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We present a detailed analysis of the vibrational spectrum and heat capacity of suspended mesoscopic
dielectric plates, for various thickness-to-side ratios at sub-Kelvin temperatures. The vibrational modes of the
suspended cavity are accurately obtained from the three-dimensional elastic equations in the small strain limit
and their frequencies assigned to the cavity phonon modes. The calculations demonstrate that the heat capacity
of realistic quasi-two-dimensional phonon cavities approach the linear dependence on T at sub-Kelvin tem-
peratures. The behavior is more pronounced for the thinnest cavities, but takes place also for moderately thick
structures, with thickness-to-side ratios �=0.1 to 0.2. It is also demonstrated that the heat capacity of the
suspended phonon cavities is invariant under the product of the temperature �T� with a characteristic lateral
dimension �L� of the sample. The present results establish a lower bound for the heat capacity of suspended
mesoscopic structures and indicate the emergence of the quantum mechanical regime in the dynamics of
bounded phonon cavities.
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I. INTRODUCTION

Suspended nanostructures have become relevant elements
for both basic research and technology. Microelectrome-
chanical systems �MEMS�, such as cantilevers, gears and
membranes, already find widespread use in several techno-
logical applications.1 At the same time, current developments
in surface nanomachining render possible the controlled fab-
rication of a large variety of suspended nanostructures2,3 hav-
ing, in particular, an extremely weak thermal coupling with
the environment. As a consequence, ultrasensitive
bolometers4 and calorimeters5,6 have been developed with
unprecedented subattojoule resolution, for operation in the
T�5 Kelvin temperature range, envisaging the possibility of
measuring the heat capacity of nano-objects and, eventually,
even single molecules.7 In the realm of fundamental re-
search, the operation of nanoelectromechanical structures
�NEMS� is finally approaching the quantum regime.8–10 The
construction of suspended solid state quantum logic gates11,12

is amid the applications anticipated for such structures, since
the electron-phonon interaction, which is a source of deco-
herence and dissipation for both quantum dot qubits13,14 and
single-electron transistors �SET�,15 can be controlled in
them.16–19

In fact, for most of the cases mentioned above the devices
are operated at sub-Kelvin temperatures; the requirement of
ultracold temperatures being specially severe for the opera-
tion of quantum logic gates. For instance, in recent experi-
mental realization, quantum dot charge-qubits13,14 and sus-
pended SET15 have been operated at a base temperature of
20 mK. It is therefore reasonable to expect that suspended
nanostructures comprising such quantum devices as well as
ultrasensitive bolometers and calorimeters will be function-
ing at temperatures T�1 K.

Despite the interest, there is not yet a comprehensive
theory for the electron-phonon interaction in suspended
nanostructures.20,21 A central issue of the problem is the dif-
ficulty of rigorously describing the low temperature acoustic

phonon spectrum in suspended nanodevices, which is funda-
mental for determining �i� the electron-phonon interaction
with its many consequences for the device operation and �ii�
the device’s thermal properties, such as its thermal conduc-
tivity and heat capacity. At sub-Kelvin temperatures, the for-
malisms adopted for bulk materials may not produce correct
results for the phonon spectrum of suspended nanostructures
because the wavelength and mean free path of the dominant
phonons can be bigger than the physical dimensions of the
structure. Moreover, there are no general analytical solutions
for the vibrational modes of bounded suspended plates.22

