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Possibility of increased mobility in Ge-Sn alloy system
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We study the effect of strain and alloying with Sn on the band structure of Ge using a combination of ab
initio and empirical pseudopotential techniques. The properties calculated are used to determine the phonon
and alloy scattering contributions to the mobility. Using the dependence of the mobility on strain and alloying
Sn, we propose a combination of alloying and biaxial strain to enhance both the electron and hole mobilities

of Ge.
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I. INTRODUCTION

For more than a decade, silicon microfabrication technol-
ogy has focused on fabricating smaller and faster integrated
circuits (ICs), and this has resulted in an increase of infor-
mation processing power by almost a factor of 2 per year.
However, at the current juncture, the heat generated during
the switching of transistors in ICs is beginning to limit the
switching rate that can be achieved. Therefore it is attractive
to consider higher mobility semiconductors. As a result,
there have been several experimental attempts to grow
higher mobility semiconductors such as strained GaAs (Ref.
1) and strained Ge.>® Here we extend this approach by sug-
gesting a combination of alloying and straining for Ge.

The mobility of semiconductors is principally determined
by their electronic structure and scattering mechanisms. Ex-
perimental mobility measurements for Ge and other diamond
and zinc-blende semiconductors show a large temperature
dependence of the mobility* at room temperature indicating
that phonon scattering dominates the resistivity of electrons
at this temperature. Since both the electronic structure and
the electron-phonon couplings in these semiconductors are
well understood, a number of calculations of the electron and
hole mobilities can be found in the literature.’ These elec-
tronic structure properties can also be calculated from first
principles. Recently several calculations of the mobilities of
a number of semiconductors such as Ge, Si, GaAs, and SiGe
alloys etc. from first principles have been reasonably
successful.®

A comprehensive study of the temperature and strain de-
pendence of mobility in Ge and Si-Ge alloys was carried out
by Fischetti and Laux.® In general, even though the effective
masses and the position of the valence band edges give an
approximate idea of the hole mobility, the actual calculation
is complicated by the near degeneracy and warped structure
for the valence bands. Therefore these authors solve® the
Boltzmann transport equations for the holes in the valence
band accounting for both interband and intraband phonon
scattering to obtain an estimate for the hole mobility as a
function of strain. However, as we shall see later, for the case
relevant to our current discussion this degeneracy is lifted by
strain. So an estimate of trends in mobilities can be made
based on trends in density of states and transport effective
masses.
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There are several ambiguities that arise in theoretical and
experimental analysis of the electronic structure of Ge.
Therefore, in the following sections we examine some of the
above calculations using several theoretical approaches such
as empirical pseudopotentials,’ density functional theory, and
the GW method,® and explore the possibility of obtaining a
high electron and hole mobility semiconductor in a Ge-Sn
system.

II. MOBILITY IN DIAMOND AND ZINC-BLENDE
SEMICONDUCTORS

The mobility of an electron or a hole in a semiconductor
at room temperature is determined by its effective mass m"
and the electron-phonon scattering time 7 by the relation

= (1)
m

The scattering time 7 for phonon scattering is related to
the phonon scattering potential, W, and the density of states
of electrons, N(E), by Fermi’s golden rule.

1

— o [WEN(E). (2)
r

The density of states of electrons for a simple band at I is

given by
1 2m;05)3’2 "
NE)=—\—"]| E', 3
mZOS = (mymymy)'", 4)

while the phonon scattering potenthLl for an almost classical
distribution of phonons scales as VkT.

So if we ignore the energy dependence of the scattering
matrix elements, the carrier mobility has a scaling given by®

TR T'3/2m*_5/2. (5)

However, in the above scaling relations we notice that the
density of states factor in the scattering contributes m” >
while the transport effective mass appears as m ~'. Since
these are not directly related in the nonparabolic anisotropic
valence bands in Ge, we can define a thermally averaged
density of states effective mass by
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TABLE 1. Semiconductor mobilities.

Semiconductor e [cm?/(Vs)] w, [em?/(Vs)]
Diamond 1800 1200
Si 1350 480
Si (strained)? 2300 3600
SiolgGe()la 500 250
SigsGeg, (W/o alloy sc)* 1000 1000
Ge 3600 1800
GaAs 8000 300
4Data from Ref. 6.
o\ 32 ff(E)N(E)dE
— = (6)
Mo/ pos

f J(E)Ny(E)dE

where we have used the free electron density of states for
Ny(E), and f(E) is the Boltzmann distribution function de-
fined by f(E)=exp[—E/(kgT)].

