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We show that the electron-phonon coupling in graphene, in contrast with the nonrelativistic two-dimensional
electron gas, leads to shifts in the phonon frequencies that are nontrivial functions of the electronic density.
These shifts can be measured directly in Raman spectroscopy. We show that depending whether the chemical
potential is smaller �larger� than half of the phonon frequency, the frequency shift can negative �positive�
relative to the neutral case �when the chemical potential is at the Dirac point�, respectively. We show that the
use of the static response function to calculate these shifts is incorrect and leads always to phonon softening.
In samples with many layers, we find a shift proportional to the carrier concentration, and a splitting of the
phonon frequencies if the charge is not homogeneously distributed. We also discuss the effects of edges in the
problem.
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I. INTRODUCTION

The discovery of graphene, a thermodynamically stable
two-dimensional �2D� crystal,1 whose electronic properties,
described in terms of a half-filled �-electronic band with
Dirac electrons, can be controlled externally, has stirred great
interest in the scientific community since the demonstration
of a theoretically predicted2,3 anomalous integer quantum
Hall effect.4,5 Unlike other 2D electronic systems, such as
MOSFET heterostructures, graphene is easily accessible to
optical probes. Furthermore, in contrast to ordinary semicon-
ductors where the different types of disorder can be distin-
guished through the temperature dependence of the transport
properties,6 graphene does not show any strong temperature
or magnetic field dependence in its electronic transport7 that
allows an easy discrimination between different types of im-
purities. Hence, local probes such as scanning tunneling mi-
croscopy �STM� and single electron transistor probes, will
play a fundamental role in the understanding of nature the
effects of disorder in graphene-based systems.

Raman spectroscopy has been one of the most successful
experimental methods used to study these systems.8–11 In
particular, it has been shown that it is possible to measure the
number of graphene layers on a SiO2 substrate with great
accuracy, leading to an efficient and fast method to charac-
terize graphene in situ. Another interesting feature of these
measurements is that, even for a single graphene layer, the
phonon frequency measured in Raman shifts by a few wave
numbers, from point to point in space.8–10 Moreover, the ob-
servation of a D line, which is Raman forbidden in transla-
tional invariant graphene, indicates the presence of disorder
in the samples at electronic scale.

We show that this Raman shift can be associated with the
earlier experimental evidence for charge inhomogeneity in
undoped, unbiased, graphene.7,12 Therefore, Raman spectros-
copy can be used to map the disorder in graphene layers, and
hence, help to shed light on the nature of the disorder scat-
tering in these materials. The understanding of the nature of
impurity scattering in graphene is fundamental not only for

the development of electronic devices based on carbon, but
also may help to solve theoretical puzzles such as the dis-
crepancy found between the theoretically predicted universal
value of the conductivity,13 4e2 / ��h�, and its experimentally
observed4 value of 4e2 /h �the so-called “mystery of the
missing ���, and the absence of weak-localization effects7 �a
topic that has generated intense theoretical debate14–20�.

In this paper we show that the shift in the phonon fre-
quency in graphene has its origin on the polarization of the
electrons due to the ion motion. Since graphene is a perfect
hybrid between a metal and a semiconductor there are two
contributions to the polarization function: one comes from
intraband transitions and another that originates on interband
transitions. We show that the simplest approximation based
on the static response is incorrect and predicts a reduction of
the phonon frequency �softening of the lattice�. The correct
dynamic response is used to calculate the phonon frequency
shift and it is shown that the phonon frequency can either
decrease �softening� or increase �hardening� depending on
whether the phonon frequency is either larger or smaller than
twice the chemical potential, respectively. We also show that
the intraband dynamic response vanishes at long wave-
lengths in a translationally invariant graphene sheet, while
the interband contribution is finite. Nevertheless, in disor-
dered graphene we expect the intraband contribution to be of
the order of the interband one, indicating that disorder is
important for the measurement of the Raman shift in
graphene.