Motivated by these circumstances this work presents a
detailed study of the phonon spectrum and the heat capacity
�CV� of suspended rectangular dielectric nanostructures of
various thicknesses at sub-Kelvin temperatures. The vibra-
tional modes of the suspended cavity are accurately calcu-
lated from the three-dimensional �3D� elastic equations in
the small strain limit and the obtained frequencies assigned
to the cavity phonon modes. After obtaining a reliable pho-
non spectrum, with convergence assured for a few thousand
cavity modes, the heat capacity of isolated suspended meso-
scopic phonon cavities having 3D and quasi-two-
dimensional �2D� character is investigated. For such systems,
the calculations demonstrate that the temperature depen-
dence of CV approaches the linear regime in sub-Kelvin tem-
peratures, the effect being more pronounced for quasi-2D
nanostructures. Nonetheless, a simple model of plane waves
yields a phonon spectrum in good agreement with the 3D
elastic model for the very thick suspended nanostructures. A
dimensional analysis of the free vibrational modes also re-
veal that the heat capacity of the rectangular phonon cavities
has the scale invariant form, that is, CV is invariant with
respect to the product of the temperature with a characteristic
lateral dimension. The present results indicate that the low
temperature heat capacity of quasi-2D suspended nanostruc-
tures may have been underestimated and, therefore, sets a
lower bound for their heat capacity.
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II. THEORETICAL FORMULATION

We consider suspended nanostructures of rectangular ge-
ometry, with lateral dimensions defined by Lx and Ly, and
thickness Lz. Such a choice is motivated by the fact that
several recent experiments,4,23,24 probing thermal and electri-
cal properties of suspended nanostructures, have utilized
square or rectangular plates with thickness-to-side ratios ��
=Lz /Ly� including 0.1,23 0.04,24 and 0.015.4 The first struc-
ture is considered to be a moderately thick plate, while the
last two cases are examples of thin plates. Because the sus-
pended nanostructures are usually made of noncrystalline
materials, like polysilicon and amorphous SiN �silicon ni-
tride�, in this work the phonon cavities are taken to be ho-
mogeneous and isotropic rectangular structures.

Because at sub-Kelvin temperatures the dominant phonon
modes are long wavelength acoustic ones, with a mean free
path that exceeds the dimensions of the structure,4,23,24 we
resort to the elasticity theory to obtain the phonon spectrum
of the suspended nanostructures. In this limit the phonons
correspond to the free vibrational modes of the cavity,18 as
determined by the elastic theory of solids.25 The continuum
elasticity model has been successfully used to describe
the properties of propagating phonons in beams,26,27 thin
membranes,16,28 and arrays of nanomechanical reso-
nators.29,30

To secure the correct description of the thermal properties
of suspended nanostructures of a few �m2 in area in the
sub-Kelvin temperature regime, at least a few thousand vi-
brational modes must be calculated with confidence. A vari-
ety of methods intended to calculate the free vibrations of
thick plates have been developed.22 Since the simplified
models like the classical plate theory �CPT�31 are adequate
only for the lowest modes of thin plates, a three-dimensional
analysis of the free vibrations of the cavity is necessary. In
general such methods utilize the Rayleigh-Ritz formalism to
determine the displacement field, which is represented as a
series of orthogonal polynomials.32,33 In this work we follow
the procedure developed by Zhou et al.32 due to its simplicity
and generality as well as for producing very accurate natural
frequencies. For the sake of completeness, the method is
summarized next.

For the problem of the free vibrations of isotropic struc-
tures in the small strain approximation, the kinetic �T� and
strain �U� elastic energy functionals for the displacement
field u�r� , t�=U�r��ei�t can be written as

T =
�

2
� �� �ux

�t
�2

+ � �uy

�t
�2

+ � �uz

�t
�2�dv , �1�

U =
E

2�1 + �� � � ��1
2

1 − 2�
+ �2 +

�3

2
�dv , �2�

where � is the mass density, E is the Young’s modulus, and �
is the Poisson’s ratio. The � quantities in the strain energy
term are �1=�i	ii, �2=�i	ii

2, and �3=�i
j	ij, for i , j
= �x ,y ,z�, with the components of the strain 	ii=�iui, and
	ij =� jui+�iuj. It is convenient to normalize the coordinates
with respect to the dimensions of the plate, defining the di-

mensionless variables �=2x /Lx, �=2y /Ly, and 
=2z /Lz in
the interval 	−1,1
. The time-independent displacement field
U�r�� is then written as a sum of orthogonal Chebyshev poly-
nomials multiplied by boundary functions F��� ,��,

