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Ground-state properties of quantum rings with a few electrons:
Magnetization, persistent current, and spin chirality
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Ground-state properties of one-dimensional quantum rings with a few electrons, which interact with each
other in the form of 1/r Coulomb repulsion, are studied by exact diagonalization. For three electrons, the fully
spin-polarized ground state is uniquely realized when the diameter of the ring is sufficiently large. In contrast,
for four and five electrons, the fully polarized state never becomes the unique ground state, however large the

diameter is. These results can be understood in terms of the multiple-spin exchange. When a perpendicular
magnetic field is applied to the ring (i.e., the Aharonov-Bohm flux is introduced), the persistent current occurs,
and the spin chirality is finite for a certain value of the flux. The difference between the quantum ring and the

circularly arranged quantum dots is also discussed.
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I. INTRODUCTION

Quantum dots'= occupy an important position not only in
the field of basic science, but also in the field of nanotech-
nology. One can change the size of dots from nanometers to
microns, and the number of confined electrons one by one.
One can also fabricate various shapes of quantum dots with
self-assembly methods*> or lithographic techniques.®!'? By
changing the size and shape of dots, and the number of con-
fined electrons, one can control the electronic properties of
these quantum nanostructures; this makes quantum dots a
unique research subject in basic science as well as an impor-
tant item in application.

A quantum ring structure'® is a particularly interesting
nanostructure. Both the diameter and the ring width can be
separately changed. Furthermore, a magnetic field applied
perpendicularly to a ring gives rise to peculiar properties
such as a persistent current through Aharonov-Bohm effect.!*
These varieties make quantum rings even more interesting
playgrounds for many-body physics and also a strong candi-
date for a building block of future nanotechnology.

In a previous work," the present authors numerically
demonstrated that for three-electron systems, the fully spin-
polarized ground state is more likely to be realized in a quan-
tum ring than in a harmonic confinement. In this case, the
contribution of multiple-spin exchange was essential.'® The
purposes of the present paper are (1) to extend the previous
study to four- and five-electron systems and show that
multiple-spin exchange is also essential to determine spin
states of the system, and (2) to study the effect of a magnetic
field perpendicularly applied to a ring and show that the field
not only gives rise to a persistent current, but also has an
effect on spin state of the system and indeed induces finite
spin chirality.

As for the multiple-spin exchange, it is known that the
exchange processes involving odd-number electrons favor
ferromagnetism and those involving even-number electrons
favor amtiferromagnetism.17 Thus, if electrons are confined in
quasi-one-dimensional space, then the multiple-spin ex-
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change (the cyclic exchange) becomes dominant and the dif-
ference of the number of electrons by one would lead to
qualitative change of the ground-state properties. Namely, it
is possible that the physics in a quantum ring including a few
electrons is distinct from the Tomonaga-Luttinger liquid in
the low density limit. Although one may naively expect that
the ground state for even (odd)-number electrons is the spin-
singlet (fully polarized) state, the situation is not so simple.
In this work, we study roles played by multiple-spin ex-
changes in few-electron systems in quantum rings of various
size. This is the first issue which will be addressed in this
paper.

In addition to the number of electrons, application of a
perpendicular magnetic field should bring about the diversity
of physical properties.!*> A magnetic flux threading a ring
(i.e., the Aharonov-Bohm flux) induces a persistent
current.'8-2! Without a level crossing in the presence of the
field, the periodicity of the persistent current must be the unit
flux quantum. However, as we shall see, a level crossing
does occur in a magnetic field, which results in a shorter
periodicity of the persistent current. The level crossing in a
magnetic field is related with the evolution of the total angu-
lar momentum and the total spin in the ground state induced
by the magnetic field.?> Besides, in the presence of a field,
the spin chirality is expected to appear owing to explicit
breaking of time-reversal symmetry. The spin chirality has
been discussed from several aspects in condensed matter
physics.?730 The effects of the chirality in quantum nano-
structures are also discussed,’! but studies of these effects are
still premature. Studies of the persistent current and the spin
chirality in quantum rings in a magnetic field are then the
second issue in this work.

In the present paper, we focus on the structure of a one-
dimensional (1D) ring and study (i) the ground-state proper-
ties of three-, four-, and five-electron systems without a mag-
netic field; (ii) the magnetic-field effect on three, four, and
five electrons. To this end, the exact-diagonalization method
is employed. As a result, we find that, for four and five elec-
trons, the fully polarized state never becomes the unique
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ground state, however large the size of the ring is. The nature
of magnetism (i.e., magnetization) is determined by the ef-
fective repulsion between electrons at the same position and
is little influenced by the long-range part of the Coulomb
repulsion, whereas the Wigner crystal-like states are realized
because of the long-range part of the Coulomb repulsion. We
also observe features of spin chirality in a quantum ring.

