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The electron thermal conductance, �, of a dot has been calculated in the regime of weak coupling with two
electrode leads within a linear response theory. We discuss the effect of the interplay between the charging
energy, the thermal energy, and the confinement in the Coulomb oscillations of �. Hence, we consider three
energy regions: the quantum limit, where quantum confinement dominates over the thermal energy; the clas-
sical regime, where the discreteness of the energy spectrum is screened by the thermal energy; and the
intermediate energy region. In the quantum limit, the periodicity of the oscillations of the electron thermal
conductance is the same as the Coulomb-blockade oscillations of the conductance, G. Analytical expressions
have been obtained for � and G in the cases of nondegenerate and for doubly degenerate energy spectrum. The
obtained dependence of � on the energy level spacing and the thermal energy explicitly shows that quantum
confinement is responsible for the fast decrease of the electron thermal conductance of a dot. It is found that
degeneracies in the energy spectrum of a dot are opposed to the decrease of the electron thermal conduction
due to quantum confinement. It is shown that an external field that raises the degeneracies causes a consider-
able enhancement in �. In the classical and in the intermediate regimes, the electron thermal conductance
shows distinct behavior at low and high temperatures. In the classical regime, Coulomb blockade oscillations
are shown at low temperatures and simple formulas are obtained for � and G. The Wiedermann-Franz law
holds at the peaks of � and G. The temperature dependence of � and G has been calculated up to the limit
where transport occurs through two isolated barriers. The relation between � and G with increasing thermal
energy is discussed.
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I. INTRODUCTION

For the past two decades structures based on semiconduc-
tor quantum dots have attracted a lot of research interest due
to the opportunity to engineer their electronic properties. Un-
til recently, most attention has been focused on possible elec-
tronics and optoelectronics applications. Recently, there is an
increased interest in studying the thermal properties in quan-
tum dot structures.1–16 An intriguing ability of independent
control of electronic and thermal properties in quantum dots
stimulated a great deal of interest devoted mainly to possible
thermoelectric applications. An increase in thermoelectric
figure of merit in quantum dots is anticipated due to modifi-
cation of its thermal properties in addition to the electronic
ones. All of this motivates current interest in understanding
and modeling quantum dot thermal properties. In recent
years, there have been proposed thermoelectric applications
of quantum dot superlattices made of different material sys-
tems as well as periodic arrays of dots.4,8–15 In all theoretical
and experimental studies the crucial role of the values of the
electrical and the thermal conductivities in these nanostruc-
tures has been pointed out. Relative large values of the car-
rier mobility have been attributed either to hopping type or to
band type conduction. Reduced thermal conductivity has
been found and has been attributed to electron and phonon
confinement. So, these structures seem promising for effi-
cient thermoelectric devices and this explains the noticeable
growing research interest in their properties. Other device
applications are also expected. Nanocrystalline silicon has
for instance recently proposed for designing efficient ultra-
sound emitter due to the measured low thermal conductivity
relative to the bulk.5 Moreover, heating effects in nanode-

vices are crucial in determining their operation characteris-
tics so that this field is the subject of current technological
research.

The thermoelectric phenomena have been adequately
studied in the ballistic and in the diffusive transport
regimes.17–20 In the regime of single-electron tunneling, Cou-
lomb blockade oscillations have been measured in the ther-
mopower of a quantum dot.16,21–24 The thermopower has
been investigated theoretically in the sequential tunneling re-
gime by Beenakker and Staring.25 The cotunneling regime26

and the crossover have been studied by Turek and Matveev.27

In the case of a quantum dot strongly coupled to one lead,
the thermopower has been investigated by Matveev and
Andreev.28 Recently, Koch et al. have extended these consid-
erations to the thermopower of single molecules.29 Heating
effects also influence the properties of systems which exhibit
Coulomb blockade effect which requires a study of heat
transfer processes in these systems. Several experiments suc-
ceeded in measuring properties of heat transport in mesos-
copic samples: Experimental tools based on the Coulomb
blockade to measure accurately local temperatures in meso-
scopic samples have been established.30,31 It has been dem-
onstrated that the heat conductance through one-dimensional
phonon modes of a microbridge is quantized in low
temperatures.32 The universal heat conductance per mode is
given by: �2kB

2T /3h. The same universal heat quantum is
also found for carriers other than bosons.33 The influence of
the Coulomb blockade effect on the low-temperature thermal
conductivity of a quantum dot with one-dimensional Lut-
tinger liquid leads has been addressed in Ref. 34. The heat
conduction through a Coulomb blockaded dot has been stud-
ied in Ref. 35 by analyzing the cooling mechanisms of the
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electrons in the dot that are heated by an ac perturbation.
Cooling is considered to be due to electron escape to the cold
contacts and due to phonon emission. The cooling rate in the
sequential tunneling regime is calculated for thermal ener-
gies greater than the energy levels spacing of the dot but low
enough so that it can be assumed that the dot has either N or
�N+1� electrons with finite probability.

In this work, the electron thermal conductance of a quan-
tum dot weakly coupled to two electrode leads is calculated
in the sequential tunneling regime within a linear response
theory. It is presented a systematic study of the electron ther-
mal conductance within this regime. Hence, the electron
thermal conductance is studied for a wide range of values of
the parameters that affect transport so that the effects of the
charging energy, the thermal energy, the quantum confine-
ment, and the energy spectrum degeneracy become evident.
The Coulomb interaction is treated within the framework of
the “orthodox model” of single-electron tunneling.36 Two
major simplifications of this model are that virtual tunneling
processes are neglected and that the electrostatic energy is
described by the classical charging energy: �Ne�2 /2C, where
N is the number of electrons in the dot and C is the capaci-
tance of the surroundings.

