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Mode-selective excitation of adsorbates by shaped infrared laser pulses is investigated here theoretically, for
the example of a H atom on a hydrogen-covered Si�100�-2�1 surface. The mode-selective excitation is
perturbed by the intermode coupling within the system �bending and stretching modes� and by system-bath
coupling to substrate phonons. Using a force-field based model, vibration-phonon coupling was found and
predicted to lead to vibrational relaxation of the H-Si stretching mode on a ns timescale, and of the Si-Si-H
bending mode on a ps timescale �I. Andrianov and P. Saalfrank, J. Chem. Phys. 124, 034710 �2006��. To
address the question as to whether in such a dissipative situation mode-selective control of adsorbate vibra-
tional dynamics is still possible, a system-bath ansatz is used to derive an open-system density matrix theory
in which the H vibrations are driven either by sin2, or by freely optimized infrared ps laser pulses. Both for the
Si-H stretching and Si-Si-H bending vibrations mode-selective excitation is predicted to be possible. It is also
found that the Markov approximation works well in most of the applications, and that simple sin2 are nearly as
effective as pulses which were freely optimized by optimal control theory.
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I. INTRODUCTION

Hydrogen-covered silicon surfaces are interesting micro-
labs for a variety of phenomena in fundamental and applied
surface science. For example, for H-covered Si�100� and/or
Si�111� surfaces the vibrational lifetime of the Si-H stretch
mode, which is governed by vibration-phonon coupling, has
been measured at various temperatures.1 Accordingly, the
lifetime of the v=1 stretching vibration in H:Si�100�-2�1,
where each of the Si atoms of the Si2 dimers of the recon-
structed Si�100�-2�1 surface carries one H atom, is about
1.2 ns at T=300 K.1 This figure increases to several ns with
decreasing temperature.1 The H:Si�111�-1�1 surface be-
haves similarly. Large isotope effects have been observed
when H is replaced by D: For D:Si�100�-2�1, the lifetime
drops to a few hundred ps. This is due to the smaller Si-D
frequency, which is still larger than the Debye frequency of
the Si surface but the frequency mismatch between the ad-
sorbate and the substrate vibrations is already smaller. Simi-
larly, for the bending vibration of H on Si�100�-2�1 along
the Si-Si-H bending angle, a vibrational relaxation time in
the order of a ps has been predicted theoretically.2 The Si-
Si-H bending vibration has a frequency close to the Debye
frequency of the solid, and was predicted to relax by a two-
phonon process.2 Similar short lifetimes were predicted for
the C-H stretching modes of H-terminated diamond
surfaces.3,4 For example, for H:C�100� a vibrational lifetime
of 0.8 ps was calculated, which is due to a 1:2 resonance.4

Vibrational relaxation greatly affects surface reactions,
when enforced by external stimuli. For H:Si�100�-2�1, a
number of reactions were enforced with electrons or holes
�from a scanning tunneling microscope �STM��, or a laser.
These inlcude the desorption of H atoms5–8 and the lateral
motion �“switching”� of H atoms from one dangling bond

site of a Si dimer to a neighboring one.9,10 The rate for STM-
driven desorption of hydrogen atoms from H:Si�100�-2�1
in the “below-threshold” regime6 �low voltages� is in estab-
lished dynamical models inversely proportional to the life-
time of the Si-H stretching mode.11 In this case the tunneling
electrons drive the adsorbate-surface up along the vibrational
ladder, a process which is perturbed by downward transitions
due to vibration-phonon coupling. Similarly, vibrational re-
laxation is also important for femtosecond laser induced re-
actions at metal surfaces.12,13

Some of the above reactions proceed by vibrational ladder
climbing in the ground state, however, under explicit partici-
pation of higher-lying electronically excited states. The inter-
esting question arises as to whether the vibrational excitation
could also be directly enforced by infrared �IR� light. In par-
ticular one would like to selectively excite a bond, e.g., to
break it. A slightly less ambitious application of bond-
selective excitation is vibrationally mediated chemistry. An
example is the well-known IR+UV strategy, where IR pho-
tons selectively excite a bond, which then breaks with en-
hanced probability after electronic excitation by UV/vis
light.14 An analogous strategy was suggested in surface sci-
ence to enhance photoreaction �in particular photodesorp-
tion� cross sections.10,15–18

Some time ago IR laser induced photodesorption of NH3
from Cu�100� was observed experimentally, however, with
frequencies that excite the N-H stretching mode of about
3400 cm−1.19 It was argued that the desorption mechanism is
thermal. Accordingly, the N-H bond serves as an antenna that
directs radiation energy via surface phonons to the molecule-
surface bond, and breaks it. Unfortunately, the process is
nonselective because also coadsorbed ND3 desorbs when
NH3 is excited. Only recently the goal was achieved to se-
lectively excite and break an adsorbate-surface bond by IR
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photons without thermalization. The example system was a
Si�111� surface, with H and D atoms coadsorbed on it. After
exciting the Si-H bond with IR radiation that was resonant
with the Si-H vibration, the desorption of H2 �not D2� was
observed.20 This may well be the first example of bond-
selective excitation in a polyatomic system.21 The reason
why bond-selective IR excitation is so difficult to achieve in
polyatomic molecules or in condensed phases is the rapid
quenching of the excitation due to coupling of the vibration
of interest to a multitude of other modes.

The goal of this paper is to address the question to which
extent bond- and perhaps even state-selective IR excitation
of selected adsorbate vibrations is possible. We are specifi-
cally considering the H:Si�100�-2�1 system, for which we
can build on previous experience.2,22,23 The vibration-phonon
coupling is treated within a system-bath model and open-
system density matrix theory. Further issues to be addressed
are non-Markovian16,24 vs Markovian2 behavior, and the per-
formance of various strategies to create optimal IR pulses—
either by choosing a fixed shape function, or by free optimi-
zation using optimal control theory.25–28

The paper is organized as follows. In Sec. II the
H:Si�100�-2�1 system is introduced, along with a system-
bath model. Equations of motion derived from non-
Markovian �Sec. III A� and Markovian �Sec. III B� open-
system density matrix theories are summarized in Sec. III A,
brief account of pulse generation and analysis is given in
Sec. III C. In Sec. IV results on the �field-free� vibrational
relaxation �Sec. IV A�, and the mode- and state-selective ex-
citation of selected adsorbate vibrations by shaped IR laser
pulses �Sec. IV B� will be presented and discussed. Section
V summarizes this work and addresses possible future direc-
tions.