Ux��,�,
� = Fx��,���
i,j,k

AijkPi���Pj���Pk�
� , �3�

Uy��,�,
� = Fy��,���
i,j,k

BijkPi���Pj���Pk�
� , �4�

Uz��,�,
� = Fz��,���
i,j,k

CijkPi���Pj���Pk�
� , �5�

with the summations beginning from zero. The functions
Pn��� are Chebyshev polynomials of the first kind and de-
gree n, defined by the relation

Pn��� = cos	n arcos���
 , �6�

with n a non-negative integer. The boundary functions
Fx�� ,��, Fy�� ,��, and Fz�� ,�� have the general form
F��� ,��= f�

1���f�
2���, with �=x ,y ,z. For our purposes the

boundary conditions of interest are FF �free-free�, CC
�clamped-clamped�, and CF/FC, which correspond, respec-
tively, to the functions f�

1���� f�
2���=1, f�

1���� f�
2���=1

−�2, and f�
1���� f�

2���=1±�.
Substituting the series representation for u�r� , t�=U�r��ei�t

into Eqs. �1� and �2�, one obtains Tmax and Umax, which are
the maximum values of T and U during a vibratory cycle.
The frequency determinant is formulated by minimizing the
functional Umax−Tmax with respect to each of the coefficients
�A
, �B
, and �C
, to produce the 3D elastic equations of
motion

�	K
 − �2	M
���A

�B

�C


� = 0, �7�

where �=�Lx
�� /E is a dimensionless parameter and � is

the free vibration frequency, to be assigned to the phonons.
In Eq. �7�, 	K
 and 	M
 denote the symmetric stiffness matrix
and the block diagonal mass matrix, respectively, which can
be found in explicit form in Ref. 32. Another useful dimen-
sionless parameter associated with the frequency is �
= �� /���2��12�1−�2�, with �=Lx /Ly and �=Lz /Ly, which
yields the normalized frequencies for the family of all rect-
angular plates with the same aspect ratios �� and �� and
elastic constants �E and ��.

An important aspect of the present analysis is the reliabil-
ity of the phonon spectrum to be used in the evaluation of the
thermodynamical properties of the nanostructure. For that
reason the convergence of the highest frequencies was lim-
ited to be within 5%. The spectrum span can be extended by
increasing the amount of basis functions Pn��� used in the
representation of U�r��. In the instance of the thickest square
plate to be considered, with �=0.5, we have used nx=ny
=29 and nz=13 Chebyshev polynomials, yielding approxi-
mately 12000 reliable modes. For the thinnest plate, �
=0.02, the best results were obtained for nx=ny =51 and nz
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=4 that yielded 4000 reliable phonon modes. The number of
reliable frequency modes will determine the maximum tem-
perature �Tmax� for which the heat capacity can be calculated
with confidence.

The dependence of the phonon frequencies on the mate-
rial parameters is such that higher frequencies are obtained
for stiff and light materials. Table I contains the values of the
mass density, Young’s modulus and Poisson’s ratio for mate-
rials of relevance for the fabrication of NEMS. This work
investigates nanostructures made of amorphous silicon car-
bide �a-SiC� because of its high rigidity and widespread use
in the fabrication of suspended NEMS.

The calculated spectra exhibit significant dependence on
the dimensions of the nanostructure, as illustrated in Fig. 1
for the first 2500 vibrational modes of free standing a-SiC
mesoscopic structures. The structures have the same lateral
dimensions Lx=Ly =L=2 �m but different thickness-to-side
ratios: �=0.02 �solid�, 0.05 �dashed�, and 0.1 �dotted-
dashed�. At the lower part of the spectrum the frequencies
are higher for the thick plates, however, the behavior is re-
versed as the mode index � increases. The frequencies are
also inversely proportional to the area of the plate. Moreover,
by a numerical analysis of the eigenfrequencies it was ob-
served that the vibrational spectrum of the cavities can be
very well described by the form �=�0�� in two limiting
cases: for the quasi-2D phonon cavities ���0.02� the fitting

yields ��1, whereas for the three-dimensional �thick� pho-
non cavities ���0.2� one obtains 0.4
�
0.5. Between the
two cases, i.e., for moderately thick nanostructures, the fre-
quencies cannot be well described by a single power curve.

