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The exact quantum dynamics of the reduced density matrix of two coupled spin qubits in a quantum
Heisenberg XY spin star environment in the thermodynamic limit at arbitrarily finite temperatures is obtained
using an operator technique. In this approach, the transformed Hamiltonian becomes effectively Jaynes-
Cumming-like and thus the analysis is also relevant to cavity quantum electrodynamics. This special operator
technique is mathematically simple and physically clear, and allows us to treat systems and environments that
could all be strongly coupled mutually and internally. To study their entanglement evolution, the concurrence
of the reduced density matrix of the two coupled central spins is also obtained exactly. It is shown that the
dynamics of the entanglement depends on the initial state of the system and the coupling strength between the
two coupled central spins, the thermal temperature of the spin environment, and the interaction between the
constituents of the spin environment. We also investigate the effect of detuning, which in our model can be
controlled by the strength of a locally applied external magnetic field. It is found that the detuning has a
significant effect on the entanglement generation between the two-spin qubits.
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I. INTRODUCTION

One of the most promising candidates for quantum com-
putation is spin systems1–9 due to their long decoherence and
relaxation time. Combined with nanostructure technology,
they have the potential to scale up to large systems. Just as
other quantum systems, spin systems are inevitably influ-
enced by their environment, especially the spin environment.
As a result, decoherence due to the presence of the environ-
ment will cause the transition of a system from pure quantum
states to mixed ones. The decoherent behavior of a single
spin or several spins interacting with a spin bath has attracted
much attention in recent years.10–13 The interaction in such a
spin bath system often leads to strong non-Markovian behav-
ior. The usual Markovian quantum master equations, which
are widely used in the area of atomic physics and quantum
optics, may fail for many spin bath models. Therefore, it
becomes more and more important to develop methods that
are capable of going beyond the Markovian approxi-
mation.14–16

Entanglement has been recognized as one of the most
amazing aspects of quantum mechanics. It has been consid-
ered as important resources for applications in quantum com-
munication and information processing, such as quantum
teleportation,17 quantum cryptography,18 quantum dense
coding,19 and telecloning.20 It is also believed to be one of
the features that make quantum computers more powerful
than classical ones. For spin systems, much attention has
been dedicated to the problem of thermal entanglement,21–23

i.e., to quantify entanglement arising in spin chains at ther-
mal equilibrium with an environment or a reservoir. In this
approach, a thermal distribution of the system energy levels
is determined by the environment temperature, but the de-
tailed interaction between the system and environment and
the evolution of the system toward the thermal equilibrium
are explicitly ignored.

A quantum system exposed to environmental modes is
described by the reduced density matrix when the environ-
ment modes are traced over. The time evolution of the re-
duced density matrix is usually very difficulty to obtain in
the case of the non-Markovian process. Recently, the dynam-
ics of the reduced density matrix for one-, two-, and three-
spin-qubit systems in a spin bath described by the transverse
Ising model has been analyzed without making the Markov-
ian approximation, but using a perturbative expansion
method24 or a mean-field approximation.25,26 The interaction
between the system and the spin bath for these cases was
assumed to be of Ising-type. It has also been reported re-
cently that the exact reduced dynamics and for one- and two-
spin-qubit systems in a spin-star environment27 has been de-
rived and analyzed.14,15 There, the interaction between the
system and environment was assumed to be of a Heisenberg
XY interaction.

In this paper, we study a two-spin-qubit system in a spin
star configuration, similar to the case studied in Ref. 16.
There are, however, several important differences between
our model and that of Ref. 16. In Ref. 16, the interaction
between the two-spin qubits and the interaction between the
constituents of the spin environment are neglected, i.e., no
internal dynamics for both the spin qubit system and the spin
environment is considered. In addition, the spin environment
is assumed to be initially in an unpolarized infinite tempera-
ture state. As a result, no dependence of the environment
temperature on the dynamics and entanglement is present. It
is under these conditions that the “exact” dynamics is re-
ported in Ref. 16. Neglecting the direct interaction among
the constituents in the environment and considering only the
infinite temperature initial state may not be proper in dealing
with spin baths. In this paper, we investigate a more general
case. Using a novel operator technique, we present an exact
calculation of the dynamics of the reduced density matrix of
two coupled spins interacting with a thermal spin bath at
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finite temperatures in the thermodynamic limit. In our model,
the interaction between the constituents of the spin environ-
ment, the interaction between the two-spin qubits, and the
interaction between the the spin-qubit system and the spin
environment are all of the Heisenberg XY type and can all be
taken into account simultaneously. In addition, we include
also the Zeeman coupling between the spin qubits and a
locally applied external magnetic field. To quantify quantum
entanglement dynamics of the two coupled spins under the
influence of the spin bath at arbitrarily finite temperatures in
the thermodynamics limit, we calculate the exact time evo-
lution of their concurrence. Our model involves the Heisen-
berg XY coupling, which has extensive applications for vari-
ous quantum information processing proposals.28–35 In
addition, the transformed Hamiltonian of the total system in
our approach becomes effectively Jaynes-Cumming-like and
thus our analysis is also very relevant to cavity quantum
electrodynamics.28,29,34,35

