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We present a model for the radius dependence of the growth velocity of Si nanowires synthesized via the
vapor-liquid-solid mechanism. By considering the interplay of the Si incorporation and crystallization rate at
steady state conditions we show that the radius dependence of the growth velocity in general depends on the
derivatives of the incorporation and crystallization velocity with respect to the supersaturation. Taking this into
account, the apparently contradictory experimental observations regarding the radius dependence of the growth
velocity can be reconciled and explained consistently.
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INTRODUCTION

Despite the recent progress made in semiconductor nano-
wire research1–6 the vapor-liquid-solid �VLS� growth mecha-
nism, by which most of the nanowires are synthesized today,
is not yet fully understood. In particular, one technologically
important issue, the diameter dependence of the nanowire
growth velocity, has not been satisfactorily addressed so far.
In this paper a thermodynamic model dealing mainly with
the diameter dependence of the nanowire growth velocity is
presented. On the basis of this model other important effects
like the correlation between pressure dependence and diam-
eter dependence of the growth velocity are also discussed.

One issue that is intimately connected with the diameter
dependence of the growth velocity is the question of the
rate-determining step of the VLS growth mechanism. The
question of the rate-determining step is a very fundamental
one and essential in understanding the VLS mechanism. The
VLS mechanism is schematically depicted in Fig. 1�a� exem-
plarily for the chemical vapor deposition of Si nanowires. In
this case the VLS mechanism can be divided into three main
steps �see Fig. 1�a��:

�i� the incorporation step �comprising the adsorption and
cracking of the Si precursor at the surface of the liquid
metal-Si alloy droplet, leading to a supply of Si at a rate �in
�mol/s��;

�ii� the diffusion step �describing the diffusion of Si
through the droplet�;

�iii� the crystallization step �characterizing the growth of
Si nanowire at the liquid-solid interface, proceeding at a rate
�cr �mol/s��.

Especially in the 1970s several authors7–9 discussed
which of these three steps is rate determining for VLS
growth, and just recently this topic was brought up again.10

The outcome of this discussion was that the diffusion step
presumably does not affect the growth rate, since Si diffusion
through a microscopic liquid droplet is too fast as to be rate
determining.11 Mainly in view of the pressure dependence of
the growth velocity �see, e.g., Refs. 7, 8, 12, and 13�,
Bootsma and Gassen8 argued that the incorporation step
must be the rate-determining one. In contrast to this, based
on the dependence of growth velocity on the crystallographic
orientation of the wires, Givargizov11 argued that the crystal-

lization step determines the growth rate. The question, how-
ever, of whether the assumption of a single rate-determining
step is valid at all has not been raised. In view of the argu-
ments in favor of step �i� or �iii�, we suggest that the assump-
tion of a single rate-determining steps has to be rejected.
Instead, a model of the VLS mechanism has to consider the
interplay of both the incorporation and the crystallization
steps in order to account for the different experimentally ob-
served effects. Deriving such a model and investigating its
implications for the diameter dependences of the growth ve-
locity and the supersaturation of the droplet is the aim of this
paper.

DEFINITIONS

To start with, several chemical potentials �CPs� and
chemical potential �CP� differences are to be defined �see
Fig. 1�b��. Although not indicated explicitly in the following
discussion, all CPs are meant to be CPs of Si. The CP of the
substrate, �0

s , fixed by the boundary conditions, is taken as a
reference point. We assume that the incorporation rate
�in�p ,�vl� depends on both the pressure p and the CP differ-
ence between vapor and liquid, �vl=�v−�l. The pressure
dependence is related to the fact that statistically more pre-
cursor gas molecules will hit the droplet surface when the
absolute value of the pressure is increased, whereas the �vl

dependence is related to the probability that the precursor gas

FIG. 1. �a� Schematic of the VLS mechanism: �i� incorporation,
�ii� diffusion, �iii� crystallization. �b� Chemical potentials �CPs�:
�0

s =CP of the Si substrate, �v=CP of the Si vapor, �s=CP of the
Si nanowire �NW�, �vl=CP difference between vapor and liquid,
�ls=CP difference between liquid and Si NW, �=CP difference
between vapor and Si NW.
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molecules will stick on the droplet surface and will be
cracked into their constituents. As shown in Fig. 1�b�, �, the
CP difference between vapor and nanowire, can be expressed
as �=�v−�s=�vl+�ls. The crystallization rate �cr��ls� is as-
sumed to depend on the droplet supersaturation �ls=�l−�s,
i.e., the CP difference between liquid, �l, and nanowire, �s.
Due to the surface contribution to the Gibbs free energy, the
CP of the nanowire becomes greater than the CP of the sub-
strate, �0

s . This is the so-called Gibbs-Thomson effect. Keep-
ing in mind that �s was defined with �0

s as its reference point
�see Fig. 1�b��, this gives

�s =
Cs

r
, �1�

where Cs is defined as Cs=2�s�s, with �s and �s being the
molar volume and the surface tension of silicon, respectively.
The Gibbs-Thomson effect causes the growth velocity to be
diameter dependent.