The paper is organized as follows: In the next section, we
introduce the model and describe our strategy. In Sec. III, the
results of a few electrons in the absence of magnetic field are
presented. In Sec. IV, we show the results of the energy
spectrum, the persistent current, and the spin chirality in a
magnetic field. Section V is devoted to a summary of this
study. In the Appendix, we discuss the case of circularly
arranged quantum dots, which is compared with the quantum
ring.

II. MODEL

We consider a system of N interacting electrons confined
in a 1D quantum ring with circumference L. The interaction
has the 1/r Coulomb type. When a perpendicular magnetic
field is applied, the Hamiltonian is given by?*2?

X s 2rd)? 2
H= *2(_1-—_—”—) )
Zme i=1 &xi L (I)O (j) Gdl]

where m: is the effective electron mass, € is the dielectric
constant, and d;;=(L/)|sin[ 7(x;—x;)/L]| is the chord dis-
tance between x; and x;. The pair (ij) takes all the combina-
tions of individual (labeled) electrons. [For N=3, we take
(i,j)=(1,2), (2,3), and (1,3).] ® is the total magnetic flux
through the ring, and @ is the unit flux quantum h/e. We
neglected the Zeeman coupling of spins to the magnetic
field. The Hamiltonian (1) can be rewritten as

N 2
H/H*:%E (a;)2<—ii-2”3> S @
i=1

(9)6,- L (I)O (i) dij/a;’
where
. h%
aB: * 2 (3)
m,e

e

is the effective Bohr radius, and

o & myet @)
Ceay €R°

is the effective Hartree. For the material parameter of GaAs,
using €=12.6 and m,=0.067m,, we have a,=9.95 nm and
H"=11.48 meV. The large value of a; (compared with the
Bohr radius az=0.0529 nm) is due to the small effective
mass and the large dielectric constant.

Similarly to Ref. 15, we discretize the circle into N,,
pieces and consider a Hamiltonian defined on a 1D lattice
with N,, lattice points,
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where 7=(ay/a)?/2, U(|[€-m|)=ay/dy,, U0)=ay/dy and
C =N(a;/ a)?. The operator c;U (c¢o) is the creation (annihi-
lation) operator of an electron with spin ¢ at €th lattice point,
nezE(,ng(,:Eac;Uch,, and a=L/N,,. We require a condition
CN, +1,0=Clo for a ring geometry. In order to avoid the singu-
larity of 1/d;; at x;=x; in the Hamiltonian (2), we introduced

Eem as follows:
- L e _ 172
dip = (dg,, + )7 = —[sin%@) + 52] ., (6)
a

~ ~ L&
do = dg( = . (7)
T
We defined ¢ as L&/ with fixed 6. Roughly speaking, the
value of & corresponds to the width of a quantum ring, which
permits an electron to pass another electron. We note that
the ratio U(0)/7 is proportional to L, ie., U(0)/T
=27L/ (a;Nib‘). In the limit a—0 (N,,— ©), we expect that
the discretized Hamiltonian (5) reduces to the continuous
one (2).
In order to explore the effects of long-range part of the
Coulomb interaction, we also consider the 1D conventional
Hubbard model with on-site Coulomb repulsion given by

o 27 &

T .

HHub=—tz E [exp(i——)cggcg+10+H.c.]
=1 o=1,] Nm CDO '

N,

m

+ UE }’l{/T}’l(l. (8)
=1

In our calculations, we set a;:H*ztl)O:l. We employ
exact diagonalization to investigate the ground-state proper-
ties of the models introduced in this section. In order to
obtain states in the subspace with total spin S, we use the
projection operator given by>?

H (Stot)2 - S{ot(S{Ot + 1)
) Siot(Sior + 1) = St/ol(Stlol +1)

P (Stot) = (9)

St’ol( #Siot

where S, denotes the summation of the spin operator S,
over all lattice points €. In the following, the lowest energy
in the subspace with a specified total spin S, is denoted by

EO(Slot)~

III. FEW ELECTRONS IN A QUANTUM RING
WITHOUT A MAGNETIC FIELD

In this section, we study a few electrons (N=3, 4, and 5)
in a 1D ring in the absence of a magnetic field (i.e., ©=0).
For a quantum ring with ®=0, the N=3 case was investi-
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FIG. 1. (Color online) The lowest energies for each total spin
and the energy differences as a function of circumference L in the
model (5) with ®=0. (a) N=3, (b) N=4, (c) N=5. The lattice con-
stant is a=L/N,,. The effective atomic units are used (a*BzH*= 1).

gated by means of the stochastic variational method'> and
exact diagonalization.'>33 The general N case has recently
been studied within local-spin-density functional theory.* As
the study of few-electron systems in the strong coupling re-
gion is a difficult task, it is worth studying them with various
complementary methods. Here, we present our results for
N=3, 4, and 5 with exact diagonalization, and make a com-
parison with the previous studies.!>33-3* The interpretation of
the results in the strong coupling region shall be discussed in
terms of multiple-spin exchange.

