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We study the effect of a constant electrical field applied on vicinal surfaces such as the Si�111� surface. An
electrical field parallel to the steps induces a meandering instability with a nonzero phase shift. Using the
Burton-Cabrera-Frank model, we extend the linear stability analysis performed by Liu, Weeks, and Kandel
�Phys. Rev. Lett. 81, 2743 �1998�� to the nonlinear regime for which the meandering amplitude is large. We
derive an amplitude equation for the step dynamics using a highly nonlinear expansion method. We investigate
numerically two limiting regimes �small and large attachment lengths� which both reveal long-time coarsening
dynamics.
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I. INTRODUCTION

Stepped crystal surfaces exhibit a number of different
morphological instabilities likely to play an important role
during crystal growth.1–6 Furthermore, the ability to control
the growth of faceted stepped crystal surfaces may be of
considerable importance when manufacturing electronic and
optoelectronic devices.7 These morphological instabilities
occur not only during growth and evaporation but also under
the influence of an electrical field, as on the well-studied
Si�111� surface of a semiconductor. Surface electromigration
instabilities may also arise in metals, where they are an im-
portant source of failure in microelectronic devices at metal-
metal interfaces and also an interesting tool for pattern
formation.8,9 One of the most studied instabilities, known as
step bunching, arises on the Si�111� surfaces from the biased
diffusion �drift� of adatoms under the influence of an external
driving force such as an electrical constant field.10–14 Step
bunching is a one-dimensional instability which has been
explained within the framework of the Burton-Cabrera Frank
equations15 in terms of displacements of steps and terraces.
Recent experimental and theoretical studies of step bunching
revealed several difficulties, like the complex role of step
transparency, the Ehrlich-Schwoebel barriers, the effect of
substrate temperature, and the variations of the adatom mo-
bility with the distance to the steps.16–19

In the present study, a constant electrical field is applied
along the mean step direction of a train of synchronized steps
�all identical up to a constant phase shift�. An experimental
study of a comparable system was recently reported20 and it
was shown in this work that a two-dimensional step mean-
dering instability takes place. The linear analysis of this
problem was previously performed by Liu and co-authors
who predicted the occurrence of synchronized meandering.21

We perform here a nonlinear analysis of this instability in
order to describe the long-time behavior of the in-phase me-
andering mode. In particular we show the appearance of a
coarsening regime in which step undulations increase. This

paper is organized as follows. In the next section, we present
a model based on the Burton-Cabrera-Frank equations.15 In
the third section, we perform a linear analysis, which serves
as a basis for the nonlinear analysis. A general nonlinear
evolution equation including the effects of the repulsive step-
step interactions is derived in Sec. IV. The results of numeri-
cal simulations of this nonlinear equation are presented and
discussed in Sec. V, while conclusions and perspectives are
postponed to Sec. VI.

Before presenting our model, we briefly review previous
work concerning nonlinear equations for the time evolution
of synchronized steps. The step meandering instability was
originally predicted theoretically by Bales and Zangwill22 for
a vicinal surface under growth. Its origin is the asymmetry
between the descending and ascending currents of adatoms.
As shown by Bales and Zangwill, a straight train of steps
may become morphologically unstable during molecular-
beam epitaxial growth if the kinetic attachment at the steps is
asymmetrical: this is the Ehrlich-Schwoebel effect. It was
shown that the most dangerous mode corresponds to a zero
phase shift.23 Nonlinear extensions of this work have shown
that the meander evolution can be described by amplitude
equations displaying diverse behaviors. Close to the instabil-
ity threshold, starting from the Burton-Cabrera-Frank �BCF�
model, it was proved24 that the step position in the presence
of desorption �evaporation� obeys the Kuramoto-Sivashinsky
equation. The ultimate stage of this dynamics is thus spa-
tiotemporal chaos. In the case of negligible desorption with a
strong or moderate Ehrlich-Schwoebel effect, it was found
that the step amplitude obeys a highly nonlinear
equation.25–27 This equation cannot be derived from a weakly
nonlinear analysis but is based on the assumption that the
slope of the steps is of order unity. Instead of spatiotemporal
chaos, a regular pattern is revealed: the lateral modulation
wavelength is fixed while the transverse amplitude of the
step deformation �meandering amplitude� increases. Elastic-
ity or diffusion anisotropy can also influence the meander
dynamics.28,29 It was recently shown30,31 in the context of the
step meandering instabilities during growth on Si�001� that
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the nonlinear dynamics is driven by a conserved Kuramoto-
Sivashinsky equation. This equation was already mentioned
in Ref. 27 on the basis of symmetry arguments but was not
derived there, because of a different scaling of the Ehrlich-
Schwoebel effect. Step meandering was also studied in the
context of electromigration32–34 using analytic linear analysis
and kinetic Monte Carlo simulations. It is therefore of im-
portance to extend the work of Liu et al.21 and to develop
analytical tools to describe the nonlinear regime of the me-
andering instability.

