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We calculate the Fermi energy dependence of the �time-averaged� current and shot noise in an impurity-free
carbon bilayer �length L�width W�, and compare with known results for a monolayer. At the Dirac point of
charge neutrality, the bilayer transmits as two independent monolayers in parallel: Both current and noise are
resonant at twice the monolayer value, so that their ratio �the Fano factor� has the same 1/3 value as in a
monolayer—and the same value as in a diffusive metal. The range of Fermi energies around the Dirac point
within which this pseudodiffusive result holds is smaller, however, in a bilayer than in a monolayer �by a factor
l� /L, with l� the interlayer coupling length�.
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I. INTRODUCTION

Undoped graphene has no free electrons, so an infinite
sample cannot conduct electricity. A finite sample can con-
duct, because electrons injected at one end can be transmitted
a distance L to the other end via so-called evanescent modes.
These are modes that decay �e−L/� with a penetration depth
� bounded from above by the width W of the sample. For a
wide and narrow sample �W�L�, there are many evanescent
modes that contribute appreciably to the conductance. Be-
cause the transmission of an electron via an evanescent mode
is a stochastic event, the current fluctuates in time—even in
the absence of any scattering by impurities or lattice defects.
Tworzydło et al.1 found that the shot noise produced by the
evanescent modes in an undoped carbon monolayer �of
length L�width W� is pseudodiffusive: The Fano factor F

= P /2eĪ �ratio of noise power P and time-averaged current Ī�
has the same value F=1/3 as in a diffusive metal �while F
=1 for independent current pulses�.2

A carbon bilayer has an additional length scale, not
present in the monolayer of Ref. 1, namely the interlayer
coupling length l�. It is an order of magnitude larger than the
interatomic distance d within the layer �Refs. 3–5�:

l� =
�v
t�

=
3t�

2t�

d � 11d �1�

�with v�106 m/s, d�1.4 Å, and t� �3 eV, respectively the
carrier velocity, interatomic distance, and nearest-neigbor
hopping energy within a single layer, and t��0.4 eV the
nearest-neighbor hopping energy between two layers6�. Since
L is typically large compared to l�, the two layers are
strongly coupled. In this paper we investigate what is the
effect of interlayer coupling on the average current and shot
noise.

The model and calculation are outlined in Secs. II and III.
Our main conclusion, presented in Sec. IV, is that an un-
doped graphene bilayer has the same current and noise as
two monolayers in parallel. The Fano factor, therefore, still
equals 1 /3 when the Fermi level coincides with the Dirac
point �at which conduction and valence bands touch�. How-
ever, the interval �EF��vl� /L2 in Fermi energy around the

Dirac point where this pseudodiffusive result holds is much
narrower, by a factor l� /L, in a bilayer than it is in a mono-
layer.

Our results for the mean current Ī, and hence for the con-
ductance in a ballistic system, agree with those of Cserti,7

but differ from two other recent calculations in a �weakly�
disordered system.8,9 �The shot noise was not considered in
Refs. 7–9.� A ballistic system like ours was studied recently
by Katsnelson,12 with different results for both conductance
and shot noise. We discuss the origin of the difference in Sec.
V. We conclude by connecting with experiments11 in Sec. VI.

II. MODEL

We use the same setup as in Refs. 1 and 10, shown sche-
matically in Fig. 1. A sheet of ballistic graphene in the x-y
plane contains a weakly doped strip of width W and length L,
and heavily doped contact regions for x�0 and x	L. The
doping is controlled by gate voltages, which induce a poten-
tial profile of the form

U�x� = �− U
 if x � 0 or x 	 L ,

0 if 0 � x � L .
� �2�

We use an abrupt potential step for simplicity, justified by the
fact that any smoothing of the step over a distance small

FIG. 1. Schematic of the graphene bilayer. Top panel: Two
stacked honeycomb lattices of carbon atoms in a strip between
metal contacts. Bottom panel: Variation of the electrostatic potential
across the strip.
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compared to L becomes irrelevant near the Dirac point, when
the Fermi wave length �L.