The transport effective mass is anisotropic in general and
is defined through the thermal average of the band curvature
as below:

PE
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An examination of the mobilities of standard zinc-blende
and diamond semiconductors, that are shown in Table I, re-
veals that GaAs has the highest electron mobility while Ge
has the highest hole mobility among unstrained semiconduc-
tors with a sizeable band gap that have the zinc-blende sym-
metry group.

In the table we have also included some strained semicon-
ductors. Strain has been shown to increase mobility signifi-
cantly in Si. However, in these cases the results we cite® are
theoretical, which in the case of the Si-Ge alloy compare
reasonably to experiment.

According to the k.p expression,lo the effective masses of
the band edge states should decrease with decreasing band
gap for direct band gap systems, resulting in increased mo-
bilities. However, decreasing the gap also increases leakage
tunneling currents in devices, making semiconductors with
small gaps difficult to use for designing devices. We have
ignored a number of very high mobility lead compounds for
this reason.

Hetero-polar semiconductors such as GaAs have a low
hole mobility due to the enhanced scattering from polar
phonons.!! The trend in the hole mobility for elements down
column IV of the periodic table is a result of the decreasing
hole effective mass and the increasing phonon occupancies
due to decreasing phonon frequencies. So, Ge has the largest
hole mobility among the unstrained structures. The high
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electron mobility of GaAs is due to the low effective mass of
the conduction band edge minimum which is located at I" in
GaAs.

As noted by Fischetti and Laux,® applying a volume ten-
sile strain to Ge results in lowering the I'; state so that it
becomes the bottom of the conduction band and is similar to
GaAs. At zero pressure, the minimum of the conduction band
of Ge is at the L point. The longitudinal effective mass at the
L point is 1.59m, while the transverse effective mass is
0.082m,. Application of volume tensile strain results in the I"
point minimum moving below the L point. The conduction
band minimum at I which is the I'7 state has a small effec-
tive mass of about 0.041m,.'° If we assumed that the electron
mobility is inversely proportional to the effective mass, this
leads to the conclusion that the mobility of the I'; electrons
is about 25 times higher than that of the L electrons. In
addition, the scattering times at the I" and the L points are not
necessarily the same. However, a lower bound on the mobil-
ity of the I'; is obtained by observing that the mobility in
GaAs, which is a semiconductor with I"; as the bottom of the
conduction band, is 8000 [cm?/(Vs)]. Moreover, the effec-
tive mass of the I'; state in Ge is lower than the correspond-
ing state in GaAs which has an effective mass of 0.066m,
and the scattering in GaAs is stronger due to its hetero-polar
nature. Therefore for this model, the mobility of the I'] elec-
trons should be in excess of 25000 [cm?/(V s)], which is
about a factor of 8 higher than the zero pressure electron
mobility of Ge.

The hole mobility of group IV and group III-V semicon-
ductors is reduced by the increased scattering between the
degenerate valence bands at the valence band edge. This de-
generacy also leads to the heavier band occupying the top of
the valence band which further reduces the mobility. The
valence band degeneracy is a consequence of the symmetry
group of the diamond structure, and it can be lifted by using
a biaxial strain.'® Application of a biaxial strain can therefore
enhance hole mobility. However, the electron-phonon cou-
pling is stronger in the valence band so the hole mobility
continues to be lower than the electron mobility even after
the degeneracy has been lifted.

Two ways to apply the equivalent of a tensile volume
strain to Ge are to alloy Ge with Sn and to grow Ge on
Ge/Sn buffer layers. The former method involving Ge/Sn
alloys has been used by Kouvetakis et al.'? to obtain a direct
band gap Ge based semiconductor. They estimate that the
transition to a direct gap material occurs at about 15% Sn.
However, they do not report any measurement of the electron
or hole mobility of this material.