II. MODEL

A. Validity range and notation

The geometry of the problem is sketched in Fig. 1. Ini-
tially, all the step edges are directed along the X axis, and
equidistant at a distance L0. A constant electrical field E is
applied in the positive X direction. To investigate the result-
ing meandering instability, we use a two-dimensional version
of the BCF model. The terraces are numbered sequentially in
the step-down direction. In our notation, the nth terrace is
bordered by the two steps numbered n and n+1. To distin-
guish between quantities defined anywhere on the terrace
and quantities defined at steps only, we will use a superscript
n in the first case and a subscript n in the second. For in-
stance, the adatom concentration on the nth terrace is de-
noted Cn, while the equilibrium concentration at step n reads
Cn

eq.
In practice, it is usually assumed that the concentrations

are not explicitly time dependent, so that Cn=Cn�X ,Y�. This
quasistatic approximation is valid provided that the diffusion
coefficient Ds of the adatoms on the terraces is sufficiently
large that diffusion takes place on time scales shorter than
those for step motion. The diffusion bias introduced by the
electrical field can be quantified by the ratio of the thermal
energy kBT to the electrical energy �Z*e �E�E. Balancing the
two terms defines the electrical length as

�E =
kBT

�Z*e�E
, �1�

where kB is the Boltzmann constant, T the absolute tempera-
ture, Z* the effective atomic charge number, and e the elec-
tron electrical charge.

For the sake of simplicity, we set both deposition and
evaporation of adatoms to zero here, whereas experiments
are usually performed with a small but nonzero net flux.
Introducing both effects in our model is straightforward and
would not affect qualitatively the results obtained within the
zero flux assumption.

On the nth terrace, the quasistatic biased diffusion equa-
tion reduces to

Ds��XX + �YY�Cn − �Ds/�E��XCn = 0, �2�

and the adatom flux is

Jn = Ds�1/�E − �X,− �Y�Cn. �3�

The boundary conditions for Eq. �2� are obtained by writ-
ing mass conservation at all the points Rn= �X ,Yn� and
Rn+1= �X ,Yn+1� located on both edges of the terrace. In the
present model, we assume that the adatom attachment-
detachment kinetic coefficients are the same on the upper
and lower sides of a given step, �+=�−=�. We further restrict
ourselves to temperature ranges where direct mass exchange
between adjacent terraces �transparency� can be neglected.
At Rn, the boundary condition thus reads

Jn�Rn� · un = − ��Cn�Rn� − Cn
eq� , �4�

where un represents the normal unit vector pointing in the
step-down direction. Alternatively, at Rn+1, the second
boundary condition is

Jn�Rn+1� · un+1 = ��Cn�Rn+1� − Cn+1
eq � . �5�

Writing mass conservation at any point Rn along step n, we
obtain the normal �component along un� step velocity,

Vn = �s��Cn�Rn� + Cn−1�Rn� − 2Cn
eq� . �6�

In this equation, �s is the adatom area and we neglect ada-
tom diffusion along the step.