II. MODEL

The model Hamiltonian characterizing the combined total
system, a H atom adsorbed on a Si dimer of a reconstructed,
H-covered Si�100� :2�1 surface and being excited by the
laser field, can be written in the form

Ĥ = ĤS + ĤSF + ĤSB + ĤB, �1�

where ĤS is the system Hamiltonian, ĤSF and ĤSB represent
the system-field and the system-bath coupling, respectively,

and ĤB is the bath Hamiltonian.
The system Hamiltonian in polar coordinates reads

ĤS�r,�� = −
�2

2m

�2

�r2 −
�2

2mr2

�2

��2 + V�r,�� , �2�

where m is the mass of the hydrogen atom, and r and �
represent the H-Si stretching mode �the Si-H distance�, and
the Si-Si-H bending motion coordinates, respectively, of an
H atom adsorbed on the H:Si�100�-2�1 surface. V�r ,�� is
the two-dimensional �2D� potential energy surface of the ad-
sorbed H atom, for which we take the same model form

V�r,�� = D�e−2��r−r0� − 2e−��r−r0�� + D +
k

2
e−��r − r0�2

�� − �0�2,

�3�

as in Ref. 2. Here D=3.4 eV is the H binding energy, the
equilibrium position of H on a Si dimer is r0=2.84 a0, �0
=112.6°, and other parameters are as defined in Ref. 2. The
potential function �3� supports bound vibrational states
�v�r ,��, the lowest of which can be characterized according
to their stretch and bending quantum numbers, i.e., v
= �vr ,v��. The fundamental frequencies of the bending and
stretching modes, obtained by diagonalization of the system
Hamiltonian with the sinc-function discrete-variable-
representation method,29 are �r=2037 cm−1 and ��

=637 cm−1, in reasonable agreement with experiment.1

The laser field is assumed to be linearly polarized perpen-
dicular to the Si-dimers of the Si�100�-2�1 surface, which
we denote the z direction. Its interaction with the system is
described within the semiclassical electric dipole approxima-
tion by the interaction Hamiltonian

ĤSF�r,�,t� = − �z�r,��Ez�t� , �4�

where Ez�t� is the laser electric field, and �z�r ,�� is the z
component of the dipole moment. To estimate the latter,
B3LYP/6–31G** �Ref. 30� calculations with GAUSSIAN

�Ref. 31� were carried out for a small Si6H2 cluster, mimick-
ing a fully H-covered Si2 dimer of the 2�1 reconstructed
Si�100� surface, plus its nearest four Si atoms of the second
layer of the Si lattice. In the calculation, r and � for one of
the H atoms were varied while all other atoms were kept
fixed at positions which were optimized, using a bond-order
forcefield, for a 180-atom cluster in Ref. 2 �see below�. The
numerically derived dipole function was then parametrized
as

�z�r,�� = A0 + A1�r − r0�e−A2�r−r0� + A3�� − �0� �5�

with parameters A0=0.4001 ea0, A1=−1.2587 e, A2
=0.3175 a0

−1, and A3=−0.4734 ea0/rad �1 rad=57.3° �. Equa-
tion �5� holds only for small values of �−�0. Vibrational
transition dipole matrix elements were calculated as

�v�v = ��v���z�r,����v� . �6�

The bath Hamiltonian, based on the normal-mode analysis
of large clusters SinHm

2 , reads:

ĤB��qi	� = 

i=1

NB �−
�2

2Mi

�2

�qi
2 +

1

2
Mi�i

2qi
2� , �7�

where Mi and �i are the masses and frequencies of the nor-
mal modes of the cluster. To obtain the normal modes, use is
made of a semi-empirical bond order potential by Dyson and
Smith.32,33 All results below are for a hydrogenated silicon
cluster consisting of Nat=180 atoms �36 H and 144 Si
atoms�,2 giving a total of NB=3Nat−6=534 normal modes.
The bath modes extend up to a calculated Debye frequency
of 579 cm−1, in good accord with other sources,11 and lower
than the two system frequencies �r and �� of above.
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By a truncated Taylor expansion of the same semiempir-
ical force field the system-bath interaction Hamiltonian has
been determined as

ĤSB�r,�,�qi	� = 

i

NB

	i�r,��qi +
1

2

i

NB



j

NB


ij�r,��qiqj . �8�

The system-bath Hamiltonian �8� takes into account both
one- and two-phonon transitions in the bath, the latter being
necessary to efficiently couple the high-frequency system
modes, to the low-frequency bath modes.2 The one- and two-
phonon coupling functions 	i and 
ij are nonlinear in the
system coordinates, see Ref. 2 for details.

Based on this model and using Fermi’s Golden Rule, tran-
sition rates �v�→v between system states �v�� and �v� due to
one- and two-phonon transitions, were determined in Ref. 2.
Also, vibrational lifetimes �v of system eigenstates were cal-
culated by summing appropriately over all contributing tran-
sition rates. For T=0 K, it was found that �1=��0,1�
=1.35 ps for the bending mode �first index: stretch; second
index: bending� and �4=��1,0�=2.13 ns. Downward and up-
ward rates are related by detailed balance,

�v→v� = �v�→ve−��vv�/kBT �9�

giving ��1,0�
1.5 ns at 300 K.2 The calculated lifetime of the
stretching mode is in good agreement with experiment,1

while the lifetime of the bending vibration, being three or-
ders of magnitude shorter, has so far not been measured ac-
cording to our knowledge. Its order of magnitude, however,
is supported by a recent nonperturbative study.23

For completeness, we show in Table I the quantum num-
bers, energies �relative to the ground state�, and vibrational
lifetimes �v �T=0� of the lowest seven system eigenstates �v�
�v=0, . . . ,6�, along with the downward decay rates �v�→v
and the dipole matrix elements, ��v�v�. In the dynamics cal-
culations below, up to the lowest 50 vibrational states will be
considered.