About the first simplification: In the sequential tunneling
regime rate equations are used to describe the transport
through the quantum dot.37–39 This approach destroys the co-
herence phenomena associated with transport, since it ne-
glects nonresonant quantum virtual processes, under the as-
sumption that the resonant decay widths, �, are much smaller
than both the thermal energy, kBT, and the energy separation
between the quantum dot resonances, a condition often met
by experiments in nearly isolated dots.23,40 Coherent versus
sequential description of tunneling has been discussed for
resonant tunneling diodes41–43 and more recently for quan-
tum dots.27,44 It is shown that whether quantum coherence
leads to important corrections to the sequential tunneling pic-
ture that explain the experimental evidence, depends on the
conditions of the experiment. Quantum virtual tunneling pro-
cesses are significant whenever kBT becomes comparable
with �. Furthermore, both the single particle level spacing
and the decay widths fluctuate. Even if in average �
���E�� ���, situations where �E is comparable to � are
possible.45,46 In these cases, quantum corrections are impor-
tant. When the condition � /�E�1 is always satisfied and
not only in average, corrections to the conductance become
indeed negligible.40,47 In experiments40 where special care is
taken to discard from the statistical sample conductance peak
heights that do not fulfill ��kBT, good agreement with the
standard sequential theory is obtained.

About the second simplification: The assumption that the
charging energy can be approximated by the classical charg-
ing energy requires that the screening length is much smaller
than the size of the dot. This condition is fulfilled in typical
metal structures, but not in all cases of semiconductors struc-
tures. In Ref. 48 self-consistent tight binding calculations
have been compared with experimental results and it has
been shown that for a nanocrystal of dielectric constant �in
that is embedded in a material of dielectric constant �out,
when �in� ��out the capacitive model can be applied with a
good degree of accuracy. The effective capacitance can be

adjusted in order to fulfill the relation U��Ne�2 /2C with U
defined as an average value.

Much theoretical work on the Coulomb blockade of the
conductance in a double-junction geometry deals with modi-
fications of the orthodox model which are required when
either or both of the above conditions are not fulfilled. In the
present study we stay within the orthodox model to see what
effects this model predicts for the electron thermal conduc-
tance of a quantum dot. Coulomb effects are important and
are expected to be visible in the transport coefficients when
the charging energy dominates over the thermal energy and
the electron confinement �measured by the energy level spac-
ing �E�, i.e., e2 /C�kBT ,�E. The charging energy of an
isolated spherical dot of radius R has been found48 to be:
U�R�= � 1

�out
+ 0.79

�in
� e2

R . This relation provides upper and lower
bounds for the charging energy of a spherical dot that is
surrounded by a complex dielectric medium. Because this
medium cannot screen the electric fields more than a metal
or less than vacuum, the bounds are given by the limits
�out→1 �vacuum� and �out→	 �metallic�. The confinement
energy of the dot is, within the quantum confinement model,
determined by the dot radius R and the electron mass m.
Hence, the charging energy and the confinement energy are
not independent variables because they both depend on the
dot radius. However, their ratio may vary in a wide range of
values depending of the values of the parameters �in ,�out and
m. Hence, Coulomb effects can be important in quantum dots
with discrete energy spectrum as well as in dots where the
discreteness of the energy spectrum is negligible.

In the regime where Coulomb effects are important, the
interplay between the thermal energy and the energy level
spacing is reflected in the transport properties. Hence, we
discuss the behavior of the electron thermal conductance in
three regions: in the quantum limit ��E�kBT�, where quan-
tum confinement dominates over the thermal energy; in the
classical regime ��E�kBT� where the discreteness of the
energy spectrum is screened by the thermal energy; and in
the intermediate energy region. It should be underlined that
the names used for the above regimes, namely “quantum”
and “classical,” refer to the discrete or continuous character
of the energy spectrum and the respective distribution func-
tions in a quantum dot. Hence, quantum behavior due to
charging effects is expected to be seen in all three energy
regions. The theoretical model is described in Sec. II. The
calculated electron thermal conductance is presented and dis-
cussed in Sec. III in the quantum limit, in the classical re-
gime and in the intermediate region.

II. THEORETICAL MODEL

We consider a double barrier tunnel junction. It consists
of a quantum dot that is weakly coupled to two electron
reservoirs via tunnel barriers. Each reservoir is assumed to be
in thermal equilibrium and there are a voltage difference V
and a temperature difference �T between the two reservoirs.
A continuum of electron states is assumed in the reservoirs
that are occupied according to the Fermi-Dirac distribution:
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f�E − EF� = �1 + exp�E − EF

kBT
	
−1

, �2.1�

where the Fermi energy, EF, in the reservoirs is measured
relative to the local conduction band bottom.

The quantum dot is characterized by discrete energy lev-
els Ep �p=1,2 , . . . � that are measured from the bottom of the
potential well. Degeneracies can be included by multiple
counting of the levels. Each level can be occupied by either
one or zero electrons. It is assumed that the energy spectrum
does not change by the number of electrons in the dot. The
states in the dot are assumed to be weakly coupled to the
states in the electrodes so that the charge of the quantum dot
is well defined. We adopt the common assumption in the
Coulomb blockade problems for the electrostatic energy
U�N� of the dot with charge Q=−Ne

U�N� = �Ne�2/2C − N
ext, �2.2�

where C is the effective capacitance between the dot and the
reservoirs and 
ext is the contribution of external charges.