We examine the amount of Sn needed to transform Ge
into a direct band gap material for both cases and estimate
the mobility gain in the process. Later, using empirical
pseudopotential band gap calculations, we show that the
amount of Sn that must be alloyed into the material is lower
in the case of biaxial strained heterostructures rather than
direct alloying of Ge and Sn. In addition to increasing the
electron mobility, biaxial strain can also increase the hole
mobility by more than a factor of 4.6

II1. STRAINED Ge-Sn SYSTEMS

Recent advances in experimental techniques have lead to
the fabrication of high quality Ge-Sn alloys.'? These alloys
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have been seen to have low levels of segregation of Sn and
misfit dislocations. Thus it is possible to speculate that their
mobility is limited by more intrinsic phonon and alloy scat-
tering mechanisms.

We consider two approaches for increasing the mobility in
Ge-Sn systems. One of them is to biaxially strain Ge by
growing it on Ge-Sn alloy substrates. This is similar to the
techniques used by Myronov et al.” for Ge, and Antoniadis et
al.® for Si-Ge systems to obtain a high hole mobility. Since
Sn has a lattice constant of 6.49 A which is higher than the
Ge lattice constant of 5.65 A, the Ge-Sn alloy has a larger
lattice constant. The lattice constant of a Ge-Sn alloy is
known to be almost linear in the concentration of Sn. Hence
a Ge-Sn alloy with 6.72% Sn would have a lattice constant
1% higher than Ge. Ge grown on such a Ge-Sn alloy with an
increased lattice constant will be biaxially strained. The re-
sulting biaxial strain on Ge as mentioned above increases the
electron and hole mobility.

The other technique is to alloy Sn directly into the Ge
transport layer. These alloys have recently been experimen-
tally realized and studied.'? Alloying Sn in addition to in-
creasing the lattice constant of the material alters the pseudo-
potential and increases the spin-orbit coupling. Even though
the effect of the pseudopotential is not clear without an ex-
plicit calculation, one expects the enhanced spin-orbit cou-
pling to lower the conduction band minimum at I relative to
the other states, and this increases the electron mobility.
However, alloying Sn into Ge is expected to create for the
most part a uniform volume strain which preserves the sym-
metry and therefore doesn’t alter the valence band properties
significantly. Therefore, even in the alloying case one would
have to introduce an additional biaxial strain through grow-
ing the alloy on a buffer layer in order to increase the hole
mobility. However, it must be noted that the mobility in
Ge-Sn should also be reduced by alloy scattering.

After studying these techniques we conclude that a com-
bination of the two approaches is possibly the optimal way to
create a higher carrier mobility Ge-Sn based semiconductor.

IV. ELECTRON MOBILITY IN DIRECT BAND GAP
STRAINED Ge

As has been noted in numerous studies of the effect of
strain on Ge, on increasing the unit cell volume the band
gaps from the top of the valence band at I'§ to the I'; state
and the L conduction band minimum decreases. However,
the rate of decrease of the I'; gap is higher than that of the L
gap. According to Pollak and Cardona,'” the experimentally
measured pressure coefficients of the gaps in Ge are 13
X 107 eV/atm for the direct gap associated with the I'; state
and 5% 107 eV/atm for the indirect gap associated with the
L state. The indirect gap of Ge is 0.76 V and the direct gap is
0.9 V.7 The experimental bulk modulus is 75.03 GPa. From
this, the strain coefficients of the direct and indirect gaps are
calculated to be

dE(Ly)

dllog(a)] dllog(a)] 12.67(eV).  (8)

Using these values and the band gaps from Table II, Ge
should make a transition into a direct band gap semiconduc-

32.9(eV),
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TABLE II. Ge and Sn direct and indirect gaps.

Semiconductor I (eV) L (eV)
Ge 0.90 0.76
Sn -0.42 0.14

tor at a lattice constant which is 0.8% higher than the zero
pressure lattice constant. Under this strain, the gap can be
estimated to be 0.66 eV.

This could be attained by alloying 5.4% Sn into Ge. The
alternative possibility is to biaxially strain the crystal to cre-
ate an equivalent volume strain. However, because of the
elasticity properties of Ge, increasing the in-plane lattice
constant by 1% decreases the out of plane lattice constant by
0.7%.° So one would have to increase the in-plane lattice
constant of the crystal by 1.8%. This can be done in principle
by growing Ge on a Ge-Sn alloy with 12.4% Sn.