III. EQUATIONS OF MOTION AND TECHNIQUES

In the following, we will use a reduced density matrix
description for the laser-driven vibrational system dynamics.
Two variants will be used; one, in which memory is included
�non-Markovian theory� and one in which the Markov ap-
proximation is made.

A. Non-Markovian theory

In this subsection, the interaction picture will be used. It is
suitable to start with the equation of motion for the combined
total system descibed by the Hamiltonian �1�. The density
operator characterizing the total system in the interaction
picture is denoted by 
̂I�t�. Its time evolution is governed by
the Liouville equation, see, e.g., Ref. 34,

�
̂I�t�
�t

=
i

�
Ez�t���z

I�r,�,t�,
̂I�t�� −
i

�
�ĤSB

I �r,�,�qi	,t�,
I�t�� .

�10�

The density operator 
I�t� and the operators of Eq. �10� in
the interaction picture are related to the Schrödinger picture
as follows:


̂I�t� = ei�ĤS+ĤB�t/�
̂�t�e−i�ĤS+ĤB�t/�, �11�

BI�r,�,t� = eiĤSt/�B�r,��e−iĤSt/� �with B = �z, 	i, or 
ij� ,

�12�

qi
I�t� = eiĤBt/�qie

−iĤBt/�. �13�

The statistical description of the system coupled to an
unobserved bath is provided by the reduced density operator
which is defined as

�̂I�t� = TrB�
̂I�t�	 , �14�

where TrB refers to the trace over all degrees of freedom of
the bath. The equation of motion for the reduced density

TABLE I. Quantum numbers v= �vr ,v��, energies �relative to the ground state�, and vibrational lifetimes
�v �T=0� of the lowest seven vibrational eigenstates �v�, along with the downward decay rates �v�→v at T
=0 K �lower left half of the table, in ps−1�, and the dipole matrix elements, ��v�v� �in atomic units ea0� in the
upper right half.

v 0 1 2 3 4 5 6

�vr ,v�� �0,0� �0,1� �0,2� �0,3� �1,0� �0,4� �1,1�
�v0 �cm−1� 0 637 1271 1903 2037 2532 2661

�v �ps� — 1.35 0.69 0.48 2130 0.37 1.45

v�

0 — 5.06�10−2 8.52�10−3 1.61�10−4 2.06�10−1 7.64�10−5 1.50�10−3

1 0.7383 — 7.13�10−2 1.48�10−2 3.32�10−3 3.23�10−4 2.05�10−1

2 0. 1.4426 — 8.71�10−2 1.17�10−3 2.10�10−2 4.74�10−3

3 0. 0. 2.1034 — 4.62�10−5 1.00�10−1 2.05�10−3

4 0. 0. 4.70�10−4 9.80�10−8 — 5.16�10−6 5.04�10−2

5 0. 0. 0. 2.7154 4.69�10−6 — 9.32�10−5

6 0. 0. 0. 1.23�10−3 0.6895 3.72�10−7 —
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operator is obtained, as usual,34 by making use of the formal
solution of the Liouville equation �10�,


̂I�t� = 
̂I�0� +
i

�
�

0

t

dt���Ez�t���z
I�r,�,t��

− ĤSB
I �r,�,�qi	,t��,
̂I�t���	 , �15�

substituting Eq. �15� back into Eq. �10� and evaluating the
trace �14� under the basic condition of irreversibility


̂I�t� = �̂I�t��̂B�0� , �16�

where

�̂B�0� =
e−ĤB/kBT

TrB�e−ĤB/kBT	
. �17�

Finally, one obtains the equation of motion for the reduced
density operator

��̂I�t�
�t

=
i

�
Ez�t���I�r,�,t�, �̂I�t�� −

1

�2 R̂I�r,�,t� , �18�

where R̂I�r ,� , t�, which will be referred to as the time-
dependent relaxation operator, is given in the interaction pic-
ture by the following equation:

R̂I�r,�,t� = R̂1
I �r,�,t� + R̂2

I �r,�,t�

= 

i

NB �
0

t

dt���	i
I�r,�,t�,	i

I�r,�,t���̂I�t���

��Qi�t�Qi�t��� − �	i
I�r,�,t�, �̂I�t��	i

I�r,�,t���

��Qi�t��Qi�t��	

+
1

2

i

NB



j

NB �
0

t

dt���
ij
I �r,�,t�,
ij

I �r,�,t���̂I�t���

��Qij�t�Qij�t��� − �
ij
I �r,�,t�, �̂I�t��
ij

I �r,�,t���

��Qij�t��Qij�t��	 . �19�

The overall relaxation operator R̂I�r ,� , t� consists of two

parts, R̂1
I �r ,� , t� accounting for one-phonon relaxation and

R̂2
I �r ,� , t� accounting for two-phonon relaxation. The time

correlation functions �Qi�t�Qi�t��� and �Qij�t�Qij�t��� in Eq.
�19� are defined by the following equations:

�Qi�t�Qi�t��� = TrB�qi
I�t�qi

I�t���̂B�0�	 , �20�

where �Qi�t��Qi�t��= �Qi�t�Qi�t���* and

�Qij�t�Qij�t��� = TrB�qi
I�t�qj

I�t�qi
I�t��qj

I�t���̂B�0�	 , �21�

where �Qij�t��Qij�t��= �Qij�t�Qij�t���*. It is easy to show that

�Qij�t�Qij�t��� = �Qi�t�Qi�t����Qj�t�Qj�t��� . �22�

For the bath represented by normal modes �an ensemble
of harmonic oscillators� �see Eq. �7�� it can be shown that the
time correlation function for one-phonon transitions,
�Qi�t�Qi�t���, has the following form:

�Qi�t�Qi�t��� =
�

2Mi�i
���i,t − t�,T� ,

���i,t − t�,T� = �n̄��i� + 1�exp�− i�i�t − t���

+ n̄��i�exp�i�i�t − t��� , �23�

where

n̄��i� =
1

exp���i/kBT� − 1
�24�

is the Bose-Einstein distribution function. The time correla-
tion functions for two-phonon transitions, �Qij�t�Qij�t���, are
easily obtained from Eq. �22�.