The paper is organized as follows. In Sec. II, the model
Hamiltonian is introduced and the operator technique is em-
ployed to obtain the reduced density matrix, taking into ac-
count the memory effect of the environment. From the re-
duced density matrix, the entanglement measure of
concurrence of the coupled spin system is calculated in Sec.
III. Conclusions are given in Sec. IV.

II. MODEL AND CALCULATIONS

We consider a two-spin-qubit system interacting with bath
spins via a Heisenberg XY interaction. The system and bath
are composed of spin-1

2 atoms. We restrict ourselves to a
starlike configuration with coupling of equal strength, similar
to the cases considered in Refs. 14, 15, and 27. The interac-
tions between bath spins are also of XY type. In Refs. 24–26,
a similar but somewhat different type of Ising interactions
between the constituents of the spin bath was considered.
The Hamiltonian for the total system is

H = HS + HSB + HB. �1�

Here, HS and HB are the Hamiltonians of the system and bath
respectively, and HSB is the interaction between them.15,27

They can be written as

HS = �0�S01
z + S02

z � + ��S01
+ S02

− + S01
− S02

+ � , �2�

HSB =
g0

�N
��S01

+ + S02
+ ��

i=1

N

Si
− + �S01

− + S02
− ��

i=1

N

Si
+� , �3�

HB =
g

N
�
i�j

N

�Si
+Sj

− + Si
−Sj

+� , �4�

where �0 represents the coupling constant between a locally
applied external magnetic field in the z direction and the
spin-qubit system. � is the the coupling constant between
two-qubit spins. S0i

+ and S0i
− �i=1,2� are the spin-flip opera-

tors of the qubit system spins, respectively. Si
+ and Si

− are the
corresponding operators of the ith atom spin in the bath. The
indices of the sums for the spin bath run from 1 to N, where

N is the number of the bath atoms. g0 is the coupling con-
stant between the qubit system spins and bath spins, whereas
g is that between the bath spins. Both coupling strengths are
rescaled such that the free energy is extensive and a non-
trivial finite limit of N→� exists.15,36

By using collective angular momentum operators
J±=�i=1

N Si
±, we rewrite the Hamiltonians, Eqs. �3� and �4�, as

HSB =
g0

�2j
��S01

+ + S02
+ �J− + �S01

− + S02
− �J+� , �5�

HB =
g

2j
�J+J− + J−J+� − g , �6�

where j=N /2 is the length of the pseudospin. After the
Holstein-Primakoff transformation,37

J+ = b+��2j − b+b�, J− = ��2j − b+b�b , �7�

with �b ,b+�=1, the Hamiltonian, Eqs. �5� and �6� can be
written as

HSB = g0��S01
+ + S02

+ ��1 −
b+b

N
b + �S01

− + S02
− �b+�1 −

b+b

N
� ,

�8�

HB = g�b+	1 −
b+b

N

b +�1 −

b+b

N
bb+�1 −

b+b

N
� − g .