The tunneling rates through the left and right barriers
from level p to the left and right reservoirs are denoted by �p

l

and �p
r , respectively. It is assumed that energy relaxation

rates for the electrons are fast enough with respect to the
tunneling rates so that we can characterize the state of the dot
by a set of occupation numbers, one for each energy level. It
is also assumed that inelastic scattering takes place exclu-
sively in the reservoirs not in the dot. The transport through
the dot can be described by rate equations.

The energy conservation condition for tunneling implies
the following conditions:37

�1� for tunneling from an initial state Ei,l�r� in the left
�right� reservoir to a final state p in the quantum dot

Ei,l�N� = Ep + U�N + 1� − U�N� + �eV , �2.3�

Ei,r�N� = Ep + U�N + 1� − U�N� − �1 − ��eV , �2.4�

�2� for tunneling from an initial state p in the quantum dot
to a final state in the left �right� reservoir at energy Ef ,l�r�

Ef ,l�N� = Ep + U�N� − U�N − 1� + �eV , �2.5�

Ef ,r�N� = Ep + U�N� − U�N − 1� − �1 − ��eV , �2.6�

where N is the number of electrons in the dot before the
tunneling event, � is the fraction of the voltage V which
drops over the left barrier. The energies in the reservoirs are
measured from the local conduction-band bottom.

Due to the voltage difference V and the temperature dif-
ference �T between the two reservoirs, electric, and thermal
currents pass through the dot. The stationary current I and
the heat flux Q through the left barrier are respectively given
by the following equations:

I = − e�
p=1

	

�
�ni

�p
l P��ni���np,0f�Ei,l�N� − EF�

− �np,1�1 − f�Ef ,l�N� − EF�� , �2.7�

Q = �
p=1

	

�
�ni

�p
l P��ni���np,0�Ei,l�N� − EF�f�Ei,l�N� − EF�

− �np,1�Ef ,l�N� − EF��1 − f�Ef ,l�N� − EF�� , �2.8�

where the second summation is over all possible combina-
tions of occupation numbers �n1 ,n2 , . . . ��ni of the energy
levels in the quantum dot, each with stationary probability
P��ni�. The numbers ni can take on only the values 0 and 1.
The nonequilibrium probability distribution P is a stationary
solution of a kinetic equation. This has been solved in the
linear regime by Beenakker37 and his results are summarized
in Appendix A. The solution is substituted in Eqs. �2.7� and
�2.8� and the linearized expressions for the electric current I
and the heat flux Q are obtained

I =
e

kBT
�
p=1

	

�
N=1

	
�p

l �p
r

�p
l + �p

r Peq�N�Feq�Ep/N�

�1 − f��p − EF���eV −
�T

T
��p − EF�
 , �2.9�

Q = −
1

kBT
�
p=1

	

�
N=1

	
�p

l �p
r

�p
l + �p

r Peq�N�Feq�Ep/N��1 − f��p − EF��

��p − EF��eV +
�T

T
��p − EF�
 . �2.10�

Where �p�Ep+U�N�−U�N−1� . Peq�N� is the probability
that the quantum dot contains N electrons in equilibrium and
Feq�Ep /N� is the conditional probability in equilibrium that
level p is occupied given that the quantum dot contains N
electrons. The above equilibrium probabilities are respec-
tively defined37 as

Peq�N� = �
�ni

Peq��ni��N,�
i

ni
, �2.11�

Feq�Ep/N� =
1

Peq�N���ni
Peq��ni��np,1

�N,�
i

ni
. �2.12�

Peq��ni� is the Gibbs distribution in the grand canonical en-
semble

Peq��ni� = Z−1 exp�−
1

kBT
��

i=1

	

Eini + U�N� − NEF	
 ,

�2.13�

where N��ini and Z is the partition function

Z = �
�ni

exp�−
1

kBT
��

i=1

	

Eini + U�N� − NEF	
 .

�2.14�

In the regime of linear response, the current I and the heat
flux Q are related to the applied voltage difference V and the
temperature difference �T by the equations17
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�I

Q
	 = �G L

M K
	�V

�T
	 . �2.15�

The thermoelectric coefficients are related by Onsager rela-
tion that in the absence of a magnetic field is

M = − LT . �2.16�

Equation �2.15� can be reexpressed with the current I rather
than the voltage V as an independent variable

�V

Q
	 = �R S

� − �
	�I

�T
	 . �2.17�

The resistance R is the reciprocal of the isothermal conduc-
tance G. The thermopower S is defined as

S � − � V

�T
�

I=0
= − L/G . �2.18�

The Peltier coefficient is defined as

� � �Q

I
�

�T=0
= M/G = ST , �2.19�

where Eq. �2.16� has been used in the second equality.
Finally, the thermal conductance is defined as

� � − � Q

�T
�

I=0
= − K�1 +

S2GT

K
	 . �2.20�

By comparison of the above definitions of the transport co-
efficients and the linearized expressions for I and Q, the
following expressions are extracted for the transport coeffi-
cients:

G =
e2

kBT
�
p=1

	

�
N=1

	

�pPeq�N�Feq�Ep/N��1 − f�Ep + U�N�

− U�N − 1� − EF� , �2.21�

S = −
e

kBT2G
�
p=1

	

�
N=1

	

�p�Ep + U�N� − U�N − 1�

− EF�Peq�N�Feq�Ep/N��1 − f�Ep + U�N� − U�N − 1�

− EF� , �2.22�

K = −
1

kBT2 �
p=1

	

�
N=1

	

�p�Ep + U�N� − U�N − 1�

− EF�2Peq�N�Feq�Ep/N��1 − f�Ep + U�N� − U�N − 1�

− EF� , �2.23�

where

�p �
�p

l �p
r

�p
l + �p

r . �2.24�

The expressions �2.21� and �2.22� have been for the first time
obtained in Refs. 25 and 37.