In the following we examine the heat capacity of the pho-
non cavities, as predicted by the 3D analysis. For the sake of
comparison, we also utilize a basic model to describe the
confined phonons, which comprises some of the reductionist
features commonly found in the literature.7,38 Its main as-
sumption is that the phonons can be described by plane
waves with three independent polarizations: one longitudinal
and two transverse. In addition, as the dimensions of the
structure become sufficiently small, i.e., comparable to the
mean free path of the phonons, these become standing waves
satisfying the appropriate boundary conditions. The method
is here designated bounded plane wave model �BPWM�. For
the nanostructures under consideration and because of the
very low temperature, it is assumed that the phonons form
standing waves in all three directions. In comparison with
the 3D analysis, different predictions for the specific heat are
expected on the basis of the BPWM, owing to its naive rep-
resentation of the phonon modes in suspended nanostruc-
tures. However, despite the simplicity, it will be shown that
the BPWM can describe the heat capacity of thick phonon
cavities quite well.

According to the BPWM, the phonon spectrum of a freely
suspended nanostructure is easily obtained from the wave
vectors

�lmn
2 = �2�� l

Lx
�2

+ � m

Ly
�2

+ � n

Lz
�2� , �8�

with l, m, and n integers. The frequencies for the longitudinal
and transverse modes are given by �lmn

l =vl�lmn and �lmn
t

=vt�lmn, with the sound velocities of the a-SiC obtained
from the elastic constants of the material: vl=12 170 m/s
and vt=7450 m/s.

III. HEAT CAPACITY OF SUSPENDED PHONON
CAVITIES

Having calculated the displacement modes U��r�� and the
associated eigenfrequencies ��, corresponding to the free vi-
brations of the plate, the quantum mechanical phonon modes
of the cavity are obtained by the standard quantization
procedure.18 As a result, we ascribe the energy U=���n�

+1/2���� to the phonon system and calculate the quantum
mechanical heat capacity of the phonon cavity as

CV�T� =
�U
�T

=
�

�T
�
�

���

exp����/kBT� − 1
, �9�

with n� given by Planck’s distribution. Since the harmonic
regime complies with the small strain limit that is assumed in
the present derivations, the constant-volume specific heat
�cv� must equal the constant-pressure specific heat �cp�.39

Moreover, for bulk metallic samples it is generally found that
the low temperature specific heat varies as cv=AT+BT,3

comprising the electron and phonon contributions, respec-
tively.

TABLE I. Physical constants of relevant materials in the amor-
phous phase.

Material � �g/cm3� E �GPa� �

GaAsa 5.1 71 0.32

Sib 2.3 170 0.22

SiNc 3.1 285 0.20

SiCd 3.0 400 0.20

aReference 34.
bReference 35.
cReference 36.
dReference 37.