B. Nondimensional version of the governing equations

The terrace width L0 provides a natural length scale for
the problem. Another possibility is the electrical length �E
defined in Eq. �1�. However, since �E is likely to diverge as
the electrical field goes to zero, L0 is preferred. Setting

x =
X

L0
, y =

Y

L0
,

1

�
=

�E

L0
, cn =

Cn

C0
, �7�

where C0�s is the fraction of adsorption sites occupied by
adatoms, we get the nondimensional form of Eqs. �2�–�6�.
The quasistatic diffusion equation reads

��xx + �yy − ��x�cn = 0, �8�

and the adatom flux is

FIG. 1. Schematic representation of a small portion of a vicinal
surface showing three steps. On the top view �top�, the electrical
field E is represented. On the side view �bottom�, two attachment
mechanisms are illustrated.
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jn = �� − �x,− �y�cn. �9�

In this equation, the nondimensional flux vector is defined as

jn =
L0

DsC0
Jn, �10�

so that the physical time is rescaled by the characteristic time

t0 =
1

DsC0
. �11�

Using both the time and space scale factors, we obtain the
first,

jn�rn� · un = − ��cn�rn� − cn
eq� , �12�

and the second

jn�rn+1� · un+1 = ��cn�rn+1� − cn+1
eq � �13�

boundary conditions. The nondimensional number

� =
�L0

Ds
, �14�

inversely proportional to the characteristic length d=Ds /�,
indicates which mechanism, diffusion or attachment, governs
the time evolution of the steps. The normal velocity of step n
now takes the form

vn = ���cn�rn� + cn−1�rn� − 2cn
eq� , �15�

where

� =
�s

L0
2 �16�

is the ratio of the two basic areas in the problem.

C. Equilibrium concentration

We now derive a detailed expression of the equilibrium
concentration cn

eq at step n. A quite general form is

cn
eq = Cn

eq/C0 = exp� Mn

kBT
� = 1 +

Mn

kBT
+ ¯ . �17�

We will use the thermal energy kBT as the energy scale, and
define the nondimensional chemical potential as

�n =
Mn

kBT
. �18�

Within the nondimensional description presented in the pre-
vious section, the position of step n is represented by a func-
tion yn�x�, and we define the relative position as

�n�x� = yn�x� − n . �19�

Following Paulin and co-workers,28 we introduce a nondi-
mensional free energy functional for step n,

fn = fn
R + fn

I . �20�

The first term is due to the step stiffness,

fn
R = ��

n

ds . �21�

Here 	nds is the integral of the curvilinear abscissa along the
whole step n �total step length� and �=B�L0 /kBT�, where B
is the step stiffness of the material. The second term sums up
the step-step repulsive energies assumed to vary as the in-
verse square distance,

fn
I =

	

2
�

n

� 1

ln
+�2

+ � 1

ln
−�2�ds , �22�

where 	=A / �kBTL0�, and A is the step interaction coeffi-
cient. As shown in Fig. 2, the lengths ln

+ and ln
− are the short-

est distances between steps �n ,n+1� and steps �n ,n−1�.
Thus the previous relation gives only an approximate value
of the total repulsion energy. Finally, the chemical potential
is obtained by a functional derivation of the free energy,

�n = �� 
fn


�n
� . �23�

III. LINEAR STABILITY ANALYSIS

Repulsions between steps prevent them from intersecting
one another and edge stiffness limits their curvature. How-
ever, the possibility that the shapes of two consecutive steps
are weakly correlated in phase or amplitude remains open.
Since the general problem is quite difficult to solve in prac-
tice, we limit the present study to the simple case of a syn-
chronized train of steps.

