

D. Electron modes

For �q�� ��−��, the angle �− becomes strictly imaginary.
In this interval we define the transverse momentum p by

�+ = 2p/ET. �17�

The condition �q�� ��−�� is then still equivalent to �q�� ��
− p2 /��
qc. From Eq. �17� we cast the branch �q��qc of the
dispersion relation in the form

� = �q2 + 4p2 − � , �18�

where the momentum p= pn
± is quantized. The exact quanti-

zation condition follows directly from Eq. �7�.
For large longitudinal momenta �q��max�ET ,qc� the re-

flection angle �−� ± iq /ET of the hole takes on large imagi-
nary values. Therefore both sin �− and cos �− in the quanti-
zation condition �7� are exponentially large and the �
dependence of the solution can be neglected. This shows that
the electron modes are insensitive to the superconducting
phase difference across the channel.

At the cusp �q�=qc of the disperrsion relation we find �−
=0 and �= p2 /�. The coefficient r in Eq. �7� tends to infinity,
leading to

lim
�q�→qc

r sin �− =
�2 − p2

pET
. �19�

The quantization condition at the cusp thus simplifies to

cos � + cos�2p/ET� =
�

ET
� p

�
−

�

p
	sin�2p/ET� . �20�

For ��ET the condition is reduced to sin�2p /ET�=0 with
the solution

pn
+ = �ET�n + 1�, pn

− = �ET�n +
1

2
	 , �21�

which is, again, � independent. The quantization condition
�21� formally corresponds to �n

+=�, �n
−=0 in Eq. �15�.

III. EXCITATION GAP

At small doping ��ET the excitation gap is given by

Egap =
1

2
�� − ����ET 
 E0��� , �22�

which is the energy of the lowest mode at q=0. For ��ET
the gap is given by the energy of the lowest mode at a non-
zero longitudinal momentum �q��qc, which corresponds to
the deepest minimum of the oscillatory dispersion relation.
We have not succeeded in determining this minimum analyti-
cally from the quantization condition �7�, but we have a very
accurate numerical solution.
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Results for different values of � are presented in Fig. 5.
One can see that the ratio Egap/E0��� depends only weakly
on the superconducting phase difference � and that the
crossover to a decay ��−2 happens in a narrow interval
around �=�ET. As shown by the black line in Fig. 5, the
large-� asymptote is given by

Egap = c���E0�����ET/��2, �23�

with c��� increasing from 1/2 at �=0 to 1 at ���=�.

IV. DENSITY OF STATES

A. Thermodynamic limit

Before turning to the calculation of the density of states at
finite ET, it is instructive to first determine the behavior in the
thermodynamic limit d→�⇔ET→0. The DBdG equation
then decouples into separate Dirac equations for electrons
and holes. The total density of states ����=�e���+�h��� is
the sum of the electron density of states �e�����+� and the
hole density of states �h���� ��−��, leading to

���� =
4Ld

���v�2 max��,��, if � � ET. �24�

Here L is the extension of the junction in the y direction and
the factor of 4 accounts for the spin and valley degeneracies.
�For a derivation of Eq. �24� directly from the quantization
condition �7�, see the Appendix.�

In Fig. 6 we plot the density of states � of the DBdG
equation together with the separate electron and hole contri-
butions �e and �h. The superconducting proximity effect will
introduce fine structure in � on the scale of the Thouless
energy ET, as we will determine in the next subsections. We
consider separately the low-doping regime �
ET, where the
contribution from interband electron-hole modes dominates,
and the high-doping regime ��ET, where the intraband
electron-hole modes dominate.

B. Low-doping regime

To determine the excitation spectrum in the low-doping
regime, we take the �→0 limit of Eq. �14�, resulting in

�n
± =���vq�2 + ��ET�2�n +

1

2
± �/2�	2

, �25�

for n=0,1 ,2 , . . . and �� �−� ,��. �There is no need to dis-
tinguish �̄ from �, because the dispersion relation does not
oscillate in this regime.� The two series of modes �n

+ and �n
−

are nondegenerate, except for �=0,�. �The lowest mode �0
−

is nondegenerate also for �=�.�
In Fig. 7 we plot the density of states

���� =
4L
�

�
n=0

�

�
±
� ��n

±

�q
�−1

,

=
4L�

��vET
�
n=0

�

�
±

�Xn
±�−1/2��Xn

±� , �26�

Xn
± = ��/ET�2 − �2�n +

1

2
± �/2�	2

, �27�

with � the unit step function. The excitation spectrum has a
gap at the energy E0 given by Eq. �2�. The gap closes for
���=�, when �=4L /��v
�0 is constant at low energies. At

FIG. 5. �Color online� Double-logarithmic plot of the energy
dependence of the excitation gap, calculated numerically from Eq.
�7�, for three different values of the superconducting phase differ-
ence � �colored lines�. The straight black line is the asymptote
Egap/E0���� ��ET /��2.