Equation of motion �18� has been treated numerically in
the system-state representation. Taking matrix elements be-
tween the system eigenstates �v�=�v�r ,��, one gets

d�vv�
I �t�

dt
=

i

�
Ez�t���z

I�t�, �̂I�t��vv� −
1

�2 �R1vv�
I �t� + R2vv�

I �t�� .

�25�

The matrix elements of operators in Eq. �25� in the interac-
tion picture are related to the Schrödinger picture as follows:

Bvv�
I �t� = ei�vv�t��v�r,���B�r,����v��r,��� , �26�

where B=�z, 	i, and 
ij, respectively. The one-phonon re-
laxation matrix R1vv�

I �t� in Eq. �25� reads

R1vv�
I �t� = 


i

NB �

2Mi�i
�

0

t

dt���	i
I�t�,	i

I�t���̂I�t���vv�

����i,t − t�,T� − �	i
I�t�, �̂I�t��	i

I�t���vv�

��*��i,t − t�,T�	 , �27�

where ���i , t− t� ,T� is given by Eq. �23�. It has been treated
explicitly by making use of the 3D arrays �i ,v ,v�	 with Eq.
�26� �for B=	i� and results given in Appendix B of Ref. 2.

The explicit treatment of the two-phonon relaxation with
matrix R2vv�

I �t� is too expensive, therefore a quasiresonant
model, similar to those used in our previous works,16,24 and a
partial averaging over one of two bath variables have been
involved as described below. The two-phonon relaxation ma-
trix in the system-state representation reads

R2vv�
I �t� =

�2

8 

i

NB



j

NB �
0

t

dt�� �
ij
I �t�,
ij

I �t���̂I�t���vv�

Mi�iMj� j

����i,t − t�,T���� j,t − t�,T�

−
�
ij

I �t�, �̂I�t��
ij
I �t���vv�

Mi�iMj� j

��*��i,t − t�,T��*�� j,t − t�,T�� . �28�

A partial averaging over the j coordinate of the bath yields
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R2vv�
I �t� ⇒

�2

8 

i

NB �
0

t

dt����
i
I�t�,
i

I�t���̂�I�t���vv�

Mi�i

�

j

NB

���i,t − t�,T���� j,t − t�,T� −
�
i

I�t�, �̂I�t��
i
I�t���vv�

Mi�i

�

j

NB

���i,t − t�,T�*��� j,t − t�,T�*� , �29�

where the products of the matrix elements between the sys-
tem states for the two-phonon transitions are defined as fol-
lows:


i
I�t�vk
i

I�t��nv� =
1

NB



j

NB 
ij
I �t�vk
ij

I �t��nv�

Mj� j
. �30�

The products of the matrix elements given by Eq. �30� have
been calculated in the Schrödinger picture by making use of
the results given in Appendix B of Ref. 2, see Eq. �33�
therein, and subsequently transformed into the interaction
picture with Eq. �26� �for B=
ij�.

A quasiresonant model for the two-phonon relaxation has
been employed as follows. Taking into account that the most
efficient energy exchange among coupled systems occurs in
the case of the resonance, it is reasonable to assume that the
two-phonon relaxation depends on the bath frequency � j in a
resonant way with respect to any system frequency �mn
= �Em−En� /� and the other bath frequency �i. Specifically,
similar to our previous works,16,24 the following substitution
is made in Eq. �29�:



j

NB

���i,t − t�,T���� j,t − t�,T�

⇒ 

m=1

vmax



n=0

m−1 �
Amn

Bmn

���i,t − t�,T����,t − t�,T�gmni���d� ,

�31�

where Amn��mn�Bmn and gmni��� is represented by a
Lorentzian-type distribution function

gmni��� =
1

�

�mn

�mn
2 + ���mn − �i� − ��2 , �32�

which has a maximum at �=�mn−�i, and �mn�0 deter-
mines the width of the distribution �32�, corresponding to a
combined system-bath frequency �mn−�i. The �mn are
treated here as empirical parameters, determined from crite-
ria to be discussed below. Within the quasiresonant model
used here, we keep only the sum frequencies �i+� j in Eq.
�31� and suppose that the Bose-Einstein distribution func-
tions n̄��� can be reasonably approximated by their “central
values” n̄��mn−�i� in each frequency interval Amn��
�Bmn. Taking into account that the bath is supposed to be in
thermal equilibrium at all times, we assume that the energy
exchange among the system and the bath at a certain system
frequency �mn is not affected by those occurring at other
system frequencies. We therefore allow the respective distri-
butions gmni��� defined by Eq. �32� to be overlapping and set
Amn=−� and Bmn=�. This yields tabulated integrals35 in Eq.
�31�, which finally reads as follows:



j

NB

���i,t − t�,T���� j,t − t�,T� ⇒ 

m=1

vmax



n=0

m−1

exp�− �mn�t − t�����n̄��i� + 1��n̄��mn − �i� + 1�exp�− i�mn�t − t���n̄��i�

�n̄��mn − �i�exp�i�mn�t − t���	 . �33�

It is clearly seen from Eqs. �29� and �33� that, with the qua-
siresonant model for the two-phonon relaxation being em-
ployed together with the partial averaging over one of two
bath variables, the two-phonon relaxation matrix R2vv�

I �t�
�28� can be treated in the equation of motion �25� by making
use of the 3D arrays �i ,v ,v�	 �i.e., similar to the one-phonon
relaxation matrix R1vv�

I �t�, see Eq. �27��.
Equation �25� is the basic equation of motion in the

present work for the investigation of the non-Markovian dis-
sipative quantum dynamics of the system driven by the IR
laser field. Through the relaxation terms, it depends on all
previous times. It has been solved by using several modifi-
cations of standard numerical methods,36 in particular, the
Adams-Bashforth-Moulton schemes for a predictor-corrector
method similar to our previous works.16,24,37–39 The initial
conditions to Eq. �25�,

�vv�
I �t = 0� =

e−Ev/kBT



v�

e−Ev�/kBT
�v�v, �34�

correspond to the thermal equilibrium of the system and the
bath at temperature T �typically, T=4 K�. The solution of Eq.
�25� yields the reduced density matrix elements �vv�

I �t� and,
in particular, the time-dependent populations

Pv�t� = �vv
I �t� . �35�

B. Markovian theory

From the above theory, a Markovian approximation could
be derived along the lines of Ref. 34, for example. Instead,
we use a slightly more pragmatic approach, namely the Mar-
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kovian theory based on Lindblad operators, similar to Refs. 2
and 40. Accordingly, the equations of motion in the
Schrödinger picture and explicitly written out in the basis of
N system eigenstates are

d�vv

dt
=

i

�
Ez�t� 


v�=0

N−1

��vv��v�v − �vv��v�v� + 

v�=0

N−1

��v�→v�v�v�

− �v→v��vv� �36�

for the diagonal elements of the reduced density matrix and

d�v�v

dt
= − i�v�v�v�v +

i

�
Ez�t� 


v�=0

N−1

��v�v��v�v − �v�v��v�v�

− �v�v�v�v �37�

for the off-diagonal elements. In Eq. �36�, �v�v are the tran-
sition dipole moments defined in Eq. �6�, and the �v�→v are
the relaxation rates, which were calculated from a Golden
Rule treatment in Ref. 2, see also Table I. In Eq. �37�, �v�v is

a dephasing rate, given as �v�v=�vv�=
�v�→v

2 if pure
dephasing41 is neglected. This assumption is reasonable in
our case, as also discussed in Ref. 40, where it was shown
that pure dephasing is expected to be of minor importance
for IR excitation. Nevertheless, treatment of pure dephasing
should be included in the future work. Since the transition
rates do not depend on previous times, Eqs. �36� and �37�
contain no memory, and were solved with a Newton polyno-
mial propagator.42

C. Choice of electric field Ez„t…

Two strategies were used to determine suitable electric
fields Ez�t�. In a first strategy, which is used in particular in
conjunction with the non-Markovian theory, we employ one
or two laser pulses of sin2 form,

Ez�t� = E0,1 sin2���t − ts1
�

tp1

�sin��l1
t + �1�

+ E0,2 sin2���t − ts2
�

tp2

�sin��l2
t + �2� , �38�

where E0,k, k=1,2, is the amplitude of the kth pulse, tsk
its

starting time, tpk
its duration, �lk

the respective laser carrier
frequency, and �k the phase. These parameters are optimized
iteratively “by hand” to achieve a specific goal.43

A more systematic strategy is optimal control theory
�OCT� for open quantum systems, as in Ref. 28 This ap-
proach was exclusively used here for the Markovian case.
Accordingly, we maximize the constrained functional

J = ��Ô��̂�tp��� − �
0

tp

��t��Ez�t��2dt

− �
0

tp

dt��
̂�t��
�

�t
+

i

�
�LH + LD���̂�t��� . �39�

Ô is a target operator �e.g., the projection operator on a vi-

brational eigenstate� whose expectation value, expressed

here in double space notation, ��Ô � �̂�tp���ªTr�Ô†�̂�tp�	 is to
be maximized at time tp, the end of the pulse. ��t� is a
time-dependent penalty factor to keep the pulse fluence �sec-
ond term� low. As another constraint the open-system
Liouville-von Neumann equation has to be fulfilled �third
term�, with LH and LD denoting the Hamiltonian and dissi-
pative Liouvillians, respectively �see Ref. 40 for details�.

̂�t� is a Lagrange density operator to enforce this second
constraint. The variational calculus leads to coupled equa-
tions for the field, the density operator �̂, and the Lagrange
multiplier 
̂, which can be solved with an iterative scheme,
see Refs. 28 and 40. The electric field is then computed from

Ez�t� = −
1

��
Im��
̂�t���̂z��̂�t��� . �40�

Further, a rounded plateau function

��t� =��0 sin2�4�t

tp
� for 0 � t � tp/8,

�0 sin2�4�t

7tp
� for 7tp/8 � t � tp,

�0 else
� �41�

was chosen to produce optimal pulses which go smoothly to
zero toward the beginning and the end of the pulse.

To analyze the pulses, we either simply consider their
time evolution Ez�t� or compute the Husimi quasiprobability
distribution PH�t ,E� in time-energy space.44 The Husimi dis-
tribution is obtained from smoothing a Wigner distribution
PW�t ,E� with a Gaussian in time and energy, as outlined in
Ref. 40.

IV. RESULTS AND DISCUSSION

A. Free evolution of excited vibrational states

First the widths �mn of the Lorentzian distribution func-
tion �32� have been chosen such as to reproduce the lifetimes
of the system states calculated previously in Ref. 2. The
variation of �mn in the interval of 6–8 cm−1 made it possible
to achieve a good agreement with the results of Ref. 2. Two
examples are presented in Figs. 1�a� and 1�b�. It is assumed
that the system is prepared initially in a certain system state
v�vr ,v�� �v=5, corresponding to �0,4� in Fig. 1�a� and v=8,
corresponding to �1,2� in Fig. 1�b�, respectively�, and then
the non-Markovian equation of motion �25� is propagated at
the laser field Ez�t�=0. For comparison, also the population
dynamics arising from the Markovian model �36� and �37� is
shown.

Comparison of the non-Markovian free relaxation to the
Markovian one shows first of all that the population decay of
the initial state proceeds indeed �by construction� on very
similar timescales. A first difference between the two models
is that the non-Markovian population dynamics of the initial
state is nonexponential �Gaussian-like�, with limt→0dP /dt
=0, in contrast to the Markovian theory which is exponen-
tial. If, as in the examples shown, the decay proceeds along a
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“vibrational ladder,” it is also observed that for Markov and
non-Markov the maxima of populations of individual levels
occur at different times, and possibly with different ampli-
tudes.