Starting with straight steps, separated by a unit distance,
we introduce a harmonic perturbation of amplitude ��1,
wave number q, and phase shift �,

�n�x� = � exp�iqx + t + in�� . �24�

Looking for solutions of the nondimensional diffusion equa-
tion under the form

cn�x,y� = 1 + c1
n�y��n�x� , �25�

we obtain

c1
n�y� = A1

nery + B1
ne−ry , �26�

with

FIG. 2. Shortest distances between a given step and its two
closest neighbors, in the general case. The tangents to steps n−1
and n+1 are drawn at two points having the same abscissa x.
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r = �q2 + i�q . �27�

To derive the dispersion relation, we first express the chemi-
cal potential using Eqs. �20�–�23�. In practice, the step cur-
vature is small, and an accurate approximation of the step–
step distances is given by

ln
+ =

1 + �n+1 − �n

�1 + ��x�n+1�2
and ln

− =
1 + �n − �n−1

�1 + ��x�n−1�2
�28�

To the leading order in the perturbation amplitude �, we find
the chemical potential from Eqs. �20�–�24� and �28�,

�n = ��ng�q,�� , �29�

where

g�q,�� = �	 + ��q2 + 6	�1 − cos �� . �30�

Introducing this result in Eqs. �12�, �13�, and �15�, the fol-
lowing dispersion relation is finally obtained:

�q,��
2�r

=
�q�/��sin � + ��cos � − cosh r − �r/��sinh r�g�q,��

�1 + r2/�2�sinh r + 2�r/��cosh r
.

�31�

This equation is similar to the dispersion relation derived in
Ref. 21. In the remainder of this section, we will neglect the
step-step interactions, 	=0, to avoid unnecessarily compli-
cated relations. Keeping the actual value of 	 would intro-
duce only small quantitative changes. The growth rate is de-
fined as ��q ,��=Re��. A meandering instability is thus
expected for positive values of �. Experimentally, the elec-
trical field is a weak perturbation, so that, according to Eq.
�7�, the parameter � takes small values �10−8−10−4�. We
thus expect the wave numbers of the corresponding instabili-
ties to verify q�1. As we do not know a priori the relative
magnitudes of � and q, we first use a general expansion in
which both quantities are small and considered equivalently.
This leads to

� =
2

2 + �
���sin ��q −

2�

2 + �
�2��1 − cos ��q2

−
1

3

�2 + 6� + 6

��2 + ��2 ���sin ��q3

−
1

3

�2 + ��2 + 6� + 6��1 + cos ��
�2 + ��2 �2�q4 + ¯ . �32�

Although the two last terms are of higher order, we never-
theless keep them since the lowest-order terms vanish when
�=0. A first necessary condition for a maximally unstable
mode, ��� /���q=0, gives the following phase shift:

�*�q� = tan−1� �

���q
� . �33�

The corresponding growth rate ��q ,�*� is plotted as a func-
tion of the wave number q in Fig. 3: a meandering instability
arises as soon as the electrical field is nonzero.21 For q��,

it is possible to find relations between q and � in different
ranges of wave numbers. The most unstable mode q=qmax is
obtained by introducing the second condition ��� /�q��=0.
Together with Eq. �33�, we get

qmax = � 1

2�
�1/2� 1

2 + �
�1/6� �

��
�2/3

, �34�

and the absolute maximum of the amplification factor is

�max = ��qmax,�
*� =

�2

���2 + ��
. �35�

Finally, the marginal mode q=q0 is deduced from the condi-
tion ��q ,�*�=0:

q0 = �1

�
�1/4� 1

2 + �
�1/4� �

��
�1/2

. �36�

The scalings of qmax and q0 with � thus suggest that the
range of unstable modes is quite large. The limit of weak
electrical fields ���1� is relevant for the experimental work
reported in Ref. 20, in which step meandering is observed. In
addition, the maximum growth rate being small, the situation
is favorable for a nonlinear analysis of the meandering insta-
bility which is presented in the next section.