FIG. 1. Natural vibration frequencies, as a function of the mode
index �, calculated by the 3D method for a free standing square
��=1� a-SiC nanostructure of sides L=2 �m and �=Lz /L equal to
0.02 �solid line�, 0.05 �dashed line�, and 0.1 �dotted-dashed line�.
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Next we show predictions for the heat capacity obtained
through the 3D analysis as well as results gained by the
simplified method. The phonon cavities to be considered are
free standing a-SiC square plates ��=1� with lateral dimen-
sions L=2 �m and having different thickness-to-side ratios,
namely �=0.02, 0.05, 0.1, 0.2, and 0.5. CV is calculated for
temperatures T�Tmax, where Tmax is the maximum tempera-
ture that allows reliable results to be obtained with the avail-
able phonon modes. That is, if T�Tmax additional modes
must be included in the calculation of CV since the occupa-
tion of the high energy modes is increased. Figure 2�a� pre-
sents the specific heat cv=CV /V as a function of temperature
for phonon cavities of different thicknesses, as obtained
through the 3D analysis. For temperatures T�100 mK the
calculations reveal more than an order of magnitude differ-
ence between the quasi-2D ���0.05� and the three-
dimensional ���0.2� phonon cavities. Figure 2�b� shows the
heat capacity 	CV�T�
 for two limiting cases, represented by
the quasi-2D ��=0.02� and fully three-dimensional ��=0.5�
suspended nanostructures. Results gained from the BPWM
are also shown by the gray curves. Particularly, the BPWM
predicts very good results for the three-dimensional cavities,
but seriously underestimates the heat capacity of the
quasi-2D structures.

Throughout the analysis we have considered thin as well
as thick suspended nanostructures. That raises the question,
how is the system’s dimensionality reflected on the behavior
of CV�T�? In Ref. 38 the dependence of the specific heat on
the dimensionality of the system was investigated with a
model similar to the BPWM. It was shown that the relation
CV�Td should hold for a confined phonon gas in the low
temperature limit, with d as the system’s dimensionality, sup-
porting the inaccurate notion that CV�T2 for quasi-2D pho-

non cavities at sub-Kelvin temperatures. Here we perform
such an analysis and demonstrate instead that the heat capa-
city of realistic quasi-2D phonon cavities approaches the lin-
ear dependence CV�T in the low temperature limit. For that
purpose consider the quantity

pC�T� = T
�	ln CV�T�


�T
, �10�

which provides the temperature dependence of CV�T�. For
instance, if the heat capacity is given by CV�T�, we have
simply pC=�.

Figure 3 presents the calculated values of pC�T� for free
standing square plates with lateral dimensions L=2 �m and
the thickness-to-side ratios previously considered, ranging
through the quasi-2D to the fully 3D cases. The upper panel
shows that CV approaches the linear CV�T behavior at tem-
peratures T�0.3 K, particularly in the case of the thinnest
cavities with �=0.02 and 0.05. Such a result is expected to
hold for strict 2D systems like graphene, although the effect
has been predicted also for the specific heat of a 2D array of
nanomechanical resonators.29 In fact, the sub-T2 behavior is
observed here even in the case of the moderately thick cavi-
ties with �=0.1 and 0.2, at lower temperatures. As the tem-
perature increases pC tends to 3, indicating that the thickness
of the cavity becomes much larger than the dominant phonon
wavelength; on the other hand, for vanishing small tempera-
tures, lower than the fundamental vibrational energies, the
phonon cavity behaves as a zero-dimensional system. In this
case the specific heat decreases exponentially and pC di-
verges with T−1. The CV�T behavior is commonly associ-
ated with quasi-1D systems like single-wall nanotubes
�SWNT� at low temperatures.40 However, as the temperature

FIG. 2. �Color online� �a� Specific heat �cv=CV /V� as a function
of temperature obtained from the 3D analysis for a free standing
a-SiC square cavity of lateral dimensions L=2 �m and �=0.02,
0.05, 0.1, 0.2, and 0.5, in that order from top to bottom. �b� The heat
capacity �CV� for the quasi-2D �=0.02 �solid line� and fully 3D �
=0.5 �dashed line�. The gray curves are predictions from the
BPWM �refer to the text�.