Figure 1 shows the lowest energies for each total spin
(with a fixed N,,) and the energy differences as a function of
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circumference L. For a convergence check, we also show the
energy differences with various N,,. While the energy differ-
ences have the weak N,, dependence in the small L(~1072)
and large L(=10) regimes, the N,, dependence of the energy
differences is somewhat large in the intermediate regime of
L. Nevertheless, the main feature (such as the presence or
absence of level crossing) seems to be unchanged. Thus we
believe that the data for N,,~30 catch the feature in the
continuous limit (N,,— ). In the following, we discuss the
results with N,,=20-30.

From Fig. 1, we find that, irrespective of the number of
electrons, the obtained energy has a crossover from E,
«1/L* in the small L regime, to E,<1/L in the large L
regime. This indicates that the kinetic energy is dominant in
the weak coupling regime (L <<1), while the Coulomb inter-
action is dominant in the strong coupling regime (L>1). For
N=3, the level crossing occurs. Namely, the total spin of the
ground state changes from S,,=1/2 to S,,,;=3/2 (i.e., maxi-
mum possible total spin) with increasing L. This feature was
observed also in Ref. 15. The spin transition of the ground
state has also been seen in a more realistic model.** On the
other hand, for four and five electrons, states with different
St tend to be degenerate as L becomes large. In particular,
for five electrons, the fully spin-polarized state seems to be
almost one of the ground states in a region L=10. For all
N’s, our results on the total spin of the ground state in the
intermediate-L regime (L~ 1) are consistent with those ob-
tained with local-spin density functional theory.*

In addition to the total spin S, the total angular momen-
tum M, is also a good quantum number in the present
model (5). For N=3, the lowest state within the S, ,,=1/2
subspace has M =1 in the whole region of L shown in Fig.
1(a), and the lowest state with S,,,=3/2 is always accompa-
nied by M,,=0. These combinations of S, and M, are the
same as what one expects from the noninteracting case. For
N=4, the lowest states with S,,=1 and S,,;=2 are accompa-
nied by M,,,=0 and M =2, respectively, in the whole region
of L. However, in the S,,;=0 subspace, the total angular mo-
mentum of the lowest state changes from M,=2 (for L
<L, to M,=0 (for L=L,), where L. is estimated as ap-
proximately 0.2. This value of L. corresponds to the value at
which L[Ey(S,;=0)—E(S,x=1)] has the maximum in the
lower panel of Fig. 1(b). For N=5, the lowest state within the
Sit=5/2 subspace always has M,,=0; on the other hand,
with increasing L, we have M,=1—0 with L.=1 in the
Siot=1/2 subspace, and M,;=2— 1 with L.=0.4 in the S
=3/2 subspace. The values of M, in larger L for S;,=1/2
and 3/2 are distinct from what is predicted from the free
picture.

Now let us discuss our results in the light of Herring’s
argument.'® Herring showed that the unique ground state of
three spin-1/2 fermions confined in a 1D ring is a spin-
polarized one when the interaction potential “becomes rap-
idly infinite as two fermions approach each other.” He fur-
ther argued that even if the repulsion potential is decreased
from infinity to a large finite value, the ground state remains
to be a fully spin-polarized one. These arguments can be
extended to the case of odd number of fermions.'® In the case
of odd number of fermions, one can show that (i) the fully
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FIG. 2. Possible Young diagrams for N=5. In each figure, the
diagram on the left (right) hand of the mark ® corresponds to the
orbital (spin) part of a wave function. A wave function is antisym-
metrized with respect to a column, and is symmetrized with respect
to a row.

spin-polarized state is one of the ground states, and that (ii)
the lowest energy with S;,;=S,.«— 1 is higher than the lowest
energy with S ;=S Where S, .« is given by N/2. These
statements have been proved via a different method by Ai-
zenman and Lieb.*

Let us take the N=5 case in a 1D ring as an example. If
five particles are distinguishable, the coordinate set of the
particles can be expressed as one point in the five-
dimensional box where the length of each side is L. An ac-
tual eigenfunction can be written as a linear combination of
5!=120 bases in the five-dimensional configuration space.
The four-dimensional hyperplanes on which the coordinates
of any two of the particles coincide, divide the five-
dimensional space into 24 connected regions. Here each re-
gion is composed of bases that are transformed with each
other under cyclic exchanges. For instance, suppose that
P(x;,x5,%3,%4,%5)=p(12345) is a orthonormal basis func-
tion belonging to one of the 24 regions. Then, the other four
functions generated by cyclic exchanges, @(23451),
$(34512), $(45123), and ¢H(51234) also belong to the same
region. In general, the lowest eigenfunction in the orbital part
must be nodeless. However, if the interaction potential be-
comes rapidly infinite as two particles approach each other,
the orbital wave function must vanish on the surface separat-
ing the regions that are connected by two-particle exchanges.
Under this restriction, a wave function which has the same
sign within each region could become the ground-state
eigenfunction for odd-number fermions with spin 1/2.%
Such wave functions are not unique. One is the totally sym-
metric wave function which has the same sign in all the
regions, but the associated spin state is unphysical. Another
choice is the wave function that is antisymmetric with re-
spect to coordinate exchange of any two of the particles.
Since this wave function is totally antisymmetric, the asso-
ciated wave function in the spin part should be totally sym-
metric, leading to the maximum possible total spin S, ..