The above findings for the transport coefficients can be
written in the following more general formalism for the
transport coefficients:

G = L�0�, �2.25�

S = −
1

eT
�L�0��−1L�1�, �2.26�

K =
1

e2T
L�2�. �2.27�

The electron thermal conductance, �, is given by the expres-
sion

� =
1

e2T
�L�2� − L�1��L�0��−1L�1�� , �2.28�

where

L��� =
e2

kBT
�
p=1

	

�
N=1

	
�p

l �p
r

�p
l + �p

r �Ep + U�N� − U�N − 1�

− EF����Peq�N�Feq�Ep/N��1 − f�Ep + U�N� − U�N − 1�

− EF� . �2.29�

III. CALCULATED ELECTRON THERMAL
CONDUCTANCE AND LIMITING EXPRESSIONS

Coulomb effects are important and are expected to be
visible in the transport coefficients when the charging energy
dominates over the thermal energy and the electron confine-
ment �measured by the energy level spacing �E�, i.e., e2 /C
�kBT ,�E. In this regime, the interplay between the thermal
energy and the energy level spacing is reflected in the trans-
port properties. We discuss the behavior of the electron ther-
mal conductance in three regions: in the quantum limit
��E�kBT�, where quantum confinement dominates over the
thermal energy; in the classical regime ��E�kBT� where the
discreteness of the energy spectrum is screened by the ther-
mal energy; and in the intermediate energy region. Moreover,
it is always assumed that the thermal energy exceeds the
width of the transmission resonance, i.e., kBT�h��r+�l�, so
that the resonances are thermally broadened.

A. Quantum limit

In the quantum limit, where �E�kBT, the discreteness of
the energy spectrum of the quantum dot plays a predominant
role. In this limit, the term with N=Nmin gives the dominant
contribution to the sums over N in Eq. �2.29�, where Nmin is
the integer that minimizes the absolute value of

��N� = EN + U�N� − U�N − 1� − EF. �3.1�

Then, it is defined: ����Nmin� and �p�Ep−ENmin
.

In this limit, simplified formulas can be obtained for the
transport coefficients. For this, special care must be taken for
the degeneracy of the energy spectrum. Hence, we discuss
the behavior of the thermal conductance in two cases of en-
ergy spectrum: �a� with nondegenerate energy levels �g=1�,
and �b� with doubly degenerate energy levels �g=2�, as in
the case of spin degeneracy.
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1. Nondegenerate energy levels

In the quantum limit, the distribution functions for nonde-
generate energy levels can be approximated by the following
expressions:

Peq�Nmin� =
1

1 + e�/kBT , �3.2�

Feq�Ep/Nmin� = �1 for p � Nmin

e−�p/kBT for p � Nmin,
� �3.3�

and

1 − f��p + �� = �
1 for p � Nmin

e��p+��/kBT for p � Nmin

e�/kBT

1 + e�/kBT for p = Nmin.� �3.4�

Using the above approximations in Eqs. �2.25�–�2.29�, the
following simplified formulas are obtained for G and � for
an equidistant energy levels spectrum �Ep= p�E� and level-
independent tunneling rates, i.e., �p

l,r=�l,r:

GQL =
e2

kBT
�

1

4 cosh2��/2kBT�
, �3.5�

�QL = kB�� �E

kBT
	2 e−�E/kBT

1 + 4 cosh2��/2kBT�e−�E/kBT , �3.6�

where �� �l�r

�l+�r .
The calculated conductance is plotted in Fig. 1. For the

values of the parameters used in Fig. 1, the curves computed
from Eqs. �2.25� and �3.5� are indistinguishable and hence
only one curve is shown. The calculated thermal conduc-
tance is plotted in Figs. 2 and 3, for two values of the ratio
�E /kBT in the quantum limit. The thermal conductance cal-
culated from Eq. �3.6�, �QL, is plotted together with the ther-
mal conductance calculated from Eq. �2.28�, �, for compari-
son. In Fig. 2, where �E /kBT=10, �QL, and � are in perfect

agreement. In Fig. 3, where �E /kBT=5, �QL starts deviating
from �. This is because when the energy level spacing ap-
proaches the thermal energy, the quantum limit assumptions
become less accurate. Hence, the quantum limit analytical
formula holds satisfactorily when the energy level spacing is
at least one order of magnitude higher than the thermal en-
ergy.

In Figs. 1–3, it is shown that in the quantum limit the
conductance and the thermal conductance exhibit periodic
Coulomb blockade oscillations. The peaks occur each time
an extra electron enters in the dot and they are separated by
intervals.

�EF = �E +
e2

C
. �3.7�

The same periodicity has been found elsewhere37 for the
conductance, G, of quantum dots. This periodicity originates

FIG. 1. Calculated conductance, G, for a series of equidistant,
nondegenerate levels with separation �E=0.5 e2 /2C and for kBT
=0.05 e2 /2C. Level independent tunnel rates have been assumed.

FIG. 2. Calculated electron thermal conductance, � �solid line�,
for a series of equidistant, nondegenerate levels with separation
�E=0.5 e2 /2C and for kBT=0.05 e2 /2C, i.e., ratio �E /kBT=10.
Level independent tunnel rates have been assumed. For comparison,
�QL �dots� is also shown.

FIG. 3. As in Fig. 2 for �E /kBT=5, with: �E=0.5 e2 /2C and
kBT=0.1 e2 /2C.