EXPERIMENTAL RESULTS

The diameter dependence of the growth velocity of silicon
nanowires has been investigated by several groups.7,9,10,14–16

In Fig. 2 the experimental results of Givargizov7 �Figs. 2�a�
and 2�b��, Weyher9 �Fig. 2�c�� and Nebol’sin et al.14 �Fig.
2�d�� are reproduced. All data shown in Fig. 2 have been
obtained in silicon wire growth experiments performed at
high temperatures around 1000 °C using SiCl4 as precursor
gas.

Three important experimental results, which we now want
to address one, by one can be deduced from the collection of
data sets shown in Fig. 2.

The first and maybe most important result is that opposi-
tional diameter dependencies can be observed �compare
Figs. 2�a� and 2�b� with Figs. 2�c� and 2�d��. In Figs. 2�a�
and 2�b� the results of Givargizov7 can be seen. They show
an increase of the growth velocity with increasing diameter
using different catalyst materials �Au in Fig. 2�a�, Pt, Ni, and
Pd in Fig. 2�b��. Givargizov7 explained the observed increase
of the growth velocity with increasing diameter by a de-
crease of �s according to Eq. �1�, leading to an increase of
the supersaturation �ls=�l−�s of the droplet with respect to
the nanowire. Since the supersaturation is the driving force
of the crystallization process, an increase of the supersatura-
tion should cause an increase of the growth velocity. In con-
trast to this, Weyher9 using Pt �see Fig. 2�c�� and Nebol’sin et
al.14 using Cu as catalyst �see Fig. 2�d�� observed the oppo-
site diameter dependence—a decrease of the growth velocity
with increasing diameter. This surprising outcome is still in
want of a sound explanation. In any case, it demonstrates
that the diameter dependence of the growth velocity is a
more complex phenomenon than usually expected. Since dif-
ferent catalysts have been used in Fig. 2 one is tempted to
explain the differences in the observed behavior by the dif-
ferences in the catalyst material. However, this does not pro-
vide a satisfactory explanation as the Pt results of Fig. 2�b�
show the opposite behavior to the Pt results of Fig. 2�c�.
Thus differences in the catalyst cannot account for the effect.

The second important outcome of the data shown in Fig. 2
is that a correlation between the pressure dependence and the

FIG. 2. Diameter dependence of the growth velocity; all experiments performed with SiCl4 as precursor. �a� Growth velocity v as a
function of the wire diameter d; SiCl4 pressure increases from �1� to �4�; after Ref. 7. �b� v as a function of d; 1130 °C; SiCl4 /H2=6.7%;
after Ref. 7. �c� v as a function of d; temperature 1000–1100 °C; �1� SiCl4 :H2=0.9%, �2� 0.95%; after Ref. 9. �d� v as a function of d;
temperature �1� 1027, �2� 1047, �3� 1067, �4� 1087, and �5� 1107 °C; after Ref. 14.
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diameter dependence seems to exist. The data sets of Fig.
2�a� show an increase of the growth velocity with increasing
pressure �in Fig. 2 the pressure is increased from data set 1 to
4�. At the same time an increase of the growth velocity with
increasing diameter can be seen in Fig. 2�a�. So the growth
velocity can be augmented either by a pressure or by a di-
ameter increase. This is the usual and expected behavior and
we refer to it in the following as the normal behavior. The
data sets of Fig. 2�c�, on the other hand, show the opposite
characteristic. Here the growth velocity decreases if either
the pressure or the radius is increased �in Fig. 2�c� the pres-
sure increases from data set 1 to 2�. A decrease of the growth
velocity with increasing pressure is somehow counterintui-
tive and we therefore refer to it as the anomalous behavior. It
is important to note that in both cases, the normal one of Fig.
2�a� and the anomalous one of Fig. 2�c�, a pressure increase
has the same effect on the growth velocity as a diameter
increase. Thus the diameter and pressure dependence seem to
be correlated.