While Refs. 1 and 10 considered a graphene monolayer,
governed by the 2�2 Dirac Hamiltonian, here we take a
bilayer with 4�4 Hamiltonian �Refs. 3–5�,

H =�
U v�px + ipy� t� 0

v�px − ipy� U 0 0

t� 0 U v�px − ipy�
0 0 v�px + ipy� U

	 ,

�3�

with p=−i�� /�r the momentum operator. The Hamiltonian
acts on a four-component spinor �
A1

,
B1
,
B2

,
A2
� with

amplitudes on the A and B sublattices of the first and second
layer. Only nearest-neighbor hopping is taken into account,
either from A to B sites within a layer or between different
layers. �Sites from the same sublattice but on different layers
are not directly adjacent.� The Hamiltonian �3� describes
low-energy excitations near one of the two Dirac points in
the Brillouin zone, where conduction and valence bands
touch. The other Dirac point and the spin degree of freedom
contribute a fourfold degeneracy factor to current and noise
power.

We have taken the same electrostatic potential U in both
layers. In general, the potentials will differ,13,14 but to study
the special physics of undoped graphene it is necessary that
they are both tuned to the Dirac point of each layer. This can
be achieved by separate top and bottom gates �not shown in
Fig. 1�.

For free electrons in bilayer graphene, the relation be-
tween energy � and total momentum k= �kx

2+ky
2�1/2 as de-

scribed by this Hamiltonian consists of four hyperbolas, de-
fined by

� = ±
1

2
t� ±
1

4
t�
2 + k2, �4a�

� = �
1

2
t� ±
1

4
t�
2 + k2, �4b�

plotted in Fig. 2. �For notational convenience, we use units
such that �v=1 in most equations.�

We calculate the transmission matrix t through the
graphene strip at the Fermi energy, and then obtain the con-
ductance and noise power from the Landauer-Büttiker
formulas2

G = G0Tr tt†, P = P0Tr tt†�1 − tt†� , �5�

→F =
Tr tt†�1 − tt†�

Tr tt† , �6�

with G0=4e2 /h, P0=2e �V �G0, and V the voltage applied be-
tween the contact regions. The results depend on the degree
of doping in the graphene strip �varied by varying EF�, but
they become independent of the degree of doping of the
contact regions if U
� t�.

III. TRANSMISSION PROBABILITIES

We calculate the transmission matrix by matching eigen-
states of the Hamiltonian �3� at the two interfaces x=0 and
x=L. This procedure is similar to a calculation of nonrelativ-
istic scattering by a rectangular barrier in a two-dimensional
waveguide. There are two differences. Firstly, the Hamil-
tonian �3� is a first-order differential operator, and hence only
the wave function and not its derivative is continuous at the
interface. Secondly, the spectrum contains both positive and
negative energy eigenstates.

The eigenstates of H for U=0 have been given in Ref. 13.
They may be characterized as follows. For given energy �
and transverse momentum ky, we define two longitudinal
momenta

kx± =
�� ±
1

2
t�
2

−
1

4
t�
2 − ky

2. �7�

The square root is taken with argument in the interval �0,��.
Associated with each real kx+ there are two propagating
modes, one left-going ��,+

L and one right-going ��,+
R . Two

more propagating modes ��,−
L and ��,−

R are associated with
each real kx−. These eigenstates of H are given by

��,±
R �x,y� = N±�

��

�kx± ± iky

�

kx± + iky

	ei�kx±x+kyy�, �8a�

FIG. 2. Energy spectrum �4� of the graphene bilayer, according
to the Hamiltonian �3�.
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��,±
L �x,y� = N±�

��

±kx± ± iky

�

− kx± + iky

	ei�−kx±x+kyy�, �8b�

with N±= �4W�kx±�−1/2 a normalization constant such that
each state carries unit current

I = ev�
0

W

dy�†��x 0

0 �x

� , �9�

in the positive or negative x direction.
For each ky we have two left-incident scattering states