The paper is organized as follows. In Sec. II we present
the model for the electrons, phonons, and their coupling in
graphene. Sec. III discusses the problem of the shift of the
phonon frequency due to the electronic polarization in
graphene and we consider both the static and the dynamic
response. In Sec. IV we examine the problem of phonon
frequency shifts in bilayers and multilayers within the same
framework. Sec. V contains a discussion of the problem of
edges in finite samples and also the main conclusions of our
work. We have also included one appendix with the details of
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an analytical model for the in-plane phonon modes in
graphene, and also discuss the effect of defects and edges in
the phonon spectra.

II. THE MODEL

In the absence of disorder the Hamiltonian for electrons
and phonons in graphene can be written as H=HE+HP
+HE−P, where �we use units such that �=1=kB�

HE = − t0�
�i,j�

�cA,i
† cB,j + H . c . � − � �

i,a=A,B
ca,i

† ca,i, �1�

is the free electron Hamiltonian, where � is the chemical
potential, ca,i �ca,i

† � annihilates �creates� and electron on sub-
lattice a=A ,B on site Ri in the honeycomb lattice �spin in-
dices are omitted throughout the paper�, and t0�2.7 eV is
the nearest neighbor hopping energy. HP is the phonon
Hamiltonian

HP = �
q,i

�qibqi
† bqi, �2�

where bq,a �bq,a
† � annihilates �creates� a phonon with momen-

tum q, and i=TA, LA, TO, L0, are the four phonon modes.21

In the following, we focus on the transverse optical �TO�
modes near the � and K and K� points of the Brillouin zone.
The TO band shows little dispersion with a frequency �0
�0.19 eV.

We assume that the electron-phonon coupling arises from
the modulation by the phonons of the carbon-carbon distance
a=1.42 Å, which leads to a change in the nearest neighbor
hopping t0. The dependence of t0 on distance l has been
extensively studied22,23

�t0/�l = � � 6.4 eV Å−1. �3�

The resulting electron-phonon interaction is

HE-P = ��t0/�l��
k,q

cAk
† cBk+q�xAq�1 − ei�k+q�a/2 − ei�k+q�·b/2	

− xBq�1 − eik·a/2 − eik·b/2	 + �
3/2�yAq�ei�k+q�·a

− ei�k+q�·b	 − �
3/2�yBq�eik·a − eik·b	� + H . c . , �4�

where a and b are the unit vectors of the honeycomb lattice,
and xaq ,yaq �a=A ,B� are given by the polarization of the
phonon of wave vector q. They can be written as

�
xAq

yAq

xBq

yBq

 �
1


2MC�q

�bq
† + b−q��

�1

�2

�3

�4

 , �5�

where MC=1.2�104me is the carbon mass �me is the elec-
tron mass� and the vector ��1 ,�2 ,�3 ,�4� is normalized to 1.

In order to obtain the polarizability of the TO mode, we
use a central force model �see the Appendix � which leads to
a phonon dispersion which can be calculated analytically.24

This model is adapted from similar models for tetrahedrally
bonded lattices.25 The details of the model are described in
the Appendix , where it is illustrated by some applications.

The honeycomb lattice, even in the limit when the bonds are
incompressible, can have shear deformations, leading to a
vanishing shear modulus. Because of it, the model shows a
flat transverse acoustical branch at zero energy. The optical
modes, on the other hand, induce significant changes in the
bond lengths. We focus here on a single optical mode, whose
energy we take from experiments. The polarization is fixed
by symmetry considerations. Hence, the model is needed
only to describe the coupling to the electrons. The only cou-
pling consistent with nearest neighbor tight binding model
used to describe the � bands is the one that we are using.