COULOMB OSCILLATIONS IN THE ELECTRON THERMAL… PHYSICAL REVIEW B 75, 045344 �2007�

045344-5



from the fact that ��� is a periodic function of EF varying
from zero to a maximum at intervals given by Eq. �3.7�. G
and � depend on � through the same function of the hyper-
bolic cosine as it can be seen in Eqs. �3.5� and �3.6�. The
peaks in � and G occur at the values of EF for which it holds:
�=0. The dependence of the maxima of G and � on the
characteristic parameters can be deduced from Eqs. �3.5� and
�3.6�, and it can be seen that the two transport properties
exhibit different behavior: Gmax decreases linearly with in-
creasing thermal energy and it is nearly independent of the
energy level spacing; �max depends on both the thermal en-
ergy and the energy level spacing through their ratio,
�E /kBT, and it decreases rapidly with decreasing tempera-
ture and increasing energy level spacing.

In the thermal conductance behavior dominates the effect
of quantum confinement due to the dependence on the ratio
of the energy level spacing over the thermal energy, �E /kBT.
This is analytically described by Eq. �3.6� and it is graphi-
cally shown by comparing the data plotted in Figs. 2 and 3.
The electron thermal conductance of quantum dots decreases
nearly exponentially with decreasing temperature. The de-
pendence on the energy level separation, �E, in Eq. �3.6�
shows an equally fast decrease as the size of the dot de-
creases. Hence, it is explicitly shown that quantum confine-
ment is responsible for the fast decrease of the electron ther-
mal conductance. This behavior agrees with the observation
that the thermal conductivity of a quantum dot is very small
compared to that of bulk �e.g., Refs 1 and 4�.

An equidistant energy level spectrum and energy indepen-
dent tunneling rates have been assumed to deduce Eqs. �3.5�
and �3.6�. These assumptions are justified by the fact that in
the quantum limit the main contribution to the conduction
comes from a narrow energy region close to Ep=ENmin. Nmin
increases by one each time a new conductance peak appears.
Constant values for the energy level spacing and the tunnel-
ing rates can be used in the intervals of EF where Nmin is
constant. The details of the energy spectrum and the energy
dependence of the tunneling rates could be taken into ac-
count by assigning appropriate values for Nmin for each in-
terval of EF in the quantum limit formulas. This would affect
the position, the shape and the height of the peaks of the
thermal conductance, as described by Eq. �3.6�, resulting to a
nonperiodic sequence of peaks.

2. Doubly degenerate energy levels

Let us now consider a twofold degeneracy of the energy
levels �e.g., spin degeneracy�. Coulomb interaction raises
this degeneracy. The distribution functions depend on
whether Nmin is odd or even and in the quantum limit they
can be approximated by the following expressions:

For odd Nmin

Peq�Nmin� =
1

1 +
1

2
e�/kBT

, �3.8�

Feq�Ep/Nmin� =�
1 for p � Nmin

1

2
for p = Nmin,Nmin + 1

1

2
e−�p/kBT for p � Nmin + 1, �

�3.9�

and

1 − f��p + �� = �
1 for p � Nmin + 1

e��p+��/kBT for p � Nmin

e�/kBT

1 + e�/kBT for p = Nmin,Nmin + 1,�
�3.10�

for even Nmin

Peq�Nmin� =
1

1 + 2e�/kBT , �3.11�

Feq�Ep/Nmin� = �1 for p � Nmin − 1

1 for p = Nmin − 1,Nmin

2e−�p/kBT for p � Nmin,
�
�3.12�

and

1 − f��p + �� = �
1 for p � Nmin

e��p+��/kBT for p � Nmin − 1

e�/kBT

1 + e�/kBT for p = Nmin − 1,Nmin.�
�3.13�

Using the above approximations in Eqs. �2.25�–�2.29�, the
following simplified formulas are obtained for G and �, for
an equidistant energy levels spectrum and level-independent
tunneling rates.

For odd Nmin:

G =
e2

kBT
��2�1 + e�/kBT�

2 + e�/kBT

1

4 cosh2��/2kBT�

+
2e�/kBT

2 + e�/kBTe−�E/kBT
 , �3.14�

and

� = kB�
2�2e�/kBT + 1�

2 + e�/kBT � �E

kBT
	2


e−�E/kBT

1 + 4 cosh2��/2kBT�e−�E/kBT + �1 + e�/kBT�e−�E/kBT .

�3.15�

The second term in the parenthesis of �3.14� and the third
term in the denominator of �3.15� can be neglected for ener-
gies below the edge of the quantum limit and it is obtained
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G2 �
2�1 + e�/kBT�

2 + e�/kBT G1, �3.16�

and

�2 �
2�2e�/kBT + 1�

2 + e�/kBT �1, �3.17�

where the symbols G1 and �1 denote the transport coeffi-
cients for g=1 and they are given by Eqs. �3.5� and �3.6�.
The symbols G2 and �2 are for g=2.

For even Nmin:

G =
e2

kBT
��2�1 + e�/kBT�

1 + 2e�/kBT

1

4 cosh2��/2kBT�

+
2

1 + 2e�/kBTe−�E/kBT
 , �3.18�

and

� = kB�
2�e�/kBT + 2�
1 + 2e�/kBT � �E

kBT
	2


e−�E/kBT

1 + 4 cosh2��/2kBT�e−�E/kBT + �1 + e−�/kBT�e−�E/kBT .