We have not discussed Fig. 2�d� yet, wherein the diameter
dependence is shown for various growth temperatures. One
can see in Fig. 2�d� that the growth velocity decreases as the
growth temperature is increased, which is as odd as the pres-
sure dependence shown in Fig. 2�c�. Since increasing the
temperature, like increasing the pressure, augments the sup-
ply of silicon �due to the higher precursor gas cracking effi-
ciency�, the data in Fig. 2�d� support the validity of the
anomalous pressure dependence shown in Fig. 2�c�. To test
whether an anomalous pressure dependence indeed coincides
with an anomalous temperature dependence would be a very
interesting and worthwhile experiment.

The third outcome of Fig. 2 is that a maximum of the
growth velocity seems to be present at a radius of approxi-
mately 10 �m as indicated for some of the graphs of Figs.
2�c� and 2�d�. It is interesting to note that the assumption of
a maximum of the growth velocity is not in contradiction to
the behavior shown in Figs. 2�a� and 2�b�, since here the
growth velocity has only been determined for radii smaller
than �5 �m. To summarize, from the data presented in Fig.
2 three non trivial results can be derived: �1� opposite diam-
eter dependencies can be found in different VLS silicon
nanowire growth experiments, �2� a correlation between the
radius and the pressure dependence seems to exist, and �3�
the growth velocity, at least in some cases, exhibits a maxi-
mum.

THEORY

The first assumption of our model is that growth proceeds
via the VLS mechnism and that silicon is supplied directly
from the gas phase to the droplet. Hence the surface diffu-
sion of silicon is nelected, which is a valid assumption at the
extremely high growth velocities of Fig. 2. Furthermore, we
assume that the diffusion of silicon through the droplet is
sufficiently fast so that the diffusion process can be neglected
and that we therefore can concentrate on the interplay of the
crystallization and incorporation processes. Clearly, the in-
corporation rate �in�p ,�vl� of Si atoms is proportional to the
surface area of the droplet, which in turn is proportional to

the cross section �r2 of the nanowire. Thus by dividing
�in�p ,�vl� by �r2 and multiplying with �s we can define the
incorporation velocity

��p,�vl� = �in�p,�vl�
�s

�r2 , �2�

which is taken to be radius independent for constant �vl and
constant pressure. In a similar way, we can define the crys-
tallization velocity

	��ls� = �cr��ls�
�s

�r2 . �3�

Also 	��ls� is assumed to be radius independent for constant
�ls. It is obvious that under steady state conditions the incor-
poration rate has to equal the crystallization rate. By using
�vl=�−�ls we obtain

�cr��ls� = �in��p,� − �ls���ls=
�. �4�

This condition defines the steady state supersaturation 
�
and the steady state growth velocity v=	�
��=��p ,�
−
��.

For simplicity we assume that the crystallization velocity
	��ls� is a monotonically increasing function of �ls. Simi-
larly, we assume that the incorporation velocity is a mono-
tonically increasing function of �vl, i.e., the CP difference
between vapor and liquid. Using the identity −�vl=�ls−�,
we can plot both velocities in one graph as functions of the
supersaturation �ls, where, due to the minus sign, the �
curve is flipped with respect to the vertical axis. This is sche-
matically shown in Fig. 3 where the incorporation velocity
��p ,�ls−�� and the crystallization velocity 	��ls� are dis-
played as functions of the supersaturation �ls.

Furthermore we assume that the incorporation rate be-
comes zero if the CP difference between vapor and liquid
becomes zero. This defines the x-axis intercept �ls=� of the
� curve, assuming that ���ls=��=0 is equivalent to neglect-
ing the CP difference caused by the cracking of the precursor
molecule. Including the energetics of the chemical reaction,
however, will only shift the x-axis intercept by an additional
constant term, which does not affect the further analysis.

FIG. 3. Schematic of the incorporation velocity ��p ,�ls−�� and
the crystallization velocity 	��ls� as a function of the droplet su-
persaturation nanowire �ls; ��p ,�ls−�� is given for two different
radii, r0 �gray curve� and r.
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In a steady state situation ��p ,�ls−�� has to equal 	��ls�.
The intersection point of the gray � curve in Fig. 3 with the
	 curve thus defines the values of the steady state supersatu-
ration 
�0 and of the steady state growth velocity v0 for this
specific radius r0.