The polarization of the nondegenerate mode at the K point
in the Brillouin zone is

��1,�2,�3,�4� = �1/2,i/2,− 1/2,i/2� �6�

and we have a doubly degenerate mode �a Dirac phonon�
with polarizations

��1,�2,�3,�4� = �1/
2,− i/
2,0,0� ,

��1,�2,�3,�4� = �0,0,1/
2,i/
2� . �7�

For comparison, the polarization of the two optical modes at
the � point can be written as

��1,�2,�3,�4� = �1/
2,0,− 1/
2,0� ,

��1,�2,�3,�4� = �0,1/
2,0,− 1/
2� . �8�

III. SINGLE LAYER GRAPHENE

We are interested in the modification induced by elec-
tronic transitions of the frequency of a phonon with wave
vector Q. The electronic transitions which describe these
processes are given, approximately, by

HQ � 3�/2�
k

cAK
† cBK�+k�xAQ − xBQ + iyAQ + iyBQ� + H . c . ,

�9�

where we assume that the main contribution arises from tran-
sitions close to the Fermi level. In this limit, we can use the
continuum limit and expand the energy of the electrons
around the K and K� points, leading to the Hamiltonian

H0 =�
− � vF�k�ei�k 0 0

vF�k�e−i�k − � 0 0

0 0 − � vF�k�e−i�k

0 0 vF�k�ei�k − �
 ,

�10�

where vF=3t0a /2�6 eV Å is the Fermi-Dirac velocity, and
�k=arctan�ky /kx� is the angle in momentum space.

A typical diagram which describes the renormalization of
the phonon propagator in second order perturbation theory is
given in Fig. 1. The convolution of electronic Green’s func-
tions shown in the diagram is formally identical to the charge
susceptibility of graphene
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	�q,�� =� d2kd���GAA
occ�k,���GBB

empty�k + q,� + ���

+ GAB
occ�k,���GBA

empty�k + q,� + ���	 , �11�

where Gab
occ�k ,�� �Gab

empty�k ,��	 with a ,b=A ,B is the elec-
tronic Green’s function for the occupied �empty� states. The
main difference between Eq. �11� and the charge susceptibil-
ity of graphene is that the charge susceptibility includes an
overlap factor which suppresses completely transitions be-
tween the valence and conduction band at q=0.

From Fig. 1 we can immediately obtain the shift in the
phonon frequency due to the polarization of the graphene
layer due to particle-hole excitations


�Q =
27
3a2��1 − �2 + i�3 + i�4�2

16MC�Q
� �t0

�l
�2

	��Q,q → 0� ,

�12�

where we have used that �=3
3a2 /2 is the area of the unit
cell.

Graphene, from the electronic point of view, is a hybrid
between a metal and a semiconductor: the polarization in-
volves not only interband excitations �as in the case of the
ordinary electron gas� but also intraband excitations �as in
the case of a semiconductor�. The full susceptibility 	 can be
separated into an intraband and an interband contributions:

	�q,�� = 	inter�q,�� + 	intra�q,�� . �13�

The intraband contribution to the susceptibility was origi-
nally calculated by Shung for graphene in Ref. 26 and more
recently it has appeared in Refs. 27–30.

A. Static approximation

A commonly used approximation on the electron gas
problem is to replace the dynamical response 	��=�Q ,q
=0� by the static one: 	��=0,q=0�. This approximation is
usually justified in ordinary metals because the Fermi energy
� is much larger than the phonon frequency so that the
phonons respond to a time averaged electron distribution. In
graphene, however, this is not necessarily so. In what follows
we will study the effect of an static response and compare it
with what happens when a dynamic response is calculated
instead. We will show that these two approximations give
very different results.

At finite doping, the compressibility sum rule leads to the
equation

lim
q→0

	intra�q,� = 0� = − D��� = −
2�

�vF
2 , �14�

where D��� is the density of states at the Fermi level. The
number of carriers per unit cell n� is given by

n� =
3
3

2�
�kFa�2. �15�

In addition, we have

lim
q→0

	inter�q → 0,� = 0� = −
1

�2�
kF

�

kdk�
0

2�

d
cos2��

�k
.

�16�

The main contribution to the integral comes from k��,
where � is the high energy cutoff, so that this expression
depends on details of the bands at high energies away from
the Dirac point. Nevertheless, the change of the susceptibil-
ity with electronic density is independent of the cutoff and
can be readily calculated:

lim
q→0

�	inter��� − 	inter�0�	 = 
	inter�q → 0,� = 0� � −
�

�vF
2 .