�9�

In the thermodynamic limit �i.e., N→�� at finite tempera-
tures, we then have

HSB = g0��S01
+ + S02

+ �b + �S01
− + S02

− �b+� , �10�

HB = 2gb+b . �11�

Equations �2�, �10�, and �11� are then effectively equivalent
to the Hamiltonian of a Jaynes-Cumming type. They de-
scribe two coupled qubits interacting with a single-mode
thermal bosonic bath field, so the analysis of the problem is
also relevant to cavity quantum electrodynamics quantum
information processing proposals.28,29,34,35 We note here that
due to the high symmetry of our model, the coupling to the
environment is actually represented by a coupling to a single
collective environment spin. After the Holstein-Primakoff
transformation and in the thermodynamic limit, this collec-
tive environment spin is transformed into a single-mode
bosonic thermal field. The effect of this single-mode envi-
ronment on the dynamics of the two coupled qubits is ex-
tremely non-Markovian. This reflects onto, for example, the
revival behavior of the reduced density matrix or entangle-
ment evolution of the two coupled spins, which will be
shown later. This is different from the usual environment
models that consist of very large degrees of freedom �e.g.,
many bosonic modes� and often cause the reduced dynamics
of the system of interest displaying an exponential decay in
time behavior. So the Markovian approximation usually used
in the quantum optics master equation will not work in our
model. One may perform perturbation theory for the weak-
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coupling case, but the single-mode environment in our model
will not remain in a thermal equilibrium state as usually
assumed for an environment with very large degrees of free-
dom in the weak-coupling master equation approach.

Using a special operator technique, we can obtain the ex-
act reduced density matrix for the two coupled qubits by
tracing over the degrees of freedom of the bosonic bath at
arbitrarily finite temperatures. Reference 38 reported the the-
oretical results of entanglement dynamics of a coupled two-
level atoms interacting with a cavity mode embedded in an
effective atomic environment. However, the influence of the
environmental temperature was not considered. In Ref. 39, a
decoupled two-qubit system interacting with a single-mode
thermal field at resonance �i.e., zero detuning� in the context
of cavity electrodynamics was studied. There, the dynamics
of the reduced density matrix for the two-qubit system is
obtained using the method of the Kraus operator representa-
tion. In this paper, we use a different approach of the opera-
tor technique to obtain the exact non-Markovian dynamics of
the reduced density matrix for the two-qubit system for our
model of Eqs. �2�–�4� with the bath spins in the thermody-
namics limit, or equivalently Eqs. �2�, �10�, and �11�. Differ-
ent from the case considered in Ref. 39, our model further-
more includes the coupling between the two qubits and
investigates the effect of detuning �i.e., the single bosonic
bath mode is not necessarily resonant with the qubit transi-
tion frequency�. The detuning in our model is represented by
��0−2g� and it could be controlled by the strength of a lo-
cally applied magnetic field, i.e., the �0 term in Eq. �2�. We
find that the detuning has a significant effect on the entangle-
ment generation between the two qubits.

We assume the initial density matrix of the total system to
be separable, i.e., ��0�= ����� � �B. The density matrix of
the spin bath satisfies the Boltzmann distribution, that is,
�B=e−HB/T /Z, where Z=Tr�e−HB/T� is the partition function,
and the Boltzmann constant has been set to 1. At absolute
zero temperature, no excitation will exist. The bath is in a
thoroughly polarized state with all spins down. With the in-
crease of temperatures, the number of spin-up atoms in-
creases. Note that in Ref. 16, the noninteracting bath spins
are assumed to be initially in the unpolarized infinite-
temperature state. The most general form of an initial pure
state of the two-qubit system is

���0�� = ��00� + ��11� + 	�01� + 
�10� �12�

with

���2 + ���2 + �	�2 + �
�2 = 1. �13�

We might continue the calculation with this general initial
state, but the final analytical solution would, however, be
somewhat complicated. For analytical simplicity, in the fol-
lowing we set 	=
=0. We note that the general initial qubit
state case can be calculated in a similar way presented below.

By taking the initial state of the two-qubit system to be
���=��00�+��11�, the reduced density matrix can be written
as

�s�t� =
1

Z
���2trB�e−iHt�00�e−HB/T00�eiHt�

+
1

Z
��*trB�e−iHt�00�e−HB/T11�eiHt�

+
1

Z
�*�trB�e−iHt�11�e−HB/T00�eiHt�

+
1

Z
���2trB�e−iHt�11�e−HB/T11�eiHt� , �14�

where

Z =
1

1 − e−2g/T . �15�

The matrix �s�t� is a 4�4 matrix in the standard basis �00�,
�01�, �10�, �11�. In order to obtain the exact reduced density
matrix elements, we have to evaluate Eq. �14� exactly. How-
ever, it is difficult to do so using the usual methods, because
the treated system and environment could all be strongly
coupled mutually and internally. In the following, we will
present a special operator technique to obtain the exact den-
sity matrix elements. As shown below, our treatment is math-
ematically simple and physically clear, and may be easily
extended to more complicated systems with strong coupling.
Note also that our method also applies to the case in which
the two-qubit system is initially in a mixed state. For ex-
ample, if the initial state for the qubits is �s�0�
= ���2�00�00�+ ���2�11�11�, the corresponding reduced den-
sity matrix is Eq. �14� provided that the second and third
terms on its right-hand side are removed.