IV. NONLINEAR ANALYSIS

A. Local coordinates

As illustrated in Fig. 4, we consider the case of steps that
are all identical up to a translation in an oblique direction z̃
rotated by an angle � with respect to axis y. The amplitudes
of two successive steps have thus the following property:

�n+1�x − tan �� = �n�x� . �37�

In the linear regime defined by Eq. �24�, we have

�  tan−1��/q� . �38�

Since we want to explore nonlinear dynamics, the amplitude
of the meanders may reach values of order unity for which

FIG. 3. Plot of the growth rate ��q ,�*�=Re�� obtained from
the linear stability analysis Eq. �31� as a function of the perturbation
wave number q.
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�n�x� is no longer a single-valued function in the original
frame of reference �x ,y�. For this reason, our nonlinear
model makes use of a nonorthogonal frame of reference
�x̃ , z̃�, defined as

x̃ = x + y tan � ,

z̃ =
y

cos �
, �39�

as shown in Fig. 4. With this change of coordinates, the step
shape function becomes

��x̃� =
�n�x − n tan ��

cos �
, �40�

where the n index can be omitted because all the steps are
identical in the new frame. We further define a local frame of
reference �� ,�� by moving the x̃ and z̃ axes along the step,

� = x̃ ,

� = z̃ − ��x̃� = z̃ − ���� . �41�

In the local frame, the partial derivatives transform as

�x = �� − �������,

�y = �tan ���� + � 1

cos �
− �tan ��������, �42�

where ���=�� /��. The second derivatives are derived from
these expressions.

B. BCF equations for the local coordinates

Introducing the relations for the partial derivatives into
Eq. �8�, one gets the quasistatic diffusion equation for the
local coordinates �� ,��,

0 = ���� + p2��� + ���cos2 ����� − �������

+ 2�sin � − ������� − ��cos2 �����c��,�� , �43�

where

p��� = ��1 − �sin ������2 + ��cos ������2. �44�

Note that the step index n is purposely omitted because of
translational invariance. It is easier to express the vectorial
quantities in the base of the two unit vectors of the initial
frame �x ,y�. The adatom flux reads

j = �jx, jy� = c��,���− �� + ������� + �,− �tan ���� −
1

cos �
��

+ ������tan ����� , �45�

and the unit normal vector to the step,

u =
1

p
„− �cos �����,1 − �sin �����… . �46�

The two boundary conditions take on very simple forms,

j · u = �− ��c − ceq� at � = 0,

+ ��c − ceq� at � =
1

cos �
.

�47�

The expression of the local curvature is needed to complete
these boundary conditions. We obtain

���� = −
cos �

p3 ���� . �48�

The normal velocity is deduced from Eq. �15�,

v��� =
�t�

p
= ��
c��,0� + c��,

1

cos �
� − 2ceq���� , �49�

where ceq���1+����. An expression for the chemical po-
tential is obtained through the functional derivative of the
free energy functional, Eqs. �20�–�23�. In the oblique frame
of reference, we have now

� =
�

cos �
� 
f


�
� , �50�

and the curvilinear length element is ds= p d�. As illustrated
in Fig. 5 the shortest step-step distances are defined in a
slightly different way in this frame: the tangents to the two
adjacent steps are drawn at a given value of x̃. Adapting Eq.
�28� to this new definition, we obtain

FIG. 4. A set of steps identical up to a translation along the z̃
axis. The local variables used in the nonlinear analysis are z̃
=y / �cos �� and x̃=x+y tan �.

FIG. 5. Shortest distances between a given step and its two
closest neighbors, in the local frame. The case of translational in-
variance along z̃ is represented here. The tangents to the adjacent
steps are drawn at two points having the same abscissa x̃.
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l+ =
1/cos � + �+ − �

p+
and l− =

1/cos � + � − �−

p−
, �51�

where

p± = ��1 − �sin �����±�2 + ��cos �����±�2. �52�

Note that it is necessary to keep the amplitudes �−, �, and �+
of three successive steps to perform the functional deriva-
tion. After derivation, we set �=�±, so that l+= l−= l, and

���� = ���� +
	

l2 cos2 �
�p2 + ���� − sin ��2�� . �53�

The chemical potential sums up the contributions of the step
stiffness and of the step-step interactions.

C. Small-parameter expansion

The aim of this section is to establish a nonlinear equation
for the time evolution of a step.