B. Mode-selective excitation of adsorbate vibrations with
shaped infrared laser pulses

From Table I and Ref. 2 we know that the characteristic
features of the H/Si model considered here are �i� very dif-
ferent frequencies for the r and � modes, �ii� weak r-� cou-
pling within the subsystem, �iii� small anharmonicity of both
modes, �iv� very different timescales for the relaxation of the
r �ns timescale� and � modes �picosecond timescale�, and,
finally, �v� transition dipole moments for r excitation which
are an order of magnitude larger than for � excitation. As a
consequence of �i� and �ii� we expect that mode-selective
excitation by tailored IR pulses should be possible. Items �iv�
and �v� lead to the expectation that this excitation may be
more difficult to achieve and preserve for the � mode. Fi-
nally, from item �iii� one can expect that state-selectivity is
harder to achieve than mode-selectivity.

1. Mode- and state-selective excitation of the Si-H stretching
mode

The long-lived stretching levels �vr ,0� can indeed be se-
lectively prepared with the probability close to 100% by op-
timally tailored IR laser pulses. The example presented in
Fig. 2�a� shows the population dynamics in the case of se-
lective preparation of state �1,0� by a single, optimal laser
pulse of sin2 shape �see Eq. �38��. It is seen from Fig. 2 that
a 1-ps laser pulse can provide almost complete population
transfer to the target level.

The pulse has been optimized by iteratively adjusting the
parameters E0 and �l, and fixing �=0. For the optimization,
the non-Markovian theory was chosen with the lowest
50 states considered, and T=4 K. The optimal frequency
�l
2041.7 cm−1 is almost equal to the resonance frequency
of �r
2042 cm−1, and the field amplitude E0

=3.8652 MV/cm is very close to E0
�= 2��

tp��04�
=3.7977 MV/cm. This latter quantity is the field amplitude
of a � pulse, estimated from a two-level system in the rotat-
ing wave approximation, when in addition relaxation is ne-
glected and T=0 K.40

With a shorter �0.5 ps� laser pulse �Fig. 2�b��, the optimal
field amplitude increases �tp

−1, and the final population of the
target state �1,0� is slightly lower �in the order of 95%�, due
to the population of other, nonresonant, stretching states �2,0�
and �3,0�. The activation of nonresonant transitions in a
strong IR laser field implies that the stretching levels �vr ,0�
can be excited, perhaps up to the desorption continuum, by
quasiresonantly pumping the r mode. This possibility will be
addressed in a separate work.45 If �sub-� ps laser pulses are
used for vibrational excitation of the r mode, pumping is also
not perturbed by energy relaxation, because the latter pro-
ceeds on a timescale about three times longer than the exci-
tation process. In summary, mode- and even state-selective
excitation of the Si-H stretch mode should be possible with
ps-IR pulses.

The same laser fields �a� and �b� as in Fig. 2 have also
been used in the Markovian model according to Eqs. �36�
and �37�, again with 50 vibrational states and T=4 K. In the
lowest panels of Fig. 2 the differences in populations,
Pv

non-Markov− Pv
Markov are shown, and found to be small. In

particular, the final populations are almost unaffected—
differences are then only due to the fact that the field is no
longer optimal. The good agreement between Markov and
non-Markov shows that energy relaxation plays a minor role
on the timescale considered, and hence any additional ap-
proximations to treat it lead to marginal differences only.

2. Mode-selective excitation of the Si-H bending mode

While the IR excitation of the Si-H stretch mode appears
to be straightforward, the bending mode is not so easy to
excite with ps pulses. This is due to the short �ps� vibrational
lifetimes of the �0,v�� states on the one hand, and unfavour-
able transition dipole moments on the other �see Table I�. In
addition, the bending mode is, in our model at least, more
harmonic than the stretch mode �see Table 3 of Ref. 2�, thus
a state-selective control will be difficult

Low-energy excitations. In Fig. 3 various situations and/or

FIG. 1. �Color online� Free evolution of eigenstates �a� v=5
�0,4� and �b� v=8 �1,2� at T=4 K, for the non-Markovian �solid�
and Markovian models �dashed�, during the first 10 ps. The inset in
�a� shows dynamics of �0,4� within the first 0.5 ps.
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models are considered, in which laser pulses were designed
to selectively excite the Si-Si-H bending mode. Short pulses
were used to beat dissipation. In Fig. 3�a� we show a single
sin2 pulse, with a pulse duration tp of only 0.25 ps for which
the field amplitude and frequency were optimized at fixed

ts1
=0 and �1=0 with the goal to populate v=1 �0,1�. For that

purpose, the non-Markovian theory has been used, and 50
vibrational states were considered at T=4 K as before. Cor-
responding selected level populations are shown as solid
lines in the lower panel of Fig. 3�a�.

FIG. 2. �Color online� Selective preparation of the stretching
state �1,0� by optimal sin2 pulses with tp=1 ps �a� and tp=0.5 ps
�b�, for T=4 K. The laser pulse parameters are E1

�a�

=3.8652 MV/cm, �l
�a�=2041.709 cm−1, E1

�b�=8.41696 MV/cm
and �l

�b�=2060.563 cm−1. In both cases the electric field �top
panel�, population dynamics �middle panel, Markov and non-
Markov results are almost indistinguishable on this scale�, and the
population differences between non-Markov and Markov are shown
�lowest panel�.

FIG. 3. Optimal pulses to excite the bending state v=1 �0,1�
vibrational state at T=4 K with pulses of length tp=0.25 ps. Dis-
played in �a�, upper panel is the electric field of a sin2 pulse, opti-
mized within the non-Markovian model with 50 states �E0

=39.8761 MV/cm, �l=635.1757 cm−1�. Displayed in �b�, upper
panel is the electric field of an optimal control pulse, obtained
within the Markov model with 22 states. The lower panels show
selected time-resolved populations, when the pulses above have
been used either within the non-Markovian theory �solid line� or the
Markov theory �dashed lines�, respectively.
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The maximal population of the target state at the end of
the pulse achieved during optimization is 0.3646. Similar
results are obtained with optimized 0.5 ps, and 88.8 fs laser
pulses, i.e., neither longer nor shorter pulses improve state-
selectivity considerably. The total excitation probability
1− P0�tp� is about 0.64, showing that the initial state cannot
be entirely depopulated when the dissipation is strong.40 On
the other hand, the excitation is highly mode selective: After
the pulse is off, the populated excited states are almost ex-
clusively �0,v��, with v�=1,2 ,3 , . . .. The notion of mode
selectivity will be quantified below. The population of the
�0,v�� excited levels is the largest for v�=1 and rapidly
decreases with increasing v�. For v�=1–3 they are all sig-
nificant, however. This is a consequence of the harmonicity
of the � mode in our model. Hence the laser frequency is
resonant also for higher states which can then easily be ex-
cited.