�3.19�

Neglecting the third term in the denominators of the above
two equations, it is obtained

G2 �
2�1 + e�/kBT�
1 + 2e�/kBT G1, �3.20�

and

�2 �
2�e�/kBT + 2�
1 + 2e�/kBT �1. �3.21�

The calculated conductance and thermal conductance are
shown in Figs. 4 and 5, respectively. In order to facilitate the
comparison between the g=1 and the g=2 cases, the same

parameters have been used in Figs. 1, 2, 4, and 5. The curves
computed from the exact Eqs. �2.25� and �2.28� and the
curves computed from the approximate equations are indis-
tinguishable in Figs. 4 and 5. The Coulomb blockade peaks
of the conductance and of the thermal conductance are non
symmetric and they appear in doublets with mirror symme-
try. The peaks of the conductance occur each time an extra
electron enters the dot, when �=0. The first peak of the
doublet appears when an odd electron is added and the sec-
ond peak appears when an even electron is added. The peaks
are separated by �EF=�E+ e2

C when an odd electron enters
the dot and by �EF= e2

C when an even electron enters the dot.
In Fig. 5, �1 is plotted with a dotted line together with �2 so
that the effect of spin degeneracy becomes more evident. �It
should be noted that �E is the same for both �1 and �2, so
that the amount of confinement is the same in the two cases.�
It is due to the double degeneracy of the lower �upper� neigh-
boring energy level, that offers an additional channel of con-
duction, that when an odd �even� electron is added, the left
�right� half of the peak is enhanced. Due to spin degeneracy
more channels of conduction contribute to the thermal con-
ductance and give an enhancement of the thermal conduc-
tance. When temperature increases the asymmetry of the
peaks is smoother, as it can be seen in Fig. 6 where the
thermal conductance is plotted at a higher temperature.

The effect of raising the spin degeneracy �e.g., by apply-
ing a magnetic field� is shown in Fig. 7. The degenerate
levels split to pairs of nondegenerate energy levels and their
energy separation can be controlled by the external field.
When the energy splitting is smaller than the energy separa-
tion due to confinement, the thermal conductance is consid-
erably enhanced. This effect should be even more pro-
nounced when g�2. Hence, degeneracies in the energy
spectrum of a dot are opposed to the decrease of the electron
thermal conduction due to quantum confinement.

B. Classical regime

In the classical regime, �E�kBT, the discreteness of the
energy spectrum of the quantum dot is screened by the ther-

FIG. 4. Calculated conductance, G, for a series of equidistant,
doubly degenerate levels with separation �E=0.5 e2 /2C and for
kBT=0.05 e2 /2C.

FIG. 5. Calculated electron thermal conductance, � �solid line�,
for a series of equidistant, doubly degenerate levels with separation
�E=0.5 e2 /2C and for kBT=0.05 e2 /2C. The dotted curve is for
nondegenerate levels and is shown for comparison.
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mal energy and the energy spectrum can be treated as a con-
tinuum. In this limit, the electron distribution function
Feq�Ep /N� can be approximated by the Fermi-Dirac distribu-
tion

Feq�Ep/N� = f�Ep − ��N�� , �3.22�

where the chemical potential ��N� is to be determined from
the equation

�
p=1

	

f�Ep − ��N�� = N . �3.23�

The probability distribution P takes the classical form

Peq
cl �N� =

exp�− �U�N� + N��̄ − EF��/kBT

�
N

exp�− �U�N� + N��̄ − EF��/kBT
, �3.24�

where �̄ is the chemical potential of the dot in equilibrium.
Then, the summation over p in Eq. �2.29� may be replaced
by integration over E. The algebra is given in Appendix B.
The resulting expressions for the transport coefficients are

G =
e2�

kBT
��

N=1

	

Peq
cl �N�g���N�� , �3.25�

S = −
1

2eT

�
N=1

	

Peq
cl �N���N�g���N��

�
N=1

	

Peq
cl �N�g���N��

, �3.26�

K = −
��

kBT2 �
N=1

	 � ��kBT�2 + �2�N�
3


Peq
cl �N�g���N�� ,

�3.27�

where � is the density of states in the dot and ��N��U�N�
−U�N−1�+ �̄−EF, where ��N��const= �̄ for all N with
significant probability. The above expressions are used in Eq.
�2.20� to calculate �.

For big charging energy, e2

C �kBT, the term with N=Nmin
gives the dominant contribution to the sums over N in Eqs.
�3.25�–�3.27�, where Nmin is the integer that minimizes the
absolute value of ��N�. Then, it is obtained

G =
e2�

kBT
�Peq

cl �Nmin�g��min� , �3.28�

S = −
1

2eT
�min, �3.29�

K = −
��

kBT2� ��kBT�2 + �min
2

3

Peq

cl �Nmin�g��min� .

�3.30�

The electron thermal conductance is given by the equation

� = Lo�1 +
1

4�2��min

kBT
	2
GT , �3.31�

where Lo= �2

3
� kB

e
�2

is the Lorentz number and �min
���Nmin�.

When the thermal energy becomes big compared with the
charging energy, kBT�

e2

C , the amplitude of the Coulomb os-
cillations decreases and finally shrink. In this limit, it holds
that: g���=kBT, and from Eqs. �3.25�–�3.27� and �2.20� it
can be obtained

Go = e2�� �3.32�

and

FIG. 6. Calculated electron thermal conductance, � �solid line�,
for a series of equidistant, doubly degenerate levels with separation
�E=0.5 e2 /2C and for kBT=0.1 e2 /2C. The dashed curve is calcu-
lated with the quantum limit expression.

FIG. 7. The solid line is as in Fig. 5. The dashed line shows the
effect of applying a field that raises the double degeneracy of the
levels. Each level is split to a pair of levels with separation �E /5.
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�o �
�2

3
kB���kBT� . �3.33�

Hence, in the limit of high temperatures, Eq. �3.32� implies
that the resistance ��1/Go� can be expressed as the sum of
the tunnel resistances of the left �1/e2��l� and right barriers
�1/e2��r�.37 Equation �3.33� can be written as: �o=LoGoT,
i.e., the Wiedermann-Franz law holds in this limit.