In general, wave functions in many-electron systems can
be classified by the Young diagrams. For N=5, possible
Young diagrams turn out to be limited to three types of the
diagrams shown in Fig. 2. The total spins of the diagrams in
Figs. 2(a), 2(b), and 2(c) are S,;=5/2, 3/2, and 1/2, respec-
tively. The diagram in Fig. 2(a) corresponds to a direct prod-
uct of the totally antisymmetrized wave function (in the or-
bital part) and the totally symmetrized wave function (in the
spin part), which is one of the ground states as explained in
the preceding paragraph. We find that the character of the
cyclic permutation in Fig. 2(a) is +1, while that in Fig. 2(b)
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is —1. The minus sign in the latter case implies that the wave
function possesses nodal surfaces interior to a region which
is composed of bases with the cyclic order of particles. Thus,
the lowest eigenfunction with S,,;=3/2(=S,,,x—1) necessar-
ily has an energy higher than that with S,,;=5/2(=S,,,) by a
finite amount.

The statements (i) and (ii) should be compared with our
results for N=3 and 5 with L> 1, because a large L yields a
large repulsion at the same position. In fact, our results do
not contradict Herring’s argument.

The consistency with Herring’s argument implies that the
multiple-spin exchange dominantly contributes in our system
with large L. Since the repulsion between electrons is strong,
only the N-cyclic exchange would survive as the multiple-
spin exchanges. In order to confirm this, we diagonalize a
Hamiltonian with only cyclic exchange for each number of
electrons. If, for N=3, the Hamiltonian is H=—(P»;+H.c.),
where Pj;..., denotes the cyclic permutation of electrons on
sites i,j,...,€, then the eigenvalues are E=-2 with
(D]/z,D?,/z):(O, 1) and E=1 with (D]/z,D?,/Z):(Z,O), where
Dy, denotes the number of degeneracies associated with to-
tal spin S, If the Hamiltonian is H=P;,34+H.c. for N=4,
then the eigenvalues are E=-2 with (Dy,D;,D,)=(1,1,0),
E=0 with (Dy,D,,D,)=(0,2,0), and E=2 with
(Dy,D;,D,)=(1,0,1). If the Hamiltonian is H=—(P 35

+H.c.) for N=5, then the eigenvalues are E=-2
with (Dl/z,D3/2,D5/2)=(1,0,1), =-0.618 with
(D112, D312, Ds5p)=(2,2,0), and E=1.618 with

(Dyj,D5,D52)=(2,2,0). These results on degeneracy are
consistent with the results of Fig. 1 for large L in all cases of
number of electrons.

One may ask why the ground state for N=4 is a triplet
state in the whole region of L [see Fig. 1(b)]. For L<1 (the
weak-coupling region), the triplet ground state can be under-
stood as a result of Hund’s rule. Namely, the present problem
can be effectively mapped into a two-electron problem in
two degenerate states, because the other two electrons form a
singlet pair in the lowest state of the band dispersion. The
consequence is that the presence of repulsive interaction be-
tween two electrons makes a triplet state lower in energy
than a singlet state. On the other hand, when one starts from
the strong coupling limit and considers the region with L
>1, one may deal with the Hamiltonian having the four-
cyclic exchange [Eq. (24) with ®=0] and the (small) antifer-
romagnetic exchange between nearest-neighbor spins (i.e.,
the two-spin exchange). Apparently, the perturbation due to
the two-spin exchange seems to stabilize a singlet state, but
this is not true in the present case. With only the four-cyclic
exchange (i.e., an unperturbed Hamiltonian), a singlet state
and a triplet one are degenerate as the ground states, as seen
in the preceding paragraph. With use of a representation in
real space, the singlet state and the triplet one are given by

W§ (S =00 = 5(ITTLLY = [TLID +[LLTTY = [L1T1))
(10)

and
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1
W S= D)= Z (IO =11, an

respectively. The singlet state |\P§)4)(Smt=0)> is nothing but a
direct product of two “diagonal” singlet pairs, not including
nearest-neighbor singlet pairs, i.e., [1,3]®[2,4] where

ij ij
[Ld=TD=[11) (12)
for sites i,j. Meanwhile, for only the antiferromagnetic ex-
change between nearest-neighbor spins, the singlet ground
state is given by