1. Scaled variables

In the linear analysis presented above, we have shown
that the wave number q0��1/2 is small as compared to unity
in the limit of a weak electrical field. We thus introduce a
small parameter ��1, such that

� = �2�2, �54�

and �2 is of order unity. As a consequence, we define the
slow space variable

x = �� . �55�

Note that the slow x variable used hereafter differs from the
fast x variable discussed in Sec. II. This should not introduce
any confusion, since only the new x appears in the following.
At the marginal wave number q=q0, the linear analysis re-
sults of Eqs. �33�, �36�, and �38� give the following relation
between the inclination angle � and the nondimensional
number �:

�  tan−1
�2 + �

�
�1/2� . �56�

Since � can be large or small depending on the parameters, �
can take arbitrary values. The boundary conditions given in
Eq. �47� are applied at �=0 and �=1/cos �, so that the space
variable � is simply equal to z. Accordingly, one defines the
meander amplitude as h�x�=���� and the normal velocity as
ṽ�x�=v���.

2. Order-by-order expansion

The concentration, shape function, and velocity are ex-
pressed as power expansions of the scaling parameter �,

c�x,z� = c0�x,z� + �c1�x,z� + �2c2�x,z� + ¯ ,

h�x� = �−1h−1�x� + �0h0�x� + �h1�x� + ¯ ,

ṽ�x� = �3ṽ3�x� . �57�

Introducing this expression of h�x� in Eq. �44�, the following
development is found for p:

p�x� = p0�x� + �p1�x� + �2p2�x� + ¯ , �58�

with

p0�x� = ��1 − �sin ���xh−1�2 + ��cos ���xh−1�2. �59�

We obtain in a similar way the equilibrium concentration

ceq�x� = 1 + �c1
eq�x� + �2c2

eq�x� + ¯ , �60�

where

c1
eq�x� = − ��cos ��

�xxh−1

p0
3 �� + 	p0

2�2p0
2 − cos2 ��� . �61�

We now solve order by order the nondimensional equations
obtained by introducing the scaled variables defined above
into Eqs. �43�, �45�, �47�, and �49�. The results obtained at
order i are used to derive the equations at order i+1.

a. Order 0. The diffusion equation reduces to

p0
2�zzc0 = 0. �62�

We look for solutions of the form

c0�x,z� = a0�x�z + b0�x� , �63�

which imposes

p0
2a0 − �p0�cos ���b0 − 1� = 0,

p0
2a0 + �p0�cos ���b0 − 1� + �p0a0 = 0 �64�

for the boundary conditions, so that

a0�x� = 0,

b0�x� = 1,

c0�x,z� = 1. �65�

At this order, the velocity is found to be zero.
b. Order 1. The diffusion equation is

p0
2�zzc1 = 0 �66�

with the solution of the form

c1�x,z� = a1�x�z + b1�x� �67�

and boundary conditions

p0
2a1 − �p0�cos ���b1 − c1

eq� = 0,

p0
2a1 + �p0�cos ���b1 − c1

eq� + �p0a1 = 0. �68�

The solution is

a1�x� = 0,

b1�x� = c1
eq�x� ,

c1�x,z� = c1
eq�x� . �69�

At this order, the velocity is found to be zero.
c. Order 2. The diffusion equation is

p0
2�zzc2 = 0 �70�

with the solution of the form
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c2�x,z� = a2�x�z + b2�x� �71�

and boundary conditions

p0
2a2 − �p0�cos ���b2 − c2

eq� + f2 = 0,

p0
2a2 + �p0�cos ���b2 − c2

eq� + f2 + �p0a2 = 0, �72�

with

f2�x� = �2�cos2 ���xh−1 + �sin � − �xh−1��xc1
eq. �73�

The concentration is given by

a2�x� = −
2

p0�x�
f2�x�

2p0�x� + �
,

b2�x� = c2
eq�x� −

a2�x�
2 cos �

,

c2�x,z� = c2
eq�x� + �z −

1

2 cos �
�a2�x� . �74�

The normal velocity is zero.
d. Order 3. The diffusion equation is

p0
2�zzc3 − 2p0

2d3 = 0 �75�

with

d3�x� =
2��xh−1 − sin ���xa2 + a2�xxh−1 − �xxc1

eq

2p0
2 . �76�

The solution is of the form

c3�x,z� = d3�x�z2 + a3�x�z + b3�x� �77�

with boundary conditions

p0
2a3 − �p0�cos ���b3 − c3

eq� + f3 = 0,

p0
2a3 + �p0�cos ���b3 − c3

eq� + f3 + g3 + �p0a3 = 0, �78�

where

f3�x� =
�xh−1 − sin �

2 cos �
�xa2 − �xh0�xc1

eq + �2��xh−1 − sin ���xh0

− p0p1�a2 + 
�c1
eq −

p1

p0
��xh−1 + �xh0��2cos2 �

+ ��xh−1 − sin ��� p1

p0
�xc1

eq − �xc2
eq� , �79�

and

g3�x� =
p0�2p0 + ��

cos �
d3 −

�xh−1 − sin �

cos �
�xa2. �80�

The concentration is given by

a3�x� = −
1

p0

g3 + 2f3

2p0 + �
,

b3�x� = c3
eq +

�f3 − p0g3

�p0�cos ���2p0 + ��
,

c3�x,z� = d3�x�z2 + a3�x�z + b3�x� . �81�

The normal velocity is nonzero for the first time at this order.
Its expression is derived by using Eq. �49� together with the
scaling relations of Sec. IV C 1,

ṽ3�x� =
�

p0cos2 �
�x�2 cos2 � + �p0

p0�� + 2p0�
�xc1

eq

− 2�2�cos2 ��
sin � − �xh−1

p0�� + 2p0�
�xh−1� . �82�

D. Amplitude equation

We finally obtain the following amplitude equation using
Eqs. �49� and �82�:

�tH =
�

cos2 �
�x�2 cos2 � + �p0

p0�� + 2p0�
�xc1

eq

− 2�2�cos2 ��
sin � − �xH

p0�� + 2p0�
�xH� , �83�

where

p0�x� = ��1 − �sin ���xH�2 + ��cos ���xH�2, �84�

and

c1
eq�x� = − ��cos ��

�xxH

p0
3 �� + 	p0

2�2p0
2 − cos2 ��� . �85�

Here H�x�=h−1�x� and the time is rescaled such that �4t→ t.
This amplitude equation is the central result of our study. As
expected, this equation ensures mass conservation since its
right-hand side is a derivative of a mass current.

V. NUMERICAL SIMULATIONS AND DISCUSSION

The time evolution of vicinal surfaces is obtained by in-
tegrating numerically Eq. �83�. While the simulations are
performed in the oblique frame �x ,z�, the system is repre-
sented in the laboratory orthogonal frame �x ,y�. Solving this
stiff partial differential equation necessitates the use of an
adaptive time step. A single step with periodic boundary con-
ditions is simulated in practice. The whole vicinal surface is
obtained by reproducing this step periodically along the z̃
direction. The elastic interactions included in our model are
not only justified from a purely physical point of view but
are also a necessary ingredient in realistic numerical simula-
tions. Indeed, test simulations performed without elastic in-
teractions systematically resulted in step crossings at late
times.

We first compare the dynamics of one step in two physical
regimes defined by the values of the nondimensional number
�=� L0 /Ds. For ��1, the system dynamics is diffusion lim-
ited, while it is attachment limited for ��1. All the param-
eters �	, �, �2, �� entering Eq. �83� are set to unity here, and
Figs. 6 and 7 show the time evolution of a single step for
�=0.001 and 20, respectively. At short times, the steps are
rather similar in shape for both values of �. Calculating the
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wavelength emerging at short times, we find that it increases
with � as predicted by the linear stability analysis. Alterna-
tively, the growth rate � is found to decrease with �. At late
times, after coarsening has set in, the step shapes differ
strongly: a single-valued function is found in the laboratory
frame for �=0.001, while long overhangs are visible for �
=20. In both cases, the electrical field triggers local faceting
of the steps which look like asymmetrical sawteeth. Ulti-
mately, the meander amplitude saturates to a finite value in a
finite-size system.