Though at an early stage of the analysis, we can already
figure out what caused the experimentally observed correla-
tion between the pressure and the radius dependence �see
Figs. 2�a� and 2�c��. Considering the x-axis intercept of the �
curve given by �v−Cs /r one can see that both a pressure
increase and a radius increase will cause an increase of the
x-axis intercept. In both cases the � curve will be shifted to
the right, effecting similar changes of steady state growth
velocity. Therefore we can expect the pressure dependence to
be correlated with the diameter dependence.

Such a correlation between the pressure and the radius
dependence is not only nontrivial, it might also be significant
from a technical point of view. In order to accurately adjust
the lengths of Si nanowires �having a certain diameter varia-
tion� it is helpful if the diameter dependence of the growth
velocity is as small as possible. Due to the correlation be-
tween the pressure and the diameter dependence, the regime
where the diameter dependence is minimal should coincide
with the regime where the pressure dependence �for the di-
ameter in question� is minimal. Thus, by choosing the proper
growth pressure, the length variation of the nanowires could
be minimized.

Let us come back to Fig. 3 and consider a situation where
the radius is decreased from r0 to r. This will cause the �
curve to be shifted to smaller �ls values by an amount ��
=Cs /r0−Cs /r. If �� is sufficiently small, i.e., considering
large radii, we can locally expand ��p ,�ls−�� and 	��ls� in
a Taylor series expansion to first order around the intersec-
tion point at �ls=
�0:

	��ls� = 	0 + 	1��ls − 
�0� ,

��p,�ls − �� = �0 + �1���ls − 
�0� − �� − �0�� , �5�

where �1= ��� /��ls��ls=
�0
and 	1= ��	 /��ls��ls=
�0

are the
slopes at �ls=
�0. Using the steady state conditions ��ls

=
�, 	0=�0=v0, and 	�
��=��p ,
�−��� we can solve
for 
�. If additionally r0=� is taken as the starting point of
the expansion we can use �−�0=−Cs /r and 
�0=�0

l , and we
end up with the following expressions for the steady state
supersaturation:


� = �0
l +

�1

	1 − �1

2�s�s

r
�6�

and the steady state growth velocity

v = v0 +
	1�1

	1 − �1

2�s�s

r
. �7�

One can see that as a consequence of the Gibbs-Thomson
effect both the steady state supersaturation and the steady
state growth velocity become radius dependent. But what is
more important is that both magnitude and sign of the radius-
dependent terms in Eqs. �6� and �7� depend on the sign and
magnitude of the slopes �1 and 	1 of the � and 	 curves,

respectively. Thus by considering the interplay between the
incorporation and the crystallization steps we could derive an
expression for the steady state growth velocity which allows
for both types of diameter dependencies—an increase or a
decrease of the growth velocity with increasing radius. This
is the most important outcome of our model.

DISCUSSION

With respect to the values of �1 and 	1, different cases
have to be considered.

Different limits

Let us first discuss the limits mentioned in the beginning,
where either the incorporation step or the crystallization step
determines the growth velocity.

�1� A situation where the incorporation step is rate deter-
mining corresponds to the limit 	1→�. In this limit, the
steady state growth velocity becomes

v = v0 + �1
2�s�s

r
. �8�

Considering the usual situation where the incorporation rate
increases with increasing pressure, i.e., �10, an increase of
the growth velocity with increasing radius can be expected.

�2� In the other limit, �1→�, corresponding to a situation
where the crystallization step is rate determining, the steady
state supersaturation becomes


� = �0
l −

2�s�s

r
. �9�

Note that this equation agrees with the one derived by
Givargizov7 under the assumption that the crystallization
step is rate determining. So the outcome of our model is
consistent with his considerations. This, on the other hand,
shows that the formula of Givargizov is not generally valid
and can only be applied in the limit where the crystallization
step is rate determining. This is of crucial importance as the
formula of Givargizov is often applied without discussing its
limited range of validity. In this limit ��1→��, the steady
state growth velocity is given by

v = v0 − 	1
2�s�s

r
, �10�

which, supposing 	1�0, signifies a velocity increase with
increasing radius. Thus in both limits discussed above, as-
suming �10 and 	1�0, an increase of the growth velocity
with increasing radius is expected. So a discussion on which
step is the rate-determining one cannot account for the com-
plex behavior shown in Fig. 2.