The calculated thermal conductance in the classical re-
gime is shown in Fig. 8 for varying thermal energy. The
thermal conductance is normalized by ��. It can be seen that
at low temperatures Coulomb blockade is exhibited. Then,
the thermal conductance is given by Eq. �3.31�. At the peaks,
the periodicity of � is the same as that of the conductance, G.
The periodicity of the Coulomb oscillations in the conduc-
tance in the classical limit is given by37,51

G =
e2�

2
�

��Nmin�/kBT

sinh���Nmin�/kBT�
. �3.34�

According to Eq. �3.34�, the peaks of G occur when
��Nmin�=0. At low temperatures in the classical regime, the
peaks of G and � occur at the same Fermi energies as in the
quantum limit �that is a low temperature regime�. However,
the shape of the peaks in the classical regime is different
from that in the quantum limit, since the functional depen-
dence G and � on ��Nmin� is different in the two regimes.

At the peaks of the thermal conductance, Eq. �3.31� be-
comes: �=LoGT, i.e., the Wiedermann-Franz law is valid.
This is due to ballistic heat transfer at the peaks where the
Coulomb barrier is suppressed. Away from the peaks it holds
that ��Nmin��0 and the relation between � and G becomes

� = LCBGT , �3.35�

with

LCB = Lo�1 +
1

4�2��min

kBT
	2
 , �3.36�

where LCB is a function of the Coulomb barrier and it has the
periodicity of �min

2 , i.e., it becomes minimum �equal to zero�
at the conductance peaks and maximum in between the
peaks. Away from the peaks it holds: LCB�Lo and hence the
heat transport is greater than the charge transport. The break-
down of the Wiedermann-Franz law at a conductivity thresh-
old has been shown in other physics problems �see e.g., Refs
49 and 50�. Here similar behavior is due to the Coulomb
blockade effect. The maximum deviation from the
Wiedermann-Franz law is at the threshold of conduction and
the deviation decreases as the conduction peak is ap-
proached, where the Coulomb barrier is suppressed. In the
presence of the Coulomb barrier ‘hot’ electrons contribute to
the conduction.

Moreover, it is because Peq
cl �N�=0 if N�Nmin,Nmin−1 that

at the peaks of � and G, it holds that Peq
cl �Nmin�g��min�

=kBT /2 and hence it is obtained

Gmax = e2��/2 �3.37�

and

�max =
�2

3
kB��kBT��/2. �3.38�

Hence, at the peaks it holds that: Gmax/Go=1/2 and
�max/�o=1/2. This relation between �max and �o is also
shown in the calculated thermal conductance data plotted in
Fig. 8. This is due to destructive interference in the case of
two coupled barriers that the conduction is limited by a fac-
tor of two relative to the case of two independent barriers in
series.

When temperature increases, the thermal energy wins
over the Coulomb barrier and conduction becomes possible
at all values of EF. Coulomb oscillations are observable until
the charging energy becomes small compared with the ther-
mal energy, e2

C �kBT. The effect of increasing thermal energy
is shown in Fig. 8. The electron thermal conductance is non
zero between the peaks, due to thermal broadening of the
distribution functions that allows more channels to contribute
to the conduction. As temperature increases, the contribution
of the terms with N=Nmin±1 to the sums over N in Eqs.
�3.25�–�3.27� becomes more and more important. At the
peaks of G it holds: ���N��min=0, whereas at the peaks of �
it holds: ���N��max=1.

C. Intermediate region

The intermediate region extends between the quantum
limit and the classical regime. Here, the thermal energy and
the levels spacing are comparable. The thermal energy is
lower than the charging energy �kBT�e2 /C� and Coulomb
effects are non-negligible. Now, the summation over p must
be retained in Eqs. �2.25� and �2.29� and Eq. �2.28� has been
used to calculate the electron thermal conductance. Even at
high temperatures within this region, the discreteness of the
energy spectrum is not being adequately screened by the

FIG. 8. Coulomb oscillations of the electron thermal conduc-
tance in the classical regime. The various curves are calculated for:
kBT=0.05,0.1,0.3,0.5,1.0,5.0 e2 /2C. The lowest curve corre-
sponds to the lowest thermal energy.
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thermal energy and the summations cannot be changed to
integrations.

The calculated electron thermal conductance is shown in
Fig. 9 for �E=0.5 e2 /2C for various temperatures. The low-
est curve corresponds to the lowest temperature and it is at
the edges of the quantum limit. At the highest temperature,
the distribution functions can be satisfactorily approximated
by their classical limits. In the intermediate region, the dis-
tribution functions deviate from the classical distributions
and they are given by Eqs. �2.11� and �2.12�. The behavior of
the Coulomb oscillations with increasing temperature can be
understood using similar arguments as in the classical re-
gime. At the highest temperature, the distribution functions
can be satisfactorily approximated by their classical limits.
The onset of the classical region depends on the amount of
confinement in the system. The intermediate region extends
to higher temperatures for more amount of confinement, i.e.,
bigger �E.