��,± at energy �. In the region x�0 to the left of the strip
they have the form

��,± = ��+U
,±
R + r+

±��,ky���+U
,+
L + r−

±��,ky���+U
,−
L ,

�10�

while to the right of the strip �x	L� one has

��,± = t+
±��,ky���+U
,+

R + t−
±��,ky���+U
,−

R . �11�

For ��0 the form of the solution in the region x� �0,L� is
self-evidently a linear combination of the four solutions ��±

L ,
��±

R . Care must however, be taken in analytical work to use
proper linear combinations of these modes that remain lin-
early independent exactly at �=0 �the Dirac point�. �See Ap-
pendix A for explicit formulas.�

The four transmission amplitudes t±
± for given � and ky

can be combined in the transmission matrix

t��,ky� = �t+
+��,ky� t−

+��,ky�
t+
−��,ky� t−

−��,ky�

 . �12�

We consider a short and wide geometry L�W, in which the
boundary conditions in the y direction become irrelevant. For
simplicity, we take periodic boundary conditions, such that
ky is quantized as ky,n=2�n /W, n=0, ±1, ±2, . . .. In the re-
gime L�W, ����U
 considered here, both the discreteness
and the finiteness of the modes in the contact region can be
ignored. As a consequence, the traces in Eqs. �5� and �6� may
be replaced by integrals through the prescription

Tr�tt†�p →
W

�
�

0




dky�
�=±

�T��EF,ky��p, �13�

where T± are the two eigenvalues of tt†.

IV. RESULTS

Figure 3 contains a gray-scale plot of the total transmis-
sion probability Tr�tt†� as a function of ky and �. Darkly
shaded regions indicate resonances of high transmission,
similar to those found in Ref. 15.

The location �res of resonances can be estimated by equat-
ing kxL /� to an integer n. This yields the curves

�res
�n��ky� = �

1

2
t� ±
1

4
t�
2 + ��n

L

2

+ ky
2, �14�

indicated in the figure by dashed lines. It is seen that good
agreement is reached for �ky��1/L and again for �ky��1/L.
For �kyL��1 there is a cross over. In regions �c� and �d�,
demarkated by the curves �res

�0�, the transmission generally
drops to zero, since in these regions the longitudinal momen-
tum kx is imaginary.

There is however a curious feature close to � ,ky =0. The
resonance closest to the Dirac point behaves differently from
all the other resonances. When �ky� is increased, it moves
closer to the Dirac point rather than away from it, eventually
crossing into regions �c� and �d� of evanescent modes. It is
this resonance of evanescent modes that is responsible for
the pseudodiffusive transport at the Dirac point.

At �=0, the exact formula for the eigenvalues of tt† in the
U
→
 limit is

T±�� = 0,ky� =
1

cosh2�ky � kc�L
, �15�

kc =
1

L
ln� L

2l�

+
1 +
L2

4l�
2 � . �16�

In Fig. 4 the two transmission coefficients T±�0,ky� are com-
pared to the single transmission coefficient Tmonolayer�0,ky�
=1/cosh2�kyL� of the monolayer.1,10 Details of the calcula-
tion may be found in Appendix A.

FIG. 3. Total transmission probability Tr�tt†� as a function of �
and ky for U
=50t� and L=50l�. Darkly shaded regions indicate
high transmission. Gray dashed lines indicate the estimate �14� for
the occurrence of resonances in regions �a� and �b�, while solid lines
indicate the boundary between propagating and evanescent modes.
Arrows point to the resonances of evanescent modes close to the
Dirac point, responsible for the pseudodiffusive transport.
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Since the two bilayer coefficients are displaced copies of
the monolayer coefficient, any observable of the form A
=Tr f�tt†�, with f an arbitrary function is twice as large in a
bilayer as it is in a monolayer. From Eqs. �5� and �13� we
obtain

Gbilayer = 2Gmonolayer =
2G0

�

W

L
, �17�

Pbilayer = 2Pmonolayer =
4e�V�G0

3�

W

L
, �18�

Fbilayer = Fmonolayer = 1
3 . �19�

Figure 5 contains plots of both the conductivity �
=GL /W and Fano factor of the bilayer around the Dirac
point. At energies associated with resonances at normal inci-
dence,

�res
�n��0� = ±

�2�v
L

� l�

L
n2 + O�l�/L�3� , �20�

the conductivity and Fano factor show abrupt features. The
width �EF=2�res

�1�=2�2�vl� /L2 of the energy window be-
tween the resonances that straddle the Dirac point in the
bilayer is smaller by a factor l� /L than in the monolayer.