�17�

which is of the same magnitude as the intraband shift �14�.
Inserting Eqs. �14�, �17�, and �15� into Eq. �12�, we find,

in addition to a density independent shift


�Q = −
9


6�
� �t0

�l
�2 n�

1/2

MC�Qt0
. �18�

Expressing 
�Q �in eV� and replacing n� by the density per
unit area n �expressed in cm−2�, we find


�Q�eV� � − 3 � 10−9n1/2�cm−2� �19�

is the expression for the shift of the phonon frequency in the
static approximation. For typical electron �or hole� densities,
n�1011−1012 cm−2, the shifts are of the order of a few
wavelengths �or degrees�, within experimental accuracy.

FIG. 2. �Color online� Notation used for the atomic displace-
ments used in the text.

FIG. 1. �Color online� Diagram which describes the modifica-
tion of the phonon propagator �wavy line� due to electron-hole tran-
sitions. See text for details.
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Let us first notice that this result indicates that there is a
decrease of the phonon frequency, that is, a softening of the
lattice. This result is generically expected on physical
grounds since a high density of electrons leads to the screen-
ing of the ion-ion interactions, reducing the elastic coupling
in the lattice, and hence leading to a softening of the
phonons.

B. Dynamic approximation

The real part of the intra-band susceptibility is given by30

Re�	intra��,q → 0�	 � −
q2

2��
�2�

�
+

1

2
ln�2� − �

2� + �
�� .

�20�

This expression is rather different from the static result �14�.
We note that the limits of �=0 and q→0 with �→0 and
q=0 do not commute. Moreover, we clearly see that Eq. �20�
changes behavior whether � / �2�� is smaller or larger than
one, and the susceptibility has a logarithmic singularity in
�=2�.

For 2��� a self-consistent calculation of the polariz-
ability shows the existence of the two dimensional plasmon,
which needs to be taken into account. We find

Re�	intra�� � 2�,q → 0�	 �
− q2�

���2 − �pl
2 �q�	

, �21�

where �pl�q�=
�2e2�q� /�0 is the plasmon frequency �e is
the electric charge and �0 the dielectric constant of
graphene�. For 2��� we find

Re�	intra�� � 2�,q → 0�	 �
4

3�

q2�2

�4 . �22�

Observe the change of sign in the expression of the suscep-
tibility in the two limits. More importantly, one can clearly
see that these expressions vanish when q→0. This effect
occurs because at q=0 the states associated with these tran-
sitions are orthogonal. Hence, in a system with translational
invariance the intraband transitions give no contribution.
Nevertheless, in the presence of disorder �or a finite sample�,
the electron mean free path l �or the system size L� acts
naively as a infrared cutoff and one would expect to see a
nonzero effect. Replacing Eqs. �21� and �22� into Eq. �12�,
and assuming that �Q��pl, we find


�Q
intra�2� � �Q� �

9

2
6�
� �t0

�l
�2 n�

1/2

MC�Qt0
�vFq

�Q
�2

,

�23�


�Q
intra�2� � �Q� �

− 9
�


2
� �t0

�l
�2 n�

3/2

MC�Qt0
� t0vFq

�Q
2 �2

.

�24�

Expressing 
�Q in eV, and replacing n� by the density per
unit area n expressed in cm−2, we find


�Q
intra�2� � �Q� � + 1.4 � 10−6n1/2�qa�2, �25�


�Q
intra�2� � �Q� � − 1.0 � 10−18n3/2�qa�2. �26�

We stress, once again, that this shift vanishes as q→0 and
hence there should be no shift in the phonon frequency due
to intraband transitions in a translationally invariant
graphene sheet. Nevertheless, in the presence of disorder this
is not necessarily the case.

In order to include disorder in the calculation one would
have to dress the fermion propagators in Fig. 1 by disorder
and include vertex corrections to that diagram. These calcu-
lations are beyond the scope of this paper. Instead, we will
follow a naive approach and simply introduce a cutoff in q of
the order of the inverse of the electron mean free path l,
which is known to be of order of 0.1 �m in these systems7.
For typical electron �or hole� densities, n�1012–1013 cm−2,
and l�103a �l�0.1 �m� the shifts are of the order of
10−6–10−5 eV. For these concentrations and wavelengths, the
plasmon frequency is �pl�0.01–0.04 eV, so that the as-
sumptions leading to Eq. �24� are justified. Notice that while
for large doping, ���Q /2, the intraband contribution leads
to a hardening of the phonon, for low doping, ���Q /2
there is softening of the phonon mode which depends di-
rectly on the amount of disorder in the system.