It is no surprise, then, that the optimal laser frequency is
almost resonant with the � mode ���=637 cm−1�. The opti-
mized field amplitude of 39.8761 MV/cm is clearly smaller
than the ideal � pulse value of E0

�= 2��
tp��01� =61.8368 MV/cm,

showing that in this case the idealization as a dissipation-free
two-level system does not hold. The optimized field ampli-
tude is by more than a factor of 10 larger than that for
r-mode excitation, due to the smaller transition dipole mo-
ment.

For comparison, the dynamics in Markovian approxima-
tion obtained with that same pulse is also shown in Fig. 3�a�,
lower panel, as dashed lines. One can see that the difference
between non-Markovian and Markovian time evolution af-
fects mostly the initial dynamics where the population gra-
dients at t=0 are zero in the non-Markovian case, and change
less rapidly initially. After the pulse is off, the target state
population is slightly less with Markov than with non-
Markov. Altogether, non-Markovian behavior appears to be
small, however.

The question arises as to whether optimal control pulses
would lead to an even higher excited state population and/or
to state selectivity. To address this question, an OCT pulse
was generated within the Markovian theory, realized within a
vibrational state basis consisting of the 22 lowest eigenstates
�which proved to be sufficient�, and by choosing as target

operator the projector on the v=1 �0,1� eigenstate, Ô
= �1��1�. It can be seen from Fig. 3�b�, upper panel, that the
resultant pulse is more structured than the sin2 pulse. Closer
inspection based on the Husimi distribution of the pulse
shows that it contains a main frequency around ��, but also
a second, weaker feature with a frequency about 2��. This
indicates a certain amount of overtone excitation. This detail
obviously enhances the final population of the target state
�0,1� slightly, relative to Fig. 3�a� �with Markov approxima-
tion�, despite the peak intensity of the OCT pulse ebbing
smaller than that of the sin2 pulse. The final population of
state �0,1�, obtained with pulses �a� and �b�, respectively, is
0.3301 for �a� and 0.3636 for �b�, respectively, when fed in
the Markovian equations of motion �dashed curves in Fig. 3�.
Thus there is slightly enhanced state selectivity under opti-
mal control conditions. The total excitation probability
Pex�tp�=1− P0�tp� on the other hand, is somewhat lower than

with the sin2 pulse, namely 0.6262 �for �a��, and 0.5781 �for
�b��. This quantity, however, was also not optimized in the
OCT calculations. The mode selectivity is and remains high
in both cases. Defining the �-mode selectivity as

S� =
P�

Pex
, �42�

where P� is the sum of populations in exclusively �-excited
states �0,v��, v�=1,2 ,3 , . . ., one finds S�=0.993 for field �a�
and S�=0.991 for field �b�. A further improvement is ex-
pected from using optimal control pulses which are obtained
by solving non-Markovian equations of motion, which was
not attempted here.

In summary, mode-selective excitation is possible also for
the � mode. On the other hand, state selectivity is harder to
achieve. It must also be noted that after the pulse is off the
�-excited states will rapidly relax.

High-energy excitations. As mentioned above, using a
single, short pulse optimized for the �0,0�→ �0,1� transition
populates also higher � states, however, with a probability
that decreases rapidly with increasing v�. For example, by
using the sin2 pulse �a� in Fig. 3 and the Markovian equa-
tions of motion, the population of the �0,11� state is only
1.3�10−6 after the pulse is off. To excite higher vibrational
levels �0,v�� with siginificant probability, the pulses must be
reoptimized. These high-energy excitations may be useful,
for example, if one is interested to enforce lateral motion of
H on the surface, i.e., diffusion. Since the higher-excited
states are more strongly coupled to the substrate phonons,
this not only leads to shorter vibrational lifetimes �see Table
I and Ref. 2, according to which approximately ��v��
�1/v��, and consequently also to larger differences between
Markovian and non-Markovian models. Further, the higher-
excited states show stronger intermode couplings by the po-
tential and the transition dipole moments.

In Fig. 4 we use a sin2 pulse which was obtained with the
goal to maximize the population in the v=26 �0,11� vibra-
tional state. Typically, longer laser pulses should be used to
prepare higher states, because shorter pulses require stronger
fields which decrease state selectivity. In Fig. 4�a�, we show
selected populations which were obtained with a single sin2

pulse 1 ps long whose field amplitude and frequency were
optimized within the non-Markovian model, with 50 states in
total and T=4 K.

It is found in this model, that the high-lying target state is
populated with high probability, P26�tp�=0.3576 after the
pulse is off. From the P� curve which gives the population in
all exclusively �-excited states, it is also noted that the ex-
citation is highly bond selective. In fact, the entire
�-vibrational ladder is populated, however, with a clear
maximum around v�=11. For example, the two levels v
=22 �0,10� and v=30 �0,12�, i.e., the nearest neighbors of the
target state along the vibrational ladder carry the largest
populations apart from the target state, but their population is
already clearly smaller: P�0,10��tp�=0.1315, P�0,12��tp�
=0.1464. The initial state is almost empty at the end of the
pulse, hence P��tp� is equal to the bond selectivity defined in
Eq. �42�. The optimal laser frequency is still close to the
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frequency of the bending mode ��l
642 cm−1�, while the
maximal field amplitude is slightly higher than in the “low-
energy” case considered in Fig. 3 �E0
45 MV/cm�. Since
the chosen pulse is now also longer, the laser fluence is
higher �by a factor of 5.04� than that of the pulse in Fig. 3�a�.