1
W (S =0)) = \E(HTUH [TLD+ LD +[11TD

=211 =211, (13)

Note that this state is equivalent to a state —[1,2]®[3,4]
+[2,3]®[1,4]. It is evident that the state |W)(S,=0)) is
orthogonal to the state |\I’g§(Sm=O)), although both states
are singlet. Thus, the energy of the singlet state |\I’((fg(Stol
=0)) for only the four-cyclic exchange is never affected by
introduction of the two-spin exchange. In contrast, the en-
ergy of the triplet state |\Iff)4)(Swt= 1)) is lowered as a conse-
quence of the first-order perturbation due to the two-spin
exchange. That is why a triplet state is also stabilized in the
region with L> 1.

Next, let us consider whether the long-range part of the
Coulomb interaction influences the nature of the magnetism.
To answer this question, we also study the 1D conventional
Hubbard model with only on-site Coulomb repulsion. Figure
3 shows the lowest energies for each total spin and the en-
ergy differences as a function of U/t, in cases of N=3, 4, and
5. We find that, for each N, the U/t dependence of the energy
differences is very similar to the L dependence of the energy
differences in Fig. 1, although the absolute values in Figs. 3
and 1 are largely different because of the difference in the
energy unit. Thus we can conclude that the long-range part of
the Coulomb interaction hardly influences the nature of the
magnetism. The long-range part would determine whether
the Wigner-crystal state is realized or not.

Thus far, we have kept the continuous space on a ring in
mind, although our actual calculation treats a discretized sys-
tem. Away from a continuous ring (i.e., a quantum ring), we
can also consider a system of the circularly arranged quan-
tum dots. The results in this case, which are given in the
Appendix, are distinctly different from those in a continuous
ring.

IV. FEW ELECTRONS IN A QUANTUM RING
WITH A MAGNETIC FIELD

A magnetic field applied perpendicularly to the ring is
expected to induce a persistent current and spin chirality. The
persistent current is given by
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FIG. 3. (Color online) The lowest energies for each total spin
and the energy differences as a function of U/t in the 1D Hubbard
model. (a) N=3, (b) N=4, (c) N=5.

__ 8E0(§t0t;(D)

where Ey(S,;P) denotes the lowest energy in the presence

of magnetic flux @ in the subspace with total spin S,y,. S, is
chosen so that E(S;o; P) is the lowest among S,,;’s at a fixed
®. The spin chirality can be defined for at least three elec-
trons. Here, we consider the fotal spin chirality in the con-
tinuous space, which is given by
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Xch,tol:fff dx,dx,dx+(T1p3), (15)
X1 <xp<x3

where T153=S(x;)-S(x;) X S(x3), and S(x;) is the spin opera-
tor at x;. (---) denotes the expectation value in the lowest
state at a fixed ®. In the Hamiltonian (5) on a discrete lattice,
we use the following formula:

Xch,tot = 2 Xch(ije;gtot;(p)’ (16)

i<j<t
where xc(ij€; S0 P) is the local spin chirality given by

Xen(ij€;Siop; @) = <W0(5t0t§¢))|si : Sj X S€|W0(S:ot;q))>’
(17)

where [Wy(S,; P)) denotes the lowest state in the presence
of flux ® in the subspace with total spin S, The lattice
points i, j, and € can take the values of the range [1,N,,].
Figures 4, 5, and 6 show the energy spectrum at each total
spin, the persistent current and the total spin chirality for N
=3, 4, and 5, respectively. We note that similar results on the
energy spectra for N=3 and 4 have been obtained in the
previous study.?” In general, the energy spectrum is symmet-
ric about ®=0.5, and both the persistent current and the spin
chirality are antisymmetric about ®=0.5.

First, let us see the results for N=3. For L=0.1, the level
crossing does not occur between the lowest S, =1/2 state
and the lowest S,,,=3/2 state over the whole range of ®. For
L=1 and 10, on the other hand, the level crossing of the
states with different S,,; does occur at a finite value of ®; a
finite magnetic field depolarizes the system.3® With increas-
ing @ from O to 1, the total angular momentum M, and the
total spin S, in the ground state are evolved as (M, S
=(1,1/2)—(2,1/2) for L=0.1; (M,S,)=(0,3/2)
—(1,1/2)—(2,1/2)—(3,3/2) for L=1 and 10. The latter
result is consistent with the evolution obtained in a recent
study by Liu, Bao, and Shi,”> who treated the strong coupling
region (L= 30 in our notation). The feature of level crossing
affects the @ dependence of the persistent current. The am-
plitude of persistent current becomes small with increasing
L. We note that, for L=0.1, a finite amount of persistent
current emerges even at infinitesimal ®.3° This is related to
the fact that M, is nonzero in the ground state. A periodicity
of the persistent current becomes short (®,/3) for a large L.
This behavior, which can be generalized to the ®/N period-
icity for N electrons, has been obtained in previous theoret-
ical studies;'>37 the shortness of periodicity has been ob-
served by an experiment.' We find that the total spin
chirality is (visibly) finite for a certain range of ® depending
on L, and that the finite chirality is almost constant. The
constant values are |Ye ] =0.354 for L=0.1, |Xcniof
=0.431 for L=1, and |x.p o =0.433 for L=10. The total
spin chirality vanishes when the ground state has the maxi-
mum possible total spin (i.e., Si;;=Smax=3/2). In this case,
the local spin chirality also vanishes.