The interband susceptibility is

Re�	inter�q → 0,��	 � −
1

�
P� kdk

4�k

�2 − 4�k
2 . �27�

As in the static case, we find a large contribution which is
independent of the carrier concentration and depend on the
high-energy cutoff. As before, we consider only the density
dependent contribution

Re�
	inter�q → 0,��	 � −
�

�vF
2 −

�

4�vF
2 ln�� − 2�

� + 2�
� .

�28�

The first term in this expression reproduces the static limit of
	inter. The second term gives a correction which is more im-

FIG. 3. �Color online� Phonon dispersion relations for the model
used in the text. Continous thick �black� line: transverse acoustic;
short dashed �red� line: longitudinal acoustic; dashed-dotted �green�
line: longitudinal optical; long dashed �blue�: transverse optical.
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portant for ��2�, and cancels the static contribution as
�Q /�→�. Comparing Eq. �20� with Eq. �28� we find that

Re�	intra��,q = �/vF�	 = Re�
	inter��,q = 0�	 , �29�

implying, from Eq. �26�, that


�Q
inter�2� � �Q� � + 3 � 10−9n1/2, �30�


�Q
inter�2� � �Q� � − 2 � 10−21n3/2. �31�

Once again, for ���Q /2, the interband contribution leads to
a hardening of the phonon, while for ���Q /2 there is soft-
ening of the phonon mode. Notice, that the numerical value
of the interband contribution is small for densities of order
1012 cm−2 when compared with the intraband contribution
estimated in the presence of disorder. It may well be that in
disordered graphene the intraband transitions dominate over
the interband transitions. Hence, the final result may vary
with the amount of disorder in the samples.

IV. BILAYERS

The previous analysis can be extended to a bilayer sys-
tem. For simplicity, we consider here the static limit only.
The model for the in-plane phonons considered before needs
no changes. The shift in the phonon frequency is also given
by the electronic susceptibility shown in Fig. 1, and given in
Eq. �11�.

In a bilayer, however, the wave functions corresponding
to the low energy electronic states have a small amplitude,
aAk�k �k � / t� in the orbitals hybridized through the hopping
t� with an orbital in the next layer �t��0.3 eV is the inter-
layer hopping energy�. The relevant susceptibility involves a
convolution of the Green’s function of sites in both sublat-
tices, so that the reduction in low energy spectral weight at
the sites with a neighbor in the next layer will reduce the
susceptibility.

The amplitude of an electronic wavefunction at energy
ei�k �vF

2 �k�2 / t�
2 �1 is of order aB�V−1/2, where V is the

volume of the system, on sites of the sublattice not connected
to the second layer, defined as sublattice B. The amplitude on
sites in sublattice A, where the sites are connected to the
second layer is of order aA�vF �k � / t��aB. Then, the con-
tribution to the susceptibility from the low energy electron-
hole pairs is of the form

	bilayer
intra �q,� = 0� � � dk

vF
2k�k + q�

t�
2

nk+q − nk

�k+q − �k
. �32�

The same suppression applies to interband transitions, as, in
any case, the modulation of the hopping involves transitions
from the A sublattice to the B sublattice. Using dimensional
arguments, which are also valid for single layer graphene, at
the neutrality point we find, 	bilayer

intra �q ,�=0�� �q�2 / t� and, at
finite fillings,

lim
�q�→0

	bilayer
intra �q,� = 0� � kF

2/t�. �33�

As in the single layer case, the interband susceptibility in-
cludes a contribution determined by the high energy cutoff,
and density dependent term, which, also on dimensional
grounds, depends on density as the intraband susceptibility
�33�.