V. DEPENDENCE ON THE POTENTIAL IN THE
CONTACT REGION

So far we have assumed that the potential U
 in the con-
tact region is large compared to the band splitting t� near the
Dirac point of the graphene bilayer. We believe that this is
the appropriate regime to model a normal metal contact to
the graphene sheet, which couples equally well to the two
sublattices on each layer.

It is of interest to determine how large the ratio U
 / t�

should be to reach the contact-independent limit of the pre-
vious section. Note that for U
	 t� there are two left-
incident propagating modes in the leads for each � and ky.
When U
 becomes smaller than t� one of the two modes

becomes evanescent, leading to an abrupt change in the con-
ductivity and the Fano factor. This is evident in Fig. 6. For
U
− t���v /L, the conductivity and Fano factor have al-
most reached their U
→
 limits. For U
� t� the conduc-
tivity is smaller and the Fano factor larger than when U


	 t�. Both quantities vanish when the Fermi momentum


U
t� /v in the contact region drops below � /L and the con-
tact region is effectively depleted of carriers.

These finite-U
 results can be used to make contact with
the previous calculation of Katsnelson,12 who found a con-
ductivity �=G0 /2 and a Fano factor F=1−2/� at the Dirac
point, in the regime �v /L�
U
t�� t�. These values are
indicated in Fig. 6 by horizontal lines. The intersection point
with our curves occurs at nearly the same value of U
 / t� for
both quantities. The intersection point moves closer and
closer to U
=0 as the sample length L is increased, but there
is no clear plateau around the intersection point. Moreover,
as shown in Appendix B, the intersection point does not cor-
respond to a minimum or maximum as a function of the
Fermi energy, so that these values would be difficult to ex-
tract from a measurement.

We do believe that the results of Ref. 12 describe the
asymptotic limit L / l�→
 at EF�0. However, because in
this limit the width �EF��vl� /L2 of the resonance at the
Dirac point vanishes, it seems unobservable.

FIG. 4. Solid curves: Transmission coefficients T± of the bilayer
according to Eq. �15� at L=50l�. These coefficients are displaced
copies of the monolayer result �dashed�.

FIG. 5. Conductivity � �top� and Fano factor F �bottom� of the
bilayer, as a function of the Fermi energy EF measured from the
Dirac point for U
=50t� and L=50l�. Abrupt features occur at
EF��res

�n��ky =0� �vertical lines, given by Eq. �20��.
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VI. CONCLUSION

In conclusion, we have demonstrated that the pseudodif-
fusive transport at the Dirac point, discovered in Ref. 1 for a
carbon monolayer, holds in a bilayer as well. All moments of
the current fluctuations have the same relation to the mean
current as in a diffusive metal. In particular, the Fano factor
has the 1/3 value characteristic of diffusive transport, even
though the bilayer is assumed to be free of impurities or
lattice defects.

Although we found that an undoped bilayer transmits as
two undoped monolayers in parallel, the two systems behave
very different away from charge neutrality. The resonance of
evanescent modes around the Dirac point of zero Fermi en-
ergy has width �EF��vl� /L2 in a bilayer, which is smaller
than the width in a monolayer by the ratio of the interlayer
coupling length l� and the separation L of the metal contacts.