Since there is a possibility of significant ambiguities in
the measurement of band gaps, and the calculation of the
band gaps involve some approximations, we have verified
this result through several independent calculations. Corkill
et al."® have calculated the pressure dependence of the direct
and indirect gaps of Ge using density functional theory in the
local density approximation (LDA). Their results are given
in Table III.

Using these values we can derive the following strain co-
efficients for the band gaps.

dE(T5) dE(L)
d[log(a)] d[log(a)]

Our LDA calculations yield similar results. The band gaps
of semiconductors are known to be underestimated by den-
sity functional theory. In fact, within LDA at zero pressure,
Ge has a vanishingly small gap. This makes the calculation
of strain dependence at zero pressure problematic within
LDA. Quasiparticle corrections introduced through the GW
formalism yields gaps in agreement with experiment to less
than 0.1 V. However, as has been argued by Louie and
Zhu,'* the GW corrections to the band gaps are independent
of strain to a good approximation. So the LDA pressure co-
efficient should be a reasonable estimate. The LDA calcula-
tions that we performed did not include spin-orbit correc-
tions. A first-principles calculation of the strain coefficients
of the gaps including spin-orbit and GW is possible in prin-
ciple, and a calculation of this kind should yield results in
close agreement with experiment. However, this is made dif-
ficult due to the technical problems associated with the fact
that within LDA, which provides the starting point of the

=29.7(eV), =102(eV). (9

TABLE III. Gap strain coefficients of Ge.

State E (eV) at a=5.36 A E (eV) at a=5.97 A
r; 132 7.2
L 12.0 8.1
T} 10.9 8.1
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GW calculations, Ge is a metal at volumes slightly larger
than at zero pressure. Hence, we perform an empirical
pseudopotential calculation which includes the spin-orbit
correction. The empirical pseudopotential method (EPM) is
not a first-principles method since the three EPM parameters
used are fit to experiment. However, the EPM method is
known to reproduce the band structures of a large family of
semiconductors with a high degree of accuracy. Our EPM
calculation resulted in a value of 28.3 eV for the strain co-
efficient of the direct gap both with and without spin-orbit
coupling. Therefore, even though each of these methods have
their limitations and can only reproduce certain aspects of
band structure data, all of them yield similar values for the
strain coefficients.

V. HIGH ELECTRON MOBILITY IN Ge-Sn ALLOY

Heavy elements like Sn have large spin-orbit couplings
which are expected to raise the energy of conduction band
states other than those at the I" point. Therefore it is expected
that if one were to alloy Sn into Ge, then the direct gap
would be decreased relative to the indirect gap due to spin-
orbit coupling, in addition to the decrease due to the in-
creased lattice constant. Therefore one expects the fraction of
Sn needed to attain a direct band gap semiconductor to be
less than our previous estimate of 5%. However, Kouvetakis
et al.'? have reported a composition of 15% Sn to be the
point where a direct band gap semiconductor is obtained.
The direct and indirect band gaps of Ge and Sn are listed in
Table 1.7

Using pseudopotential calculations, Jenkins and Dow!?
obtained a linear dependence of the gap of the Ge-Sn alloy
system with composition. Assuming this holds in Ge-Sn al-
loys, one expects an indirect to direct band gap crossover
point to occur at

x=0.2, with E(I)=0.64(eV), (10)

where x is the fraction of Sn and E(I') is the band gap at that
composition.

In order to get a better understanding of why the percent-
age of Sn required for a crossover to a direct band gap ma-
terial is higher in the Sn alloy case than in the pure strain
case, we perform an EPM calculation with spin-orbit cou-
pling taken into account.

These calculations suggest an estimate of 25% Sn with a
direct gap of 0.6 V at the indirect to direct gap crossover in
agreement with the calculations of Baldereschi.'® However,
if we remove the Sn pseudopotential contribution to the po-
tential and use the Ge pseudopotential entirely, then we re-
cover our original estimate of 5% Sn and a gap of 0.66 V.

The difference in spin-orbit coupling does not affect the
results significantly. To see why this is reasonable we note
that the spin-orbit parameters of Ge and Sn are 0.00097 and
0.00225 (Ref. 7) in atomic units. So, an addition of 5% Sn
into Ge changes the Ge parameter by about 6.59%. Since the
orginal spin-orbit splitting in Ge was about 0.29 eV, it is
reasonable to assume that the change in spin-orbit splitting
does not qualitatively alter our conclusions since it is less
than a 20 meV effect.
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FIG. 1. Unstrained valence band structure of Ge from the [001]
to T to [111].