For the interband contribution, using the reduction in the
amplitude at the A sublattice mentioned earlier, we find

	bilayer
inter �q,� = 0� �

vF
2kF

2

t�
2 �

kF

�bil

dk
�k�
�k

, �34�

where �bil= t� /vF is a high momentum cutoff above which
the assumption that vFk� t� ceases to be valid. The integral
in this expression has a logarithmic dependence on �bil,
similar to the logarithmic divergences which characterize the
charge susceptibility of a bilayer.31

As in the case of the single layer, when we insert Eq. �34�
into the expression for the shift in the phonon frequency, we
find an term which is independent of the number of carriers,
given by kF. Taking it out, and neglecting logarithmic cor-
rections, we find


�Q
bilayer � − � �t0

�l
�2 n

MC�Qt�

. �35�

We expect a similar dependence for other multilayer sys-
tems, as the main ingredient in this estimate, the changes in
the low energy density of states in the two sublattices in each
graphene layer, is independent of the number of layers in the
stack. If the carrier density differs significantly among the
layers,32 we expect that phonons at each layer will be shifted
by a quantity which depends on the local charge. Note that a
crossover to a shift typical of single layer graphene will take
place at �Q� t�. A similar crossover will occur if �� t�.

A bilayer system can show a gap in the electronic spec-
trum, when an applied field or chemical doping breaks the
symmetry between the two layers. In this case, the electronic
states close to the gap are mainly localized in one of the
layers. The polarizability shown in the diagram in Fig. 1
acquires a layer index, and is different in the two layers.
Hence, we expect that the in-plane phonons in each layer
experience a different frequency shift. In a first approxima-
tion, the phonons in the layer where the states at the Fermi
energy have highest weight show the largest shift. Using di-
mensional arguments similar to those leading to Eq. �32�, we
expect that, when the Fermi wavevector is much smaller than

FIG. 4. �Color online� Displacements used to define the variable
amn of an atom at a zigzag edge, and the variable bmn at its nearest
neighbor atom.
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the wave vector at the center of the band of the biased bilayer
kF�k0�� /vF the factor n�kF

2 in Eq. �35� is replaced by
k0

2��2.
The full dynamical response of a bilayer under a perpen-

dicular applied field is quite complex when the chemical
potential is close to the gap edges,33 with an anomalously
large imaginary part. Hence, low energy phonons in a biased
bilayer should be significantly damped.

V. CONCLUSIONS

We have analyzed the effect of a finite concentration of
carriers on the frequency shift of phonons in electrically
doped graphene samples. We have not considered changes
due to modifications of the force constants, associated to
distortions of the � bonds. The analysis presented here
shows that the shift in the optical phonon frequencies in
electrically doped graphene samples can be observed in Ra-
man experiments,8–10 and it can be used to estimate the car-
rier density, or alternatively, the strength of the electron-
phonon coupling. Notice that in an ordinary 2D electron gas
the density of states �and charge susceptibility� depends only
on the electronic effective mass m* and is independent of the
electronic density. Therefore, for an ordinary 2D electron gas
the frequency shift is essentially uniform and independent of
disorder. For Dirac fermions, however, because of the effec-
tive Lorentz invariance in the continuum limit, we can write
an equivalent of Einstein’s relation between energy and
mass: �=m*vF

2 �where the Fermi-Dirac velocity now plays
the role of speed of light�, indicating that the effective mass
is energy dependent and vanishes at the Dirac point ��=0�.
Therefore, the effect described here does not work in an
ordinary 2D electron gas.

Another interesting consequence of Eq. �24� is that the
Raman shift should be larger close to extended effects such
as edges, dislocations and cracks.8–10 The reason for that is
the so-called self-doping effect discussed in great detail in
Ref. 2: because of the poor screening properties of Dirac
fermions, the Coulomb interactions remain long ranged and
an electrostatic potential builds up at the edges of the system,
shifting the position of the surface states, and reducing the
charge transfer to or from them. In this case the system, in
order to maintain charge neutrality, can transfer charge to/
from extended defects. This charging transfer is only halted
when the charging energy of the edges is compensated by the
kinetic energy of the electrons. Thus, extra charge and a large
density of states can be found at the edges of samples. In this
case, according to Eq. �24�, the Raman shift should change
as a function of the distance from the sample edges �being
larger at the edge�. We have estimated that for edges of size
0.1–1 �m the charge transfer is order of 10−4–10−5 elec-
trons per carbon �
n�1011–1012 electrons per cm−2� and
hence the Raman shift is also of the order of a few wave-
numbers but slightly larger than the effect produced by bulk
disorder. We also notice that this effect is not possible in the
ordinary 2D electron gas because screening leads to a uni-
form charge distribution.