Next, let us observe the results for N=4 and 5. Figures 5
and 6 imply that for N=4 and 5, the state with S;;;=S.x
never becomes the unique ground state at any flux ®. With
increasing ® from O to 1, the set of (M,S,,) in the ground
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FIG. 4. (Color online) The lowest energies (E,) at each total
spin, persistent current (j,) and total spin chirality (Xch o), as a
function of flux (®) in the model (5). N=3.

state is evolved as (M, S,)=(0,1)—(2,0)—(4,1) for N
=4 with L=0.1; (M,Sx)=(0,1)—(1,1)—(2,0)—(3,1)
—(4,1) for N=4 with L=1 and 10; (My,S)=(1,1/2)
—(2,3/2)—(3,3/2)—(4,1/2) for N=5 with L=1. The
persistent current has a jump at several values of ® where
the level crossing occurs in the energy spectra. For N=4 with
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FIG. 5. (Color online) The lowest energies (E;) at each total
spin, persistent current (j,) and total spin chirality (xch o), as a
function of flux (®) in the model (5). N=4.

L=10, the periodicity of persistent current becomes
®,/4.1337 We again observe the constant x.p, o for a certain
range of ®. The constant values are |x. o =0.993 for N
=4 with L=1, and | X =1.00 for N=4 with L=10. For
N=5 with L=1, we have ). =0.585 in the range 0 <P
=0.444, and Xpor=—0.403 in the range 0.444 <P <0.5. In
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FIG. 6. (Color online) The lowest energies (E,) at each total
spin, persistent current (j,) and total spin chirality (Xcn o), as a
function of flux (@) in the model (5). N=5.

contrast to the N=3 case, there are the ranges of @ where
Xchtot (@almost) vanishes in spite of the ground state having
S0t <Smax- For example, in case of N=4 with L=1, we ob-
tain |Xepof =107 in the range 0<®=<0.206, and |Xcp of
< 107" in the range 0.220=<®<0.5. This point will be dis-
cussed later.

The fact that the local spin chirality vanishes for S
=Smax can be proved as follows:** For the fully spin-
polarized state, wave functions |S.;S%,), which have (N
+1)-fold degeneracy, are written by

|Slot = Smax;Sfol = N/2 - m> o (St_ol)m|Slot = Smax;Sfol = Smax>’
(18)

where S, denotes the summation of the spin-lowering op-

erator over all lattice points, and m=0,1,...,N. On the other
hand, the operator §;-§;XS§, with three different lattice
points (i # j # €) can be expressed as

S;-8; X 8¢="5;(8;S; = S;57) + S7(S;S¢ = S;50)
+8;(S;57 - S7S)
= J1(57S] = 575718} + (5787 - S75D)S;
+ (8787 - S;80)S;]. (19)
By using this expression, we can check that
[Se:Si-S; X 8¢]=0
and

S; Sj X S€|Stol = Smax;Sfot = Smax> =0.

From these facts, we have
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S;+8; X 8lSior = Smaxs i = NI2 — m)
% 8, 8 X S (S|S0 = S Siot = Sua)
= (S8 X S lSi0= Smai Siot = S
=0. (20)

Thus, we have proved that at any @, y,(ij€; Spmax; @) =0 for
all i,j,€. We note that this result is independent of the spatial
dimension. In fact, the local spin chirality vanishes for the
ground state with S,,;=S,.« in the U— oo Hubbard model
with magnetic flux perpendicular to a square lattice.*”

Next, let us derive the effective Hamiltonian in the strong
coupling limit in the presence of magnetic field.?®*! For N
=3, a clockwise-cyclic permutation of the particles on sites
(1,2,3) yields

P13P12=JT+S1'Sz+S2'S3+S3'Sl—2iSI'SzXS?,.
(21)

We have used P;;=2S;-S;+1/2. The coefficient in this case
is given by J exp(i27®). A counterclockwise-cyclic permu-
tation corresponds to the complex conjugate of Eq. (21),
which yields