Since l��1.5 nm, one would not be able to resolve this
resonance in the �m-size samples of Ref. 11. These experi-
ments found no qualitative difference in the conductance ver-
sus gate-voltage dependence of monolayer and bilayer
graphene, both showing a minimum conductivity at the Dirac
point of G0. Smaller junctions in the 10–100 nm range as are
now being fabricated should make it possible to resolve the
transmission resonance of evanescent modes predicted here,
and to observe the unusual pseudodiffusive dynamics asso-
ciated with it.
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APPENDIX A: TRANSMISSION EIGENVALUES AT THE
DIRAC POINT

In this Appendix we give some detail of the calculation
that leads to the transmission coefficients T±��=0,ky� of Eq.
�15�. At the Dirac point and in the limit of large U
, the
left-incident eigenstates of the Hamiltonian �3� are of the
form

�±�x�

= �eikyy��±
ReiU
x + �r+

±�+
L + r−

±�−
L�e−iU
x� x � 0,

eikyy��c1
±�1 + c2

±�2�ekyx + �c3
±�3 + c4

±�4�e−kyx� 0 � x � L ,

eikyyeiU
�x−L��t+
±�+

R + t−
±�−

R� x 	 L ,
�

�A1�

with the definitions

FIG. 7. Conductivity �top� and Fano factor �bottom� around the
Dirac point, for L=100l� and U
=0.2t�. �These parameter values
correspond to the intersection point of our curves with the predic-
tion of Ref. 12 in Fig. 6.� The solid lines were obtained using the
four-band Hamiltonian �3�, while the dashed lines were obtained
from the two-band Hamiltonian �B1�.

FIG. 6. Dependence of the conductivity and Fano factor at the
Dirac point on the potential U
 in the contact region, for L
=100l�. Thin horizontal lines indicate the values of Ref. 12. The
values obtained in this paper correspond to a plateau reached for
U
 / t��1.
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�±
R =�

�1

�1

1

1
	, �±

L =�
�1

±1

1

− 1
	 , �A2�

�1 =�
0

1

0

0
	, �2 =�

0

− it�x

1

0
	, �3 =�

1

0

0

− it�x
	,

�4 =�
0

0

0

1
	 . �A3�

These eigenstates must be continuous at x=0 and x=L, lead-
ing to an 8�8 system of linear equations Mb±=c± with

M =�
1 − 1 0 0 1 0 0 0

− 1 1 1 0 0 0 0 0

− 1 − 1 0 0 0 1 0 0

1 1 0 1 0 0 0 0

0 0 0 0 1 0 z − z

0 0 z − iLt�z 0 0 1 − 1

0 0 0 z 0 0 − 1 − 1

0 0 0 0 − iLt� 1 − z − z

	 ,

b± =�
r+

±

r−
±

c1

c2

c3

c4

t+
±

t−
±

	 , c± =�
�1

�1

1

1

0

0

0

0

	 . �A4�

We abbreviated z=ekyL. By solving these equations, one finds
the transmission matrix

t =
2i

2 + �L/l��2 + 2 cosh�2kyL�

���L/l� − 2i�cosh�kyL� �L/l��sinh�kyL�
− �L/l��sinh�kyL� − �L/l� + 2i�cosh�kyL�


 .

�A5�

The eigenvalues of tt† are then given by Eq. �15�.

APPENDIX B: FOUR-BAND VERSUS TWO-BAND
HAMILTONIAN

In this appendix we verify that the difference in the results
obtained here and in Ref. 12 is not due to the different
Hamiltonians used in these two calculations.

In Ref. 12 the limit t�→
 was taken at the beginning of
the calculation, reducing the 4�4 Hamiltonian �3� to the
effective 2�2 Hamiltonian4

Heff = −
v2

t�

� 0 �px − ipy�2

�px + ipy�2 0

 + U�x��1 0

0 1

 .

�B1�

Only the two lowest bands near the Dirac point are retained
in Heff, as is appropriate for the regime U
� t�.

We have repeated the calculation of conductance and
Fano factor using both Hamiltonians �3� and �B1�, for pa-
rameter values corresponding to the intersection point of Fig.
6, and find good agreement �see Fig. 7�.
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