The shift of phonons with energies comparable or larger
than the Fermi energy is determined by the dynamic elec-

tronic response function, which is significantly different from
the static one. In this regime, the shift changes when �
��Q /2, and vanishes at �Q��.

Our results also suggest that the shift in phonon frequen-
cies has a different dependence on carrier density in single
layer and many layer systems, Eqs. �24� and �35�. For a
given carrier density, the shifts in phonon frequencies should
scale as 
�Q

1L�
�Q
2Lt0


n� / t�. Assuming that t� / t0�0.1, the
shift in a bilayer should be smaller than in a single layer
sample with the same carrier concentration. This is consis-
tent with experimental results which show that the phonon
frequencies in single layer systems are consistently lower
than in samples with many layers.8–10 The difference be-
tween a single layer and many layer systems is due to the
fact that the low energy electronic wavefunctions has a re-
duced weight on the sites connected to other layers. Hence, it
depends on the stacking order, and the shift is different in
samples with regions with rhombohedral structure
�123123¯ �.34 In systems where the charge distribution
among the layers is not uniform, we expect that the shift of
the phonons in different layers is also different, leading to a
splitting of the single layer phonon frequencies. Similar ef-
fects may also occur in bulk graphite.35

In summary, we have studied the effect of electronic in-
homogeneities in the phonon spectrum of Raman active
modes in graphene. We have shown that the electron-phonon
coupling leads to a shift of the optical phonon frequency that
is dependent on local electronic density. We argue that the
frequency shift is larger at the edges than in the bulk of
graphene and its value is of order of a few wavenumbers.
These results have their origin on the Dirac-like nature of the
quasiparticles in these materials and hence do not have an
analog in the ordinary 2D electron gas.
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APPENDIX: ANALYTICAL MODEL FOR THE IN PLANE
PHONONS IN GRAPHENE

1. The model

The simplest model for the phonons of a single graphene
plane includes only nearest neighbor central forces,24 follow-
ing similar models for the diamond lattice:25

H = �m,n

pmn
2

2M
+ �

k,l;m,n

M�0
2��akl − amn��rkl − rmn�

2
,

�A1�

where the indices k , l and m ,n label lattice sites which are
nearest neighbors. The three possible orientations of the
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bonds attached to a given site, m ,n, allows us to define three
unit vectors, bmn

i , i=1,2 ,3. We define the displacement of
the atom at site m ,n, rmn by the three projections xmn

i

=bmn
i rmn. These numbers satisfy �i=1,2,3xmn

i =0. The model
contains a single parameter, �0=
K /M, where K is the
spring constant of the bonds, and M is the mass of the carbon
atom.

The equations of motion are

�2xmn
i = �0

2��xmn
i − xm�n�

i � −
1

2� j�i
�xmn

j − xm�n�
j �� ,

�A2�

where the indices m�n� and m�n� label sites which are near-
est neighbors to site mn �see Fig. 2� We now define the
variable

bmn = xm�n�
1 + xm�n�

2 + xm�n�
3 �A3�

using the displacements at the three sites connected to site
mn �see Fig. 3�. In terms of these variables, the equations of
motion �A2�, can be written as

�2bmn =
3

2
�0

2bmn +
1

2
�0

2 �
m�n�

bm�n�, �A4�

where m�n� label the three sites connected to site mn. The
calculation of the phonon eigenstates is reduced to a tight
binding model with one orbital per site in the honeycomb
lattice. From Eq. �A4�, we obtain two bands

�k

�0
=
3

2
±

1

2

3 + 2�cos�k · a1� + cos�k · a2� + cos�k · a3�	 ,

�A5�

where a1, a2 are the unit vectors of the honeycomb lattice,
and a3=a1−a2. From the knowledge of the variables bmn the
equations of motion �A2� can be written as

�2xkl
1 =

3�0
2

2
�xkl

1 − xmn
1 � −

�0
2

2
bmn,

�2xmn
1 =

3�0
2

2
�xmn

1 − xkl
1 � −

�0
2

2
bkl. �A6�

From these equations the atomic displacements can be de-
duced from the set �bmn�.