The basic idea of our operator technique is as follows.
Before tracing over the environmental degrees of freedom,
we will first convert the time evolution equation of the qubit
system under the action of the total Hamiltonian into a set of
coupled noncommuting operator variable equations. Then by
introducing a new set of transformations on the operator
variables, we turn the coupled noncommuting operator vari-
able equations into commuting ones. As a result, they can be
solved exactly by using the general method of solving
coupled first-order ordinary differential equations for ordi-
nary variables. After that, the trace over the environmental
degrees of freedom can be performed and the exact reduced
dynamics of the qubit system can be obtained.

From the total Hamiltonian H, we can see that it consists
of operators b, b+, S0i

− , and S0i
+ , where S0i

− and S0i
+ change the

ith �i=1,2� qubit spin from state �1�i to �0�i, and vice versa.
It is then obvious that we can write in a most general form
that

e−iHt�11� = A�00� + B�01� + C�10� + D�11� , �16�

where A, B, C, and D are functions of operators b, b+, and
time t. Using the Schrödinger equation identity

i
d

dt
�e−iHt�11�� = H�e−iHt�11�� �17�

and Eq. �16�, we obtain
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d

dt
A = − i�− �0A + 2gb+bA + g0b+B + g0b+C� , �18�

d

dt
B = − i�g0bA + 2gb+bB + �C + g0b+D� , �19�

d

dt
C = − i�g0bA + �B + 2gb+bC + g0b+D� , �20�

d

dt
D = − i�g0bB + g0bC + �0D + 2gb+bD� , �21�

with initial conditions from Eq. �16� being A�0�=0,
B�0�=0, C�0�=0, and D�0�=1. As A, B, C, D are functions
of b+ and b, they are operators and do not commute with
each other. Equations �18�–�21� are thus coupled differential
equations of noncommuting operator variables, which cannot
be solved by using conventional methods for ordinary num-
ber variables.

The crucial observation to solve the problem is that the
Hamiltonian, Eqs. �2�, �10�, and �11�, is of an effective
Jaynes-Cumming type and it can be block-diagonalized in
the dressed state subspace of �i , j ;n�, with i+ j+n=const.
Here �i , j� represent the qubit states and �n� are the bosonic
field number states. As a result, we may rewrite Eqs.
�18�–�21� in such a subspace. By introducing the following
transformation:

A = b+b+e−i2g�b+b+1�tA1, �22�

B = b+e−i2g�b+b+1�tB1, �23�

C = b+e−i2g�b+b+1�tC1, �24�

D = e−i2g�b+b+1�tD1, �25�

Eqs. �18�–�21� then become

d

dt
A1 = i��0 − 2g�A1 − ig0�B1 + C1� , �26�

d

dt
B1 = − i�g0�2 + n̂�A1 + �C1 + g0D1� , �27�

d

dt
C1 = − i�g0�2 + n̂�A1 + �B1 + g0D1� , �28�

d

dt
D1 = − ig0�1 + n̂��B1 + C1� − i��0 − 2g�D1, �29�

where n̂=b+b. Note that for initial qubit state in �11� on the
left-hand side of Eq. �16�, the transformation, Eqs. �22�–�25�,
is chosen in such a way that the bosonic field operator�s� in
front of the exponential term in Eqs. �22�–�25� together with
its corresponding qubit state on the right-hand side of Eq.
�16� make i+ j+n a constant value and the initial condition
D�0�=D1�0�=1. That is, the operator coefficient A of the �00�

state on the right-hand side of Eq. �16� requires two field
creation operators in Eq. �22�, B and C of �01� and �10�,
respectively, require only one field creation operator in Eqs.
�23� and �24� and D of �11� does not need any field operator
in Eq. �25�. The exponential term in Eqs. �22�–�25� is intro-
duced to make the resultant equations more concise. As a
consequence, the coefficients of Eqs. �26�–�29� after the
transformation �22�–�25� involve only the operator n̂. There-
fore, A1, B1, C1, and D1 are functions of n̂ and t, and com-
mute with each other. We can then treat Eqs. �26�–�29� as
coupled complex-number differential equations and solve
them in a usual way. This novel operators approach thus
allows us to solve Eq. �16� and then consequently the non-
Markovian dynamics of the reduced density matrix of the
qubit system.