FIG. 3. �Color online� pC�T� for free standing a-SiC square
plates with L=2 �m. In the upper panel the predictions of the 3D
analysis for different �, as indicated by the labels. In the lower
panel pC for the quasi-2D ��=0.02� and fully 3D ��=0.5� cases.
The gray curves are the results gained from the BPWM.
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decreases beyond T�0.5 K a sublinear behavior is observed
in such systems.41 The effect is ascribed to the overwhelming
contribution of the flexural modes to CV, since those modes
present ��q��q2 and consequently CV�T1/2.42,43

The lower panel of Fig. 3 compares the results obtained
from the 3D analysis with those of the simple BPWM. Ac-
cording to earlier calculations, both methods produce similar
results for fully three-dimensional structures, but the BPWM
yields the wrong pC�2 value for quasi-2D structures. In the
last case, it has been verified that the simple classical plate
theory �CPT� for flexural modes, which reduces the dimen-
sions of the problem from three to two by incorporating
some of the plate’s characteristics such as bending
moments,25,39 yields a close estimate for the temperature de-
pendence of CV�T�. The CPT fails, however, as the tempera-
ture raises above T� ��vs / �LzkB�, vs being the sound veloc-
ity, because longitudinal and torsional modes begin to
contribute significantly to CV. Because of the significant dif-
ference between the predictions made by the 3D analysis and
the BPWM for thin nanostructures, pC may be a convenient
observable to experimentally determine the emergence of co-
herent quantum mechanical dynamics in mesoscopic phonon
cavities.

An additional property of the suspended phonon cavities
is the scale invariant character of their heat capacity, de-
scribed as CV=F�TL�, where F represents the functional in
Eq. �9�. Namely, CV is invariant regarding the product of the
temperature �T� with a characteristic lateral dimension �L� of
the structure. For the sake of clarity we consider a square
cavity, but the same result can be derived for rectangular
cavities with Lx=�Ly, or triangular ones. First notice that the
phonon frequency can be written as

�� =
�2�

L
��� E

12��1 − �2�
. �11�

Thus ���1/L, for plates of a given thickness-to-side ratio �.
The dimensionless parameter �� is also a function of � and
�, therefore independent of the absolute dimensions of the
plate. Then, from the definition of the heat capacity, Eq. �9�,
with the derivative and summation operations commuted, it
is easily verified that a transformation that leaves �� /T
�1/ �LT� invariant does not change the heat capacity. Con-
sequently, the results that have been presented for square
phonon cavities of lateral dimension L=2 �m can be gener-

alized for congruent cavities of arbitrary size L�, with the
temperature rescaled to T�= �L /L��T.

Different types of suspended cavities were also investi-
gated, such as bridges �CCFF� and cantileverlike �CFFF�
structures, yielding results in qualitative agreement with
those previously illustrated, for both the vibrational spectrum
and the specific heat. It is observed that the parameter pC
shows a tendency towards the value 1 for elongated struc-
tures. For instance, in the case of �=0.1 and �=Lx /Ly =4 we
obtained pc�1.5 at T=Tmax.

The hitherto calculations of the heat capacity of phonon
cavities have not taken into account the additional degrees of
freedom comprised by impurities, disorder and surface de-
fects, etc., that will be responsible for an increase of CV. In
particular, the specific heat of bulk noncrystalline solids ex-
hibits an anomalous linear variation with the temperature44

for T
1 K. The present results, however, set a lower bound
for the specific heat of such dielectric nanostructures.

IV. CONCLUSIONS

We presented a detailed investigation of the vibrational
spectrum and the heat capacity of suspended dielectric me-
soscopic structures of various thicknesses at sub-Kelvin tem-
peratures. More than 4000 frequency modes of the cavity
were accurately obtained from the 3D elastic equations in the
small strain regime. It is therefore demonstrated that the low
temperature heat capacity of realistic quasi-2D phonon cavi-
ties have an approximate linear dependence on T, a result
that contradicts estimates obtained by simple models. The
sub-T2 variation of the heat capacity is observed even for the
moderately thick mesoscopic structures. The results show the
importance of a fully 3D analysis based on the elastic equa-
tions of suspended plates, bridges and cantilevers, for the
correct determination of their thermal properties. Finally, the
sub-T2 effect evidences the quantum mechanical nature of
the phonon cavity dynamics and sets a lower bound for their
specific heat. The reported results should have special inter-
est for suspended nanostructures intended to be part of solid
state quantum devices.
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