FIG. 6. Thermodynamic limit ET=�v /d→0 of the density of
states � of the SNS junction, according to Eq. �24� with �0

=4L /��v. The total density of states � �solid� is the sum of the
density �e��+� of electron states �dashed� and the density �h

� ��−�� of hole states �dotted�.

FIG. 7. Density of states of the SNS junction in the low-doping
regime, for superconducting phase difference �=0 �solid curves�
and �=� �dashed curves�. The curves are calculated from Eq. �26�,
normalized by �0=4L /��v. The excitation gap for �=0 is at E0

=�ET /2.
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large excitation energies ��ET, the sum over n in Eq. �26�
may be replaced by an integral, resulting in a linearly in-
creasing density of states,

���� =
4L�

��vET
, if � � ET, �28�

in agreement with the thermodynamic limit �24�.
The group velocity vn

± in the y direction of the nth mode is
given by the derivative

vn
± =

��n
±

��q
. �29�

For each propagating mode vn
±→v with increasing excitation

energy. These are all interband electron-hole modes. The
purely electronic modes are pushed to �q��ET

2 /�→� in the
low-doping regime � /ET→0, while the intraband electron-
hole modes cannot propagate if ���.

C. High-doping regime

As shown in Sec. II C, the electron-hole branch of the
dispersion relation for ��ET is a rapidly oscillating func-
tion. Small local variations in the separation d of the NS
interfaces, on the scale of the Fermi wave length �F=hv /�,
will average out these oscillations, leaving the smoothed dis-
persion relation �14�. In the large-� limit this reduces to

�̄n
± =

�ET

�
�n +

1

2
±

�

2�
	��2 − ��vq�2. �30�

The branch of purely electronic states �for �v�q���� is not
described by Eq. �30�, but since it contributes negligibly to
the density of states for �
� we need not consider it here.

The smoothed density of states is given by

�̄��� =
4L
�

�
n=0

�

�
±
� ��̄n

±

�q
�−1

=
4L��

�2�vET
2 �

n=0

�

�
±

�Yn
±�−1/2��Yn

±�

��n +
1

2
± �/2�	−1

, �31�

Yn
± = �2�n +

1

2
± �/2�	2

− ��/ET�2. �32�

We plot it in Fig. 8 for �=0.
The peaks in the density of states at �n

±=�ET�n
+ 1

2 ±� /2�� are analogous to the De Gennes–Saint James
resonances13 in conventional Josephson junctions. The low-
est resonance is at the same energy E0= 1

2 ��− ����ET as the
gap �2� in the low-doping regime—however, in the high-
doping regime the density of states is gapless, vanishing lin-
early at small excitation energies with a �-dependent slope:

�̄��� =
4L��

��vET
2

1

cos2��/2�
, if � 
 E0. �33�

The slope diverges when �→�, because then the lowest
resonance is at �=0. At high excitation energies ��ET �but
still �
��, the density of states approaches a �-independent
limit,

�̄��� =
4L�

��vET
, if � � ET, �34�

in agreement with Eq. �24�.
The group velocity v̄n

±=��̄n
± /��q corresponding to the

smoothed density of states is of order vET /��v�F /d for
�v�q�
�, much smaller than the carrier velocity v. This is as
expected from the classical trajectories in Fig. 1�a�.

V. THERMAL CONDUCTANCE

The thermal conductance Gthermal= IQ /�T of the graphene
channel, for heat flow IQ parallel to the NS boundaries, can
be measured by applying a temperature difference �T=TL
−TR between the two ends of the channel �see Fig. 9�. Ex-
periments of this type have been performed in metals by
Eom, Chien, and Chandrasekhar14 and analyzed theoretically
in Refs. 15 and 16. Because of the large mismatch in Fermi
wave vector, the normal region constitutes a “weak link”
between the two superconducting regions, which can be
maintained at a definite phase difference.17 The thermal con-
ductance of mesoscopic SNS junctions was studied recently
in Refs. 11 and 18.

To determine the thermal conductance of the graphene
channel we start from the Landauer-type formula19–21

FIG. 8. Smoothed density of states of the SNS junction in the
high-doping regime for �=0, calculated from Eq. �31�.

FIG. 9. A temperature difference �T=TL−TR between the two
ends of the graphene channel drives a heat current IQ, carried by
Andreev modes in the normal region at temperatures below the gap
�0 in the superconductors.