We note again that the crucial point of the method used
here is to find proper transformations to change the coupled
differential equations of noncommuting operator variables to
the coupled differential equations of complex-number
variables. This can be done when the effective Hamiltonian
can be block-diagonalized. This is the case of the
Jaynes-Cumming model and other models that contain
interaction Hamiltonian of the forms of, for example,
�S01

+ +S02
+ �bb+ �S01

− +S02
− �b+b+, S01

+ S02
+ b+S01

− S02
− b+, etc., regard-

less of how strong their interaction strengths are. If the total
effective Hamiltonian cannot be block-diagonalized, for ex-
ample for the effective spin-boson model in Ref. 40, the
operator method used here will then not apply to solve the
problem exactly.

As we are working in the Schrödinger picture, the basic
operator n̂=b+b is time-independent �sometimes the opera-
tors could have time dependence explicitly; however, this is
not the case here�. From Eq. �16� and Eqs. �22�–�25�, the
initial conditions at t=0 are given by

A1�0� = 0, �30�

B1�0� = 0, �31�

C1�0� = 0, �32�

D1�0� = 1. �33�

In general, we can solve Eqs. �26�–�29� exactly via the initial
conditions Eqs. �30�–�33�. As we aim to obtain analytical
expressions for the reduced qubit dynamics, for the sake of
analytical simplicity we consider the on-resonant case, i.e.,
�0=2g. We can easily tune the locally applied external mag-
netic field to satisfy this condition. We will give the numeri-
cal results for the off-resonant case in Fig. 6. We then obtain
for the on-resonant case

A1 =
− 1

3 + 2n̂
+

2g0
2

��2 + 8�3 + 2n̂�g0
2� ei�1t

�1
−

ei�2t

�2
� , �34�

B1 = C1 = −
g0

��2 + 8�3 + 2n̂�g0
2
�ei�1t − ei�2t� , �35�
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D1 =
2 + n̂

3 + 2n̂
+

2g0
2�1 + n̂�

��2 + 8�3 + 2n̂�g0
2� ei�1t

�1
−

ei�2t

�2
� , �36�

where

�1,2 =
− � ± ��2 + 8�3 + 2n̂�g0

2

2
. �37�

Following the similar calculations above, we can evaluate
the time evolution for the initial two-qubit spin state of �00�.
Let

e−iHt�00� = E�00� + F�01� + G�10� + K�11� . �38�

In a similar way, we have

E = e−i2g�b+b−1�tE1, �39�

F = be−i2g�b+b−1�tF1, �40�

G = be−i2g�b+b−1�tG1, �41�

K = bbe−i2g�b+b−1�tK1, �42�

and then obtain

E1 =
n̂ − 1

2n̂ − 1
+

2g0
2n̂

��2 + 8�2n̂ − 1�g0
2� ei�1�t

�1�
−

ei�2�t

�2�
� , �43�

F1 = G1 = −
g0

��2 + 8�2n̂ − 1�g0
2
�ei�1�t − ei�2�t� , �44�

K1 =
− 1

2n̂ − 1
+

2g0
2

��2 + 8�2n̂ − 1�g0
2� ei�1�t

�1�
−

ei�2�t

�2�
� , �45�

where

�1,2� =
− � ± ��2 + 8�2n̂ − 1�g0

2

2
. �46�

From Eq. �14� and all the results that we obtained, the re-
duced density matrix can be written as

�s�t� =�
�11 0 0 �14

0 �22 �23 0

0 �32 �33 0

�14
* 0 0 �44

� , �47�

where

�11 = ���2
1

Z
�
n=0

�

E1E1
+e−2gn/T

+ ���2
1

Z
�
n=0

�

A1A1
+�n + 1��n + 2�e−2gn/T, �48�

�14 = ��* 1

Z
�
n=0

�

E1D1
+e−2gn/Tei4gt, �49�

�22 = �23 = �32 = �33

= ���2
1

Z
�
n=1

�

F1F1
+ne−2gn/T + ���2

1

Z
�
n=0

�

B1B1
+�n + 1�e−2gn/T,

�50�

�44 = ���2
1

Z
�
n=2

�

K1K1
+n�n − 1�e−2gn/T + ���2

1

Z
�
n=0

�

D1D1
+e−2gn/T.