Finally, we comment on the relation between the thermal
conductance and the conductance. For this, the ratio
�max/LoGmaxT is plotted versus the thermal energy in Fig. 10
for two cases of confinement: for �E=0.1 e2 /2C �dots� and
for �E=0.5 e2 /2C �triangles�. At low temperatures, quantum
confinement that dominates over the thermal energy restricts
the heat transport and the ratio is smaller than unity. Either in

the quantum limit or in the intermediate region, quantum
processes dominate in transport and cause deviations from
the Wiedermann-Franz law that is restored at the onset of the
classical regime, at the peaks of conduction. The
Wiedermann-Franz law is expected to be restored faster with
increasing temperature the weaker is the confinement. This is
indeed found in the calculated data and it can be seen in Fig.
10 where the dots show a sharper increase than triangles with
increasing thermal energy. In the classical regime, when only
Nmin contributes to transport the Wiedermann Franz law hold
at the peaks. When temperature increases, the additional con-
tributions of Nmin+1 and Nmin−1 favor at first the thermal
conduction over the charge transport and the ratio becomes
slightly bigger than unity. The Wiedermann-Franz law is
again restored when due to thermal broadening all channels
of conduction contribute equivalently to transport.
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APPENDIX A: ELECTRON PROBABILITY DISTRIBUTION

The nonequilibrium probability distribution P is a station-
ary solution of the kinetic equation25,37

�

�t
P��ni� = 0 = − �

p

P��ni��np,0��p
l f l�Ei,l�N� − EF� + �p

r fr�Ei,r�N� − EF� − �
p

P��ni��np,1��p
l �1 − f l�Ei,l�N� − EF�� + �p

r �1

− fr�Ei,r�N� − EF�� + �
p

P�n1, . . . ,np−1,1,np+1, . . . ��np,0��p
l �1 − f l�Ef ,l�N + 1� − EF�� + �p

r �1 − fr�Ef ,r�N + 1� − EF��

+ �
p

P�n1, . . . ,np−1,0,np+1, . . . ��np,1��p
l f l�Ei,l�N − 1� − EF� + �p

r fr�Ef ,r�N + 1� − EF� . �A1�

FIG. 9. Coulomb oscillations of the electron thermal conduc-
tance in the intermediate regime. The various curves are calculated
for �E=0.5 e2 /2C and for: kBT=0.1,0.3,0.4,0.5 e2 /2C. The low-
est curve corresponds to the lowest thermal energy.

FIG. 10. The ratio �max/LoGmaxT versus the thermal energy for
two cases of confinement: for �E=0.1 e2 /2C �dots� and for �E
=0.5 e2 /2C �triangles�.
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The kinetic equation for the stationary distribution function
is equivalent to the set of detailed balance equations �one for
each p=1,2 , . . .�

P�n1, . . . ,np−1,1,np+1, . . . ���p
l �1 − f l�Ef ,l�Ñ + 1� − EF��

+ �p
r �1 − fr�Ef ,r�Ñ + 1� − EF��

= P�n1, . . . ,np−1,0,np+1, . . . ���p
l f l�Ei,l�Ñ − 1� − EF�

+ �p
r fr�Ef ,r�Ñ + 1� − EF� , �A2�

with Ñ� �
i�p

ni.

In the linear response problem, it is substituted

P��ni� � Peq��ni��1 + ���ni�� �A3�

into the detailed balance equation and it is expanded to first
order in �T and V. It is defined

Tr � T,Tl � T + �T

and

f��� � �1 + exp��/kBT��−1,

where ��Ep+U�Ñ+1�−U�Ñ�−EF, so that it can be written

fr��� = f���, f l��� = f��� − ���T/T�f���� + O��T�2.

�A4�

Taking into account that:

1 − f��� � f���e�/kBT, �A5�

Peq�n1, . . . ,np−1,1,np+1, . . . �

= P�n1, . . . ,np−1,0,np+1, . . . �e�/kBT, �A6�

kBTf�����1 + e−�/kBT� = − f��� , �A7�

linearization of the detailed balance equation gives25

��n1, . . . ,np−1,1,np+1, . . . � = ��n1, . . . ,np−1,0,np+1, . . . �

+
eV

kBT
� �p

r

�p
l + �p

r − �	
+

��T

kBT2

�p
l

�p
l + �p

r . �A8�

Equations �A3� and �A8�, are used in Eqs. �2.7� and �2.8�, to
give the linearized expressions for the electric current I and

the heat flux Q �Eqs. �2.9� and �2.10�, respectively of the
main text�.

APPENDIX B: THE TRANSPORT COEFFICIENTS IN THE
CLASSICAL REGIME

In the classical regime, the summation over p in Eqs.
�2.29� may be replaced by integration over E, multiplied by
the density of states ��E� in the dot. If kBT��̄ ,EF, one may
in general disregard the energy dependence of the density of
states and of the tunnel rates. By using Eqs. �3.22�–�3.24�,
Eq. �2.21� gives

G =
e2��

kBT
�
N=1

	

Peq�N��
−	

+	

f�� − ��N���1 − f����d� ,

�B1�

S = −
e�

kBT2G
�
N=1

	

Peq�N��
−	

+	

d��f�� − ��N���1 − f���� ,

�B2�

K = −
��

kBT2 �
N=1

	

Peq�N��
−	

+	

d��2f�� − ��N���1 − f���� ,

�B3�

where ��Ep+U�N�−U�N−1�−EF. The integrations in Eqs.
�B1�–�B3� can be worked out analytically

g���N�� � �
−	

+	

d�f�� − ��N���1 − f���� =
��N�

1 − e−��N�/kBT ,

�B4�

�
−	

+	

d��f�� − ��N���1 − f���� =
1

2
��N�g���N�� , �B5�

�
−	

+	

d��2f�� − ��N���1 − f����

=
���kBT�2 + �2�N��

3
g���N�� . �B6�

By substituting Eqs. �B4�–�B6� into Eqs. �B1�–�B3� re-
spectively, the expressions �3.25�–�3.27� of the main text are
obtained.
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