PPi3=5+S,-8,+8,-S3+85-8,+2iS, -5, X S;.
(22)

The coefficient in this case is given by Jexp(—i27®P). By
summing Egs. (21) and (22), we have

Heff= 2J COS(ZW(I))(i + Sl . Sz +S2 . S3 +S3 . Sl)
+4J sm(27T(I))Sl . Sz X S3. (23)

The exchange constant J is taken to be negative so that it
favors ferromagnetism for ®=0.'7 The second term is pre-
cisely the contribution of the spin chirality. From this Hamil-
tonian, we can naturally understand the vanishing spin
chirality at ®=0 and 0.5. All the eigenvalues in the Hamil-
tonian (23) are shown in Fig. 7. We confirm that the ®
dependence of the lowest energy for L=10 (shown in the
bottom figure of Fig. 4) is reproduced by the effective
Hamiltonian (23). In particular, the value of & at which the
depolarization appears is given by 0.166 (~1/6). This means
that the depolarization is not just determined by the change
in the sign of the exchange interaction, and that the spin-
chirality term also contributes the depolarization.
Similarly, for N=4, we obtain

[ ===~ Stot=1/2
—— S =32

Energy

6
4
2
ol
-2
-4
0 0.2 04 06 08 1
D

FIG. 7. (Color online) The ® dependence of all the eigenvalues
in the effective Hamiltonian (23) with J=—1 for N=3.
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FIG. 8. (Color online) The ® dependence of all the eigenvalues
in the effective Hamiltonian (24) with J=-1 for N=4.

Hegr=—J exp(i2m®) (28, - S, +1)(25, - S5+ 3)
X (253 Syt %) +H.c.
=—JcosQmD)[1+8,-5,+8,-8;+855- S,
+8,-81+8,-8;3+8,-S,-4(S;-55)(S,- S4)
+4(S1 - 82)(S5-84) +4(S5-53)(Sy- Sl)]
— 27 sin(2mD)(S, - S5 X S3+8,- 85 X S,
+8,-83X S, +8,-5, X 8,). (24)

As in the case of N=3, we encounter the spin-chirality term
in the effective Hamiltonian. Again, the contribution of the
spin chirality vanishes at ®=0 and 0.5. In Fig. 8, we show
all the eigenvalues in the effective Hamiltonian (24). For
®=0, the S,,,=0 state and the S,,=1 state are degenerate in
the lowest energy, and the S,,,=0 state and the S,,,=2 state
are degenerate in the highest energy; these degeneracies are
never lifted by the presence of ®. The results in the effective
Hamiltonian reproduce the ® dependence of the lowest en-
ergy and its (near) degeneracy for L=10, which are shown in
the bottom figure of Fig. 5.

The results on the spin chirality for N=4 (Fig. 5) show
that there are the values of @ where x.p, o (almost) vanishes
even when the total spin of the lowest state is less than S,,,4.
In this case, the local spin chirality has a small but finite
value. To see it, we show the local spin chirality given by
Xen(i=1,7,€:8,:P) in Fig. 9 (N=3 with L=1) and Fig. 10
(N=4 with L=1). Note that the local spin chirality is anti-
symmetric with respect to exchange of j and € [see Eq. (17)].
For N=3, the local spin chirality has a peak at (j—1,€—1)
=(20,10). This means that the spin chirality tends to take a
large value among three points separated by the same dis-

FIG. 9. (Color online) Local spin chirality given by x. (i
=1,j,0; Su=1/2; ®=0.3) for N=3, L=1, N,,=30, and 6=103.
The total chirality Xcp tor 1S Xch or=—0.431.
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FIG. 10. (Color online) Local spin chirality given by x., (i
=1,j,€:85:®). N=4, L=1, N,,=30, and 6=107. (Top) Siu=1,
®=0.1, and X o=—148X107; (middle) Sy,,=1, ®=0.21, and
Xeh.ior=0.993; (bottom) S, =0, ®=0.3, and |x.p o <107"°.

tance (~L/3) on a ring. The tendency is plausible because
three electrons are likely to be distributed with the same
distance separation (~L/3). For N=4, the situation is more
complicated, and a “spin-chirality density wave” emerges de-
pending on the values of ®, as seen in Fig. 10. When the
total spin chirality is finite (in case of the middle figure in
Fig. 10), we find that the local spin chirality has the same
sign in the region with j<{ (or j>{). The distribution of
local spin chirality has three peaks at (j—1,¢€—1)=(7,14),
(7,23), and (16,23). This distribution almost corresponds to
the electron distribution (the three-point charge correlation)
which shows that four electrons tend to be distributed with
the same distance separation (~L/4). In contrast, when the
total spin chirality (almost) vanishes (in cases of the top and
bottom figures in Fig. 10), the local spin chirality changes its
sign in the region with j<<€. The local spin chirality takes
the maximum value at (j—1,€—1)=(10,20). This indicates
that the spin chirality tends to take a large value among three
points separated by the same distance (~L/3), which is in-
commensurate with the four-electron distribution. As the di-
ameter of the ring becomes large, the tendency of incommen-
surability weakens and the spin chirality commensurate with
the electron distribution becomes dominant. In fact, for L
=10, the region of ® with large values of the total spin
chirality is extended compared with the case of L=1, as seen
in Fig. 5.