When using the optimized sin2 pulse for the Markovian
equations of motion, the resulting populations are now dis-
tinctly different from the non-Markovian ones �Fig. 4�b��.
The final target-state population is only P�0,11��tp�
=0.0589. Also, bond selectivity is lost to some extent. Still,
the excitation of the � mode clearly dominates, but now the
final P�0,v�� populations reflect a broader distribution. Even
the ground vibrational state is not empty, and up to v�
13
the population is significant. In fact, v�=11 is not the maxi-
mum of the distribution: P�0,10��tp�=0.0693, P�0,12��tp�
=0.0413 at the end of the pulse.

Thus, in contrast to the low-energy excitation of Fig. 3,
large differences between Markovian and non-Markovian
theories are observed. This might have been expected in

view of the mentioned fact that dissipation is stronger for
higher-excited states, and hence any additional approxima-
tions to treat it will matter. In summary, one can say that the
Markov approximation overestimates both energy relaxation
and intermode coupling if high-energy states with large de-
cay rates and also large transition dipole moments to nearby
states are considered.

To achieve higher target-state populations also in the Mar-
kovian case, in analogy to Fig. 3�b� optimal control theory
was used in conjunction with the Markovian equations of
motion. In fact it is then found �but not shown here�, that
OCT pulses can be created which indeed increase the target-
state population considerably in comparison to the
sin2/Markov model. However, a population as large as with
the sin sin2/non-Markov model was �so far� not obtained.
One point learned from these preliminary OCT calculations
is again that the optimal pulses exhibit a more complex time-
frequency pattern.

3. Selective preparation of „vr=1,v�… states

The �vr�0,v��0� states, which have vibrational energy
in both stretching and bending degrees of freedom, can be
prepared by the sequential excitation of the stretching and
the bending vibrations, respectively.

An example is given in Fig. 5, where a field consisting of
two sin2 pulses according to Eq. �38� is used. The non-

FIG. 4. �Color online� Excitation of high-energy bending states,
by optimizing the population of the v=26 �0,11� level with a single
laser pulse at T=4 K, using the non-Markovian model. �a� Selected
populations for the non-Markovian calculation. �b� Selected popu-
lations if the same pulse is used within the Markovian model. The
sin2 laser pulse parameters for both cases are tp=1.0 ps, E0

=44.7711 MV/cm, �l=642.3097 cm−1.

FIG. 5. �Color online� Preparation of �1,v�� states, by two non-
overlapping sin2 laser pulses of the form �38�. Optimization was
done within the non-Markov model, with 50 states and T=4 K. The
laser pulse parameters are tp1

=1 ps, E0,1=3.8652 MV/cm, �l1
=2041.709 cm−1 �ts1

=0 and �1=0 fixed�; tp2
=0.5 ps, E0,2

=21.1916 MV/cm, �l2
=636.3223 cm−1 �ts2

=1 ps and �2=0
fixed�. The electric field �top panel�, population dynamics �middle
panel; non-Markov: solid; Markov: dashed�, and the population dif-
ferences between non-Markov and Markov �lowest panel� are
depicted.
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Markovian theory was used, with 50 states and T=4 K. The
first pulse is the 1 ps pulse which was generated in Fig. 2�a�
to enforce a selective �0,0�→ �1,0� transition, i.e., state-
selective excitation of the r mode. The second, 0.5 ps laser
pulse was optimized to maximize the population in state v
=6 �1,1�, starting out of level �1,0�. Again, the excitation of
the bending mode is only bond selective, not state selective,
i.e., also other states �vr=1,v��1� are populated with sig-
nificant probability. Like in Fig. 3, however, the population
of states with v��0 decreases rapidly with increasing v�.

When the same pulses are employed within the Markov-
ian scheme, the population dynamics remains very similar.
As can be seen from the lowest panel of Fig. 5, during the
first pulse, when r is excited, the difference is negligible.
During the second pulse which excites the � mode, the de-
viation becomes somewhat larger. Again, this is a conse-
quence of the fact that the r mode couples less efficient to the
substrate phonons than the � mode.

V. SUMMARY, CONCLUSIONS, OUTLOOK

In summary, bond-selective excitation of either the Si-H
stretching or the Si-Si-H bending mode in H:Si�100�-2�1
has been studied, and is predicted, at least with the laser
pulses used here, to be possible. The mode-selective excita-
tion is possible because of the large mismatch between the
frequencies of the r and � modes, and an intermode potential
coupling that is slow on the timescales considered here. �In-
termode coupling occurs on a ns timescale within the present
model, see Ref. 2.� On the timescale of picoseconds the high-
frequency Si-H bond is also only weakly perturbed by
vibration-phonon coupling, and state-selective excitations
should be possible and stable for long times ��ns�. In con-
trast, the lower-frequency Si-Si-H bending mode decays on a
ps timescale. Within the system potential used here, only
bond-selective excitation is possible for that mode which
will in addition decay on the timescale of ps after prepara-
tion. On the other hand, for both stretching and bending

modes the excitation of high-energy levels should be pos-
sible, with possible implications for IR-driven reactions, i.e.,
desorption and diffusion.

The Markov approximation holds well, if the excited vi-
brational states are only weakly coupled to the substrate
phonons. This is particularly true for the lowest r-excited
states, while � excitation, in particular to higher states, is
more sensitive to non-Markov effects. Both sin2 pulses and
pulses obtained from optimal control theory were consid-
ered, the latter yielding sometimes slightly milder conditions.

Despite the fact that the present model can still be im-
proved in many ways, we believe that it is already of rel-
evance for IR excitation of real, hydrogen-covered Si sur-
faces. It may thus help to explain the recent observation of
mode selectivity in IR laser induced desorption of H2 from
Si�111� surfaces.20,21 The main difference to the laser excita-
tion mechanism suggested here is that the experiment uti-
lized a very narrow, fixed frequency laser tuned to the vr
=0 to vr=1 transition in the H-Si stretching mode, effec-
tively precluding any multiphoton excitation, since the an-
harmonicity in the H-Si stretching potential is already suffi-
cient for the overtone excitations to be outside the laser line.
However, we believe, that the present methodology can be
adapted for that system, should laser parameters consistent
with Ref. 20 be used. One can then hope to understand the
experimental details and hence the still elusive reaction
mechanism, in particular the unexpected �quadratic� scaling
of the desorption yield with laser fluence.20,21 Work along
these lines is in progress in our laboratory.
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