�51�

In Eqs. �48�–�51�, the trace over the environmental degrees
of freedom has been performed and the operator n̂ has been
replaced by its eigenvalue n. In a similar way, the solutions
for the reduced dynamics of the two-coupled spins under the
influence of the quantum Heisenberg XY spin star bath in the
thermal dynamics limit at arbitrarily finite temperatures for
arbitrary initial states of ���0��=��00�+��11�+	�01�+
�10�
can be obtained.

III. CONCURRENCE AND ENTANGLEMENT DYNAMICS

We use the concurrence41 to measure the entanglement
between the two coupled qubit spins. It is defined as41

C12 = max��1 − �2 − �3 − �4,0� , �52�

where the quantities �1�2�3�4 are the square roots of
the eigenvalues of the operator

R12 = �s��y
� �y��s

*��y
� �y� . �53�

We find �i are values in decreasing order of ��11�44+ ��14�,
���11�44− ��14��, 2�22, and 0. For the system with an initial
state of ���= �00�, i.e., both spins in the ground state, we plot
the time evolution of the concurrence in Fig. 1. Although
there is no initial entanglement and no coupling between the
two spins, it is interesting to notice that the entanglement
between the two spins after some time is present, as shown
in Fig. 1�a�. This confirms that the environment that usually
causes the decoherence of the system can nevertheless en-
tangle qubits that are initially prepared in a separable
state.39,42–45 This is mainly due to the fact that the two spins
are coupled to the same, common environment, which then
in turn generates some effective interaction between the two
spins even if they were originally decoupled. The result,
however, depends on the environmental temperature. Further
numerical calculations show that no entanglement is gener-
ated, for example for T�8g. As the coupling between the
two-qubit spins is switched on even though the value is
small, the “collapse” and “revival” of the entanglement as a
function of time are demonstrated in Fig. 1�b�. This is in
analogy to the collapse and revival of atomic population in-
version of a single two-level atom interacting with a single
mode field initially in a coherent state,46 a Fock state,38 or a
squeezed state47 in quantum optics. Here from the Hamil-
tonian, Eqs. �2�, �10�, and �11�, this novel phenomenon of
entanglement arises from two-coupled qubits interacting
with a single mode field initially, however in a thermal state.
The reasons for the collapse and revival behaviors in these
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cases could be similar, that is, the Rabi �or time evolution�
oscillations associated with different excitations have differ-
ent frequencies. Consequently, as the time increases, these
Rabi �or time evolution� oscillations become uncorrelated,
leading to a collapse behavior. As time is increased further,
the correlation is restored and the revival occurs.

Figure 2 shows the time evolution of the concurrence for
the system in the initial state of ���= 1

�2
��00�+ �11��, i.e., a

maximally entangled state. At high temperature, the state
loses its entanglement completely for a short period of time,
and then it is partially entangled again some time later. This
is in agreement with the results of Ref. 16, where an initially
unpolarized infinite temperature state of the spin bath is as-
sumed. However, our results are temperature-dependent. At a
very low temperature, the concurrence exhibits the behavior
of oscillation between 1 and 0.35. With increasing tempera-
tures, the concurrence decreases more quickly and oscillates
disorderly in the lower value region. At a fixed time t, the
concurrence decreases with temperatures and a critical tem-
perature Tc exists, above which the entanglement vanishes.
However, this critical temperature Tc is time-dependent and
sensitive to the initial state of the system. Figure 3 illustrates

the time evolutions of the concurrence for different values of
the coupling constant g0. As expected, increasing the value
of the coupling constant has similar effects as increasing the
value of the environmental temperature, i.e., the decay rate
of the concurrence increases. Figure 4 presents the time evo-
lution of the concurrence for different inner-bath-spin cou-
pling constants g. We see that the concurrence increases with
the increase of g. This confirms that strong quantum corre-
lations within the environment suppress decoherence24,48,49

and thus perhaps also disentanglement. As shown in the in-
set, the concurrence is regained some time later. However, it
appears disorderly without a particular pattern. Similar be-
haviors arise for Figs. 2, 3, and 5 in the long-time scales,
which reflect the non-Markovian dynamics of the system. In

FIG. 1. �Color online� Time evolution of concurrence for an
initial two-qubit state of ���= �00� for different values of �; �a� �
=0 and �b� �=0.03g. Other parameters are �0=2g, g0=g, T=1g.