�3� Our model might also be applied to the case where the
incorporation rate is independent of the supersaturation, i.e.,
�1→0. As pointed out by Kodambaka et al.10 this might be
the cause for the radius independence of the growth velocity
they observed in their experiments using disilane as precur-
sor at very low pressures �10−8–10−5 Torr�. One can see
from Eq. �7� that the radius dependence of the growth veloc-
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ity indeed vanishes, if the incorporation rate is taken to be
independent of the supersaturation ��1→0�.

Signs of �1: Different cases

According to Eq �7�, the nature of the diameter depen-
dence depends on the signs of �1 and 	1. By introducing the
factor

� �
	1�1

	1 − �1
�11�

Eq. �7� can be written as

v = v0 + �
2�s�s

r
. �12�

If we assume that the crystallization velocity 	 is a mono-
tonic function with positive slope 	1, we have to distinguish
two cases.

�1� The first case applies to �10, for which � becomes
negative. According to Eq. �12� the steady growth velocity
increases with increasing radius. This would correspond to
the experimentally observed behavior presented in Figs. 2�a�
and 2�b�.

�2� In the second case, 	1��1�0, � is positive. Thus
according to Eq. �12� the growth velocity would decrease
with increasing radius, in accordance with the data of
Weyher9 and Nebol’sin et al.14 presented in Figs. 2�c� and
2�d�.

So the character of the radius dependence changes if the
incorporation velocity changes its sign. Such a sign change is
possible if the incorporation velocity � exhibits a maximum,
a scenario which we now want to consider in more detail.

Maximum of the growth velocity

The third experimental finding was that some of the data
sets displayed in Figs. 2�c� and 2�d� seem to show a maxi-
mum of the growth velocity. Such a maximum of the growth
velocity can be described in terms of our model if we assume
as a hypothesis that also the incorporation velocity ��p ,�ls

−�� exhibits a maximum. Supposing that this maximum of
the � curve is sufficiently smooth so that it can be approxi-
mated in the vicinity of the maximum by a parabola, and
supposing that a linear approximation of the 	 curve is suf-
ficiently accurate in the vicinity of the intersection point

�0, then the following expression for the steady state
growth velocity v can be derived:

v�r� = v0 +
	1

2�2
�	1 + 2�2	Cs

r0
−

Cs

r



−�	1
2 + 4�2	1	Cs

r0
−

Cs

r

� , �13�

with �2�=�2� /���ls�2��ls=
�0
being the curvature of the �

curve, and r0 and v0 being the radius and the growth velocity
of the maximum.

In Fig. 4, the function of Eq. �13� is fitted to data set 2 of
Fig. 2�c� by using the values of r0, v0, �s,17 and �s as input

and 	1 and �2 as fit parameters �see the caption of Fig. 4�. As
shown in Fig. 4 the calculated steady state growth velocity
shows good agreement with experiment. Only for radii
smaller than r0 does the calculated velocity curve show a
sharp decrease and does not properly reproduce the experi-
mental data. This is because in deriving Eq. �13�, we as-
sumed that we can approximate the � curve in the vicinity of
its maximum by a parabola. However, due to the 1/r depen-
dence of the supersaturation, this approximation becomes in-
valid if the radius is considerably smaller than r0. This de-
creased validity of Eq. �13� is indicated in Fig. 4 by the
fading out of the curve.

Finally, we would like to remark that our results cannot be
directly applied to growth experiments where the Si supply
itself is strongly radius dependent, such as, for example, in
the case of the molecular beam epitaxy,18,19 or the metal-
organic vapor phase epitaxy of nanowires.20

CONCLUSION

In conclusion, considering the interplay of the incorpora-
tion step at the catalyst surface and the crystallization step,
we derived a model for the radius dependence of the steady
state growth velocity v. It is found that the radius depen-
dence of v depends on the derivatives of the incorporation
and crystallization velocities with respect to the supersatura-
tion �ls, which explains apparently contradictory experimen-
tal observations. Furthermore, our model explains the origin
for the experimentally observed correlation between the ra-
dius dependence and the pressure dependence. Several limits
of our model were discussed. Finally, by assuming a maxi-
mum of the incorporation velocity, we could derive an ana-
lytical expression for v, which, if fitted to the experimental
data, shows good agreement.
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FIG. 4. Data set 2 of Fig. 2�c� after Weyher �Ref. 9� and
calculated fit using Eq. �13� and the following parameters:
Cs=30 J mol−1 �m, r0=3 �m, v0=615 �m h−1,
	1=33.6 �m h−1 mol J−1, �2=−0.88 �m h−1 mol2 J−2.
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