We have revealed that the spin chirality can be present in
quantum rings with a finite magnetic field. The spin chirality
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has some applicability. The degeneracy of states with Sy,
< Smax at zero magnetic field is lifted by the presence of both
the local spin chirality and the Zeeman term, namely, by
application of a perpendicular magnetic field. (Note that we
have not included the Zeeman term in this study because the
effect is trivial.) This can be utilized for the splitting between
the encoded basis states of the qubit in the field of quantum
computation.! Another applicability is to utilize quantum
rings as controllable generators with spin chirality. In fact, it
has been discussed that the anomalous Hall effect in a frus-
trated ferromagnet is explainable by the presence of the spin
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0 :
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L T Sm=32
] 3 ]
3 '
| 1r 1
)
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mc-l L L L L
= 102 10" 10° 10' 10> 10°
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FIG. 11. (Color online) The lowest energies for each total spin
and the energy differences as a function of U/t in the 1D Hubbard
model with N=N,,. (a) N=3, (b) N=4, (c) N=5.
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chirality.?® If one connects a quantum ring in a perpendicular
magnetic field to several leads, features might appear in
transport properties.

Finally, we estimate the value of the magnetic field which
is necessary to thread the unit flux quantum ®; in a quantum
ring. The magnetic field is given by

RO )

B :_:—,
07 L*(4m)

where r and L are the radius and the circumference of the
ring, respectively. The unit flux quantum ®y=%/e amounts to
4.14X 10° Tnm?. For example, the case of L=30 corre-
sponds to about 300 nm (i.e., the radius 48 nm) in GaAs. In
this case, we have By=0.58 T, which is a realistic value in
the present status.

V. SUMMARY

We have performed a systematic study of ground-state
properties of quantum rings with a few electrons interacting
in the form of 1/r Coulomb repulsion, using exact diagonal-
ization. For three electrons, the ferromagnetic ground state is
uniquely realized when the diameter of the ring is suffi-
ciently large. In contrast, for four and five electrons, the
unique ferromagnetic ground state is never realized by the
change of the diameter. The results in large rings can be
understood in terms of multiple-spin exchanges. When a per-
pendicular magnetic field is applied to the ring, the persistent
current occurs and the spin chirality is finite for a certain
value of the flux. The finite spin chirality can also be under-
stood as a result of multiple-spin exchanges in the strong
coupling regime.
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APPENDIX: CIRCULARLY ARRANGED QUANTUM DOTS

The confinement potential can vary from parabolic (quan-
tum dot) to ringlike (quantum ring) with use of lithographic
techniques.5~'? In addition, a ring structure can also be fab-
ricated by arraying quantum dots circularly. Although there
is a potential energy between the dots, electrons can transfer
by tunneling from one dot to another dot. In this case, one
may model the array of quantum dots with the tight-binding
Hamiltonian. For example, the array of three quantum dots is
modeled by the three-site Hubbard model with three elec-
trons. However, the validity of the use of a tight-binding
Hamiltonian depends on the size dots.!> If the size of dots is
not too small, the tight-binding description may be valid,
because electrons tend to stay within a dot. For small dots,
on the other hand, the tight-binding description may not be
sufficiently good, and the description in the continuous space
would be valid. Here, it is worth clarifying the difference
between the continuous model (which has been considered in
the main text) and the tight-binding Hamiltonian (i.e., the
N-site Hubbard model with N electrons). The latter corre-
sponds to the half-filled Hubbard model with a few number
of electrons (or sites). Figure 11 shows the lowest energies
for each total spin and the energy differences as a function of
U/t in the 1D Hubbard model with N=N,,=3, 4, and 5. It is
found that the relation Ey(S,,) <Ey(S,+1) always holds for
0<U/t<e. We note that this relation is the same as the
consequence of the Lieb-Mattis theorem,*> although the
theorem 1is applied to the case of open boundary conditions.
For a large but not infinite U/¢, the Hubbard model at half-
filling reduces to the Heisenberg model with antiferromag-
netic exchange interaction. For three electrons, the two-spin
exchange contributes in the order 0(t2/ U), while the
multiple-spin exchange does in higher order [e.g., O(£*/U?)
in the three-cyclic exchange]. This means that the contribu-
tion of multiple-spin exchange is very small for a large U/t,
leading to the relation Ey(So) < Eo(Sioi+1)-
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