FIG. 2. �Color online� Time evolution of concurrence for an
initial two-qubit state of ���= 1

�2
��00�+ �11�� for different tempera-

tures; T=10g �solid curve�, T=5g �dashed curve�, and T=0.1g �dot
dashed curve�. Other parameters are �0=2g, g0=g, �=0.

FIG. 3. �Color online� Time evolution of concurrence for an
initial two-qubit state of ���= 1

�2
��00�+ �11�� for different values of

g0; g0=g �solid curve�, g0=0.5g �dashed curve�, and g0=0.2g �dot
dashed curve�. Other parameters are �0=2g, T=5g, �=0.
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Fig. 5, we show the effect of the coupling between the two-
qubit spins on the concurrence. It is obvious that the cou-
pling benefits the entanglement. Note that the initial state of
the system in this case is different from that in Fig. 1. So, if
the system is initially prepared in a maximally entangled
state, the larger the coupling constant � is, the more slowly
the entanglement decays.

When the two spins are initially prepared in their excited
state, i.e., ���= �11�, the result is quite different from that in
Fig. 1. If the detuning �0=2g, i.e., at the on-resonant case,
no entanglement between the two-qubit spins exists at any
temperatures, even with a strong interaction � between
them. This is consistent with the result for two-qubit atoms

obtained by Kim et al.,39 where the coupling between the
two-qubit atoms is not considered and the detuning between
the two atoms and the single-mode field is zero. If the de-
tuning �0�2g, i.e., in the off-resonant case, the two-qubit
spins will entangle via the environment again as shown in
Fig. 6. So the entanglement generation of the two spins in
this case is very sensitive to the detuning, which can be
controlled in our model by the locally applied external mag-
netic field.

IV. CONCLUSION

We have studied the exact entanglement evolution of two
coupled qubit spins in a model of a quantum Heisenberg XY
spin star environment in the thermodynamic limit. The dy-
namics of the reduced density matrix of the two coupled
spins is analytically obtained in terms of a novel operator
technique which is mathematically simple and physically
clear. In our analysis, the transformed Hamiltonian becomes
effectively Jaynes-Cumming-like and thus the results are
also relevant to cavity quantum electrodynamics.

The time evolutions of the concurrence of the two
coupled spin qubits for different initial conditions are evalu-
ated exactly. The results show that the dynamics of the en-
tanglement depends strongly on the initial state of the sys-
tem, the coupling between the two-spin qubits, the
interaction between the qubit system and the environment,
the interactions between the constituents of the spin environ-
ment, the environmental temperatures, as well as the detun-
ing controlled by a locally applied external magnetic field.
We have also found that if the two coupled spin qubits are
initially prepared in the ground state, the entanglement be-
tween them will exhibit the “collapse” and “revival” behav-
ior with time due to the interaction between the two-spin
qubits and the environment, in analogy to the collapse and
revival of the atomic population inversion in quantum optics.

FIG. 4. �Color online� Time evolution of concurrence for an
initial two-qubit state of ���= 1

�2
��00�+ �11�� for different values of

g; g=g0 �solid curve�, g=1.5g0 �dashed curve�, and g=2g0 �dot
dashed curve�. Other parameters are �0=2g, T=5g0, �=0. The
inset shows the long-time behavior of concurrence for g=g0.

FIG. 5. �Color online� Time evolution of concurrence for an
initial two-qubit state of ���= 1

�2
��00�+ �11�� for different values of

�; �=0 �solid curve�, �=3g �dashed curve�, and �=6g �dot
dashed curve�. Other parameters are �0=2g, g0=g, T=5g.

FIG. 6. �Color online� Time evolution of concurrence for an
initial two-qubit state of ���= �11� for different values of detuning;
�0=3.5g �solid curve� and �0=6g �dashed curve�. Other parameters
are g0=g, T=1g, �=0.
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