The time evolution of two vicinal surfaces is displayed in
Figs. 8 and 9. Dark regions correspond to a high step density
in which the electrical field is essentially oriented in the step-
down direction, while it is mainly oriented in the step-up
direction in the low-step-density regions. This result is con-
sistent with the well-known step bunching observed for
Si�111� when the heating current is applied perpendicular to
the steps, in the step-down direction.10

According to the nature of the material, the surface orien-
tation, and the temperature range, physical parameters such
as the diffusion coefficient may vary a lot. In addition, they
are not always known with a great accuracy. For example,
for a Si�111� surface, four acceptable sets of physical param-
eters are given in Table I of Ref. 12, of which set B seems

particularly consistent with the experimental observations.
For this particular set of physical parameters, Eq. �14� gives
d=L0 /�=5�10−7 m. A miscut angle of 1° then results in
�0.03, and thus attachment-detachment-limited dynamics.
Note that with the parameter sets A, C, or D, and/or a differ-
ent miscut angle, � may vary in a wide range, both below
and above 1. Our model is valid in both cases and it predicts
rather different step shapes at long times, as just discussed.
Experimental observation of vicinal surfaces under an elec-
trical field parallel to the initial steps could possibly give an
indication about the magnitude of the nondimensional num-
ber � which governs the system dynamics.

FIG. 6. Numerical simulation of Eq. �83�. Time evolution of a
single step for �=0.001 and �=0.8. The step is systematically
shifted in time �given by the lower axis�. The electrical field is
applied in the positive x direction.

FIG. 7. Same as in Fig. 6 for �=20 and a larger system
width.

FIG. 8. Top view of a vicinal surface computed at different
times for the same parameters as in Fig. 6: t= �a� 230, �b� 1200, �c�
8300, and �d� 1.75�105. The step-down direction is rigthward
while the electrical field direction is downward.
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VI. CONCLUSION AND PERSPECTIVES

In summary, we have studied the meandering instability
induced by a constant electrical field initially parallel to a

train of straight steps. The time evolution of the meanders is
described by a nonlinear amplitude equation which we have
derived through an asymptotic expansion. Numerical simu-
lations have been performed in both the attachment-
detachment-limited ���1� and the diffusion-limited ���1�
regimes. At large times, overhangs are observed in the latter
case only.

It is very instructive to compare our results with an ex-
perimental study of step meandering on Si�111� vicinal sur-
faces, in which the orientation of the electrical field E is
taken different from the step-down direction.20 When E is set
parallel to the steps, as in the present study, a similar step
meandering effect is observed but the steps bend in the op-
posite direction as compared to our model. This apparent
contradiction is in fact not unexpected because the experi-
ments are performed at T=1100 °C. Indeed, in this interme-
diate range of temperature �1000–1180 °C�, the steps have
been argued to become transparent to the diffusing
adatoms.20 The underlying physics is thus expected to differ
from the one introduced in our model �impermeable steps�
and an opposite direction of bending is not contradictory. In
the light of this discussion, new experiments performed at
temperatures slightly higher than T=1180 °C or slightly
lower than T=1000 °C would be desirable to test our model.
Conversely, the step transparency could be included in order
to compare the resulting model to the experiments in the
intermediate range of temperatures.

In the present model, consecutive steps are assumed iden-
tical up to a given phase shift �synchronized�. In this case,
the numerical task reduces to the time integration of the am-
plitude equation for a single step. The general case in which
the steps are not all synchronized pertains to the class of
coupled moving boundaries problems which are much more
difficult to handle. Extensive numerical calculations based
on front-tracking, phase-field, or Green’s function methods
could be helpful to model such systems.
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