TITOV, OSSIPOV, AND BEENAKKER PHYSICAL REVIEW B 75, 045417 �2007�

045417-6



Gthermal = −
4

2��T0
�

0

�

d��2 �f

��
�

n

Tn��� , �35�

valid for small temperature differences �T
TL ,TR. �The
factor of 4 is again from the spin and valley degeneracy.� We
assume that the mean temperature T0= �TL+TR� /2 is much
less than �0 /kB, so that the thermal current through the su-
perconductors is suppressed exponentially.4 The function
f���= �1+exp�� /kBT0��−1 is the Fermi function and Tn is the
transmission probability of the nth propagating mode along
the channel. In a ballistic channel each of the N��� propagat-
ing modes at energy � has transmission probability Tn=1, so
we obtain the thermal conductance

Gthermal =
1

2��kBT0
2�

0

�

d�
�2N���

cosh2��/2kBT0�
. �36�

In the low-doping, low-temperature limit � ,kBT0
ET only
the lowest mode contributes and the thermal conductance
reduces to

Gthermal =
kB

2T0

2��
�

E0/kBT0

�

dx
x2

cosh2�x/2�
, �37�

with E0 the gap given by Eq. �2�. As illustrated in Fig. 10, the
thermal conductance in this low-doping, low-temperature re-
gime vanishes unless the superconducting phase difference �
is in a narrow interval of order kBT0 /ET around � �modulo
2��. The peak at �=� has height

Gpeak =
�

3

kB
2T0

�
. �38�

The value Gpeak corresponds to a thermal conductance of
one-half the quantum value22–24

Gquantum =
�

6

kB
2T0

�
, �39�

per spin and valley degree of freedom. The reason for the
factor-of-two difference is that, in a normal conductor, every
transport channel at the Fermi level can be excited indepen-

dently either with electron excitations �filled states just above
the Fermi level�, or with hole excitations �empty states just
below the Fermi level�. Each type of excitation contributes
an amount Gquantum/2 to Gthermal, so that the total thermal
conductance per channel is Gquantum. In the SNS junction the
superconducting boundaries couple the electron and hole ex-
citations into a single excitation, so that there is only a single
contribution of Gquantum/2 per channel to the thermal conduc-
tance.

In the high-doping limit ��ET we may distinguish a
moderately low temperature regime ET

2 /�
kBT0�ET and an
ultralow temperature regime kBT0
ET

2 /�. In the ultralow
temperature regime it is again only the lowest mode which
contributes, so Eq. �37� remains valid if we replace E0 by
Egap from Sec. III. In the moderately low temperature regime
there remains a large number

N��� =
4

�ET

��� + O�1� �40�

of modes that contributes at energies ��kBT0. Substitution
into Eq. �36� gives the thermal conductance

Gthermal = 2.34
kB

2T0

�
��kBT0

ET
2 . �41�

The thermal conductance is insensitive to the superconduct-
ing phase difference because of the vanishing excitation gap
in the high-doping regime.

VI. CONCLUSION

We have shown that a graphene channel with supercon-
ducting boundaries supports a type of propagating modes
along the channel that do not exist in usual SNS junctions.
These “Andreev modes” exist because the Andreev reflection
close to the Dirac point of vanishing Fermi energy � is
specular.7 The Andreev modes are charge neutral, so they
transport energy but no charge along the channel.

The thermal conductance due to the Andreev modes de-
pends strongly on the superconducting phase difference �,
because of the �-dependent excitation gap E0 of the Andreev
modes. Away from the Dirac point the character of the An-
dreev reflection changes from specular reflection to retrore-
flection. The excitation gap closes and the thermal conduc-
tance becomes � independent.

The closing of the excitation gap with increasing doping
can be studied directly by point contact spectroscopy �tun-
neling into the graphene layer via a tunnel probe on top of
the layer�.
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FIG. 10. Thermal conductance of the SNS junction in the low-
doping, low-temperature regime �� ,kBT0
ET�, calculated as a
function of the superconducting phase difference � �modulo 2��
from Eq. �37�. The peak value equals Gpeak=�kB

2T0 /3�, which is
half of the thermal conductance quantum �Refs. 22–24� per spin and
valley degree of freedom.
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APPENDIX: DERIVATION OF EQ. (24) FROM THE
QUANTIZATION CONDITION

It is instructive to calculate the density of states in the
thermodynamic limit directly from the quantization condi-
tion �7�. The dispersion relation for all q can be compactly
written as

�n
±�q� = �p�1 −

q2

�2 − p2 , q � �� − p2/�� ,

�4p2 + q2 − � , q � �� − p2/�� ,
� �A1�

where the momentum p= pn
± is quantized according to Eqs.

�15� and �21�. The density of states is given by

���� =
4L
�

�
n=0

�

�
±
�

0

�

dq��� − �n
±�q�� . �A2�

Since the quantization condition of the momentum p is
linear in the mode index n, we can replace the summation
over n with the integration over p in the thermodynamic

limit d→�. In this limit we can ignore the dependence of the
phases �n

± on q. The integral Eq. �A2� results in

���� =
8Ld

���v�2�
min��,����

max��,����
dp

�

p
��2 − p2

p2 − �2

+
8Ld

���v�2�
0

���

dp
� + �

��� + ��2 − 4p2
�A3�

=
4Ld

���v�2 max��,�� . �A4�

The first and second integral on the right-hand side of Eq.
�A3� are, respectively, the contributions from electron hole
and electron modes to the density of states in the thermody-
namic limit. Even though each integral is a nontrivial func-
tion of energy, their sum reduces to the elementary result
�24�, confirming the consistency of our analysis.
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