The equations of motion �A2� assume that all the vari-
ables bmn are different from zero. When bmn=0, Eq. �A6�
admit two additional solutions for �2=0, and �2=3�0

2 /2.
The bands obtained in Eq. �A5� correspond to the longitudi-
nal acoustical �LA� and longitudinal optical modes �LO�.
The two additional flat bands obtained when bmn=0 describe
the transverse acoustical �TA� and transverse optical �TO�
modes. The phonon bands are shown in Fig. 3. The existence
of a flat TA band at �=0 reflects the band that the honey-
comb lattice can be distorted without changing the distance
between nodes. These deformations do not have an energy
cost in a nearest neighbor central forces model described in
Eq. �A1�. The velocity of sound of the LO modes is vs
= ��0a� / �2
2�, where a is the lattice constant.

2. Defects

The mapping to a scalar tight binding model of the Hamil-
tonian in Eq. �A1� can be extended to lattices with defects.
We describe the defect as the absence of bonds. Hence, an
atom near a defect is attached to fewer neighbors than one at
the bulk. This implies that the condition �xmn

i =0 is no longer
satisfied. We can take this into account by defining a new
variable at the sites near the defect amn=�i�xmn

i , where the
sum is restricted to the bonds which remain intact.

a. Zigzag edge

The atoms at a zigzag edge are connected by only two
bonds to the rest of the lattice. We define the variable bmn
using the displacements of the two nearest neighbor atoms to
the edge atom mn. The atomic displacements used to define
the variables amn and bmn are sketched in Fig. 4. The equa-
tions of motion for the variables amn and bmn when the indi-
ces mn label an atom at the edge become

�2amn =
�0

2

2
�amn − bmn� ,

�2bmn =
3�0

2

2
bmn −

�0
2

2 �
m�n�

bm�n� −
�0

2

2
amn,

FIG. 5. �Color online� Phonon density of states and spectral
function of bond fluctuations. Continous line �black�: phonon den-
sity of states with vacancy; dashed-dotted line �red�: fluctuations in
bond length with vacancy; dotted line �green�: phonon density of
states without vacancy; dashed line �blue�: fluctuations in bond
length without vacancy.
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�2bm�n� =
3�0

2

2
bm�n� −

�0
2

2 �
m�n�

bm�n� −
�0

2

2
amn, �A7�

where the indices m�n� label the sites which are the nearest
neighbors of the vacancy, and m�n� stand for the next nearest
neighbors. The equations of motion for the remaining atoms
are not changed from Eq. �A4�.

Thus, the equations of motion of the atoms can be
mapped onto a tight binding model. The only difference with
the bulk case is that the description of the displacements of
the atoms at the boundary require the definition of two ef-
fective orbitals. The position of the effective orbital level amn
at the edge, �0

2 /2, is lower than that for the variable
bmn , �3�0

2� /2. This reflects the fact that atomic fluctuations
are enhanced at the edge.

b. Vacancy

As in the case of an atom at a zigzag edge, the three atoms
near a vacancy are connected by bonds to two nearest neigh-
bors only. As in the previous case, a new variable, amn

=�i�xmn
i needs to be defined at these three sites. The equa-

tions of motion for the variables amn and bmn are those in Eq.
�A7�.

The phonon density of states in clusters with and without
vacancies, and the spectral strength of the bond length fluc-
tuations, in the bulk and near a vacancy are shown in Fig. 5.
Contrary to what happens for the � electronic band, the
phonons are not too disturbed near a vacancy, although some
shift of spectral strength to lower energies takes place.
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