Therefore, contrary to expectations, alloying Sn requires
about 20% Sn to form a direct band gap semiconductor,
which is a larger amount than pure biaxial lattice constant
straining would require, which is about 5%.

VI. HOLE MOBILITY IN Ge

The valence band maxima of strained diamond semicon-
ductors have a rather complicated structure due to the inter-
action of spin-orbit coupling and strain. It comprises a dou-
blet of heavy hole band and light hole band which are
degenerate at I' and a split-off band. Since we are interested
in room temperature properties we can ignore the split-off
band and focus on the heavy-hole and light-hole band. In the
unstrained case, the former forms most of the upper valence
band edge. The hole mobility in this case is determined not
only by the warped valence bands, but it is also limited by
interband scattering. In order to estimate the mobilities we
calculate the thermally averaged density of states and curva-
ture effective masses since the warped band structure does
not allow for a simple definition of an effective mass. How-
ever, interband scattering cannot be completely neglected
even after the bands have been split by strain.

As previously remarked, the degeneracy at the top of the
valence band is related to the symmetry group of the dia-
mond cubic lattice. Also, k.p calculations show that the den-
sity of states effective mass of the heavy hole states is
0.38m,, which is much heavier than the light hole state,
which has an effective mass of 0.045m,, as is apparent from
Fig. 1. The curvature or transport effective masses show a
similar trend with the heavy-hole band having an effective
mass of 0.29m, and the light-hole band having an effective
mass of 0.043m,. This is a result of the degeneracy at the top
of the valence band.

Calculating an accurate value for the heavy-hole mass is
difficult when using local EPM, since the inverse of the
heavy-hole mass is small due to a cancellation between rela-
tively large matrix elements. The pseudopotential method
can reproduce the matrix elements and the band gaps to
within 10%. Since the inverse effective mass is down by a
factor of 5 from the typical values of the matrix element, a
direct pseudopotential calculation leads to the effective mass
being in error by about 50%. Therefore we use the empirical
k.p method for the effective masses.
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0.5 . 2
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FIG. 2. [100] strained valence band maximum structure of Ge
zoomed in around I'.

However, the symmetry induced degeneracy at the top of
the valence band can be lifted by applying a strain on the
crystal to break the symmetry. Moreover, an application of
strain in certain directions can allow the top of the valence
band to be lighter in mass or have the character of the light
hole in certain directions. In what follows we study the band
structure of the top of the valence band for Ge biaxially
strained in three directions. Since the two bands at the top of
the valence band cannot be characterized by their masses
after the application of strain but are split in energy, we refer
to them as the upper and lower valence band edge states,
respectively. Even though the splitting of the upper and
lower valence band states appears similar in the three cases,
straining along the [100] direction appears to lead to the
highest mobility.

A. Strain in the [100] direction

To determine the effect of a biaxial strain on the elec-
tronic structure perpendicular to the [100] direction we cal-
culated the band structure near the valence band maximum at
I" for Ge using the EPM technique with spin-orbit coupling
included. From the band structure shown in Fig. 2, it is clear
that in certain directions the top of the valence band has
light-hole character. But in other directions the band has
heavy-hole character.

The in-plane transport effective mass of the higher va-
lence band edge state is 0.27m,, while the out-of-plane mass
is 0.17m,. The density of states effective mass is 0.20m, for
the upper band which is the one that dominates the transport,
the other band is lighter with an effective mass of 0.08m, but
participates only weakly in transport. Therefore, we find that
even though the strain does not reduce the in-plane transport
effective mass significantly, it can increase the mobility by
reducing the density of states for phonon scattering. Assum-
ing an m*? scaling in the DOS effective mass [Eq. (3)] for
the mobility, we expect the hole mobility to increase to about
5100 cm?/Vs.

For a biaxial tensile strain of 1.0%, we find the splitting
between the upper and lower bands to be 83 meV in both the
EPM and the k.p methods which is somewhat higher than
room temperature. This is in reasonable agreement with
measurements.'® Therefore, there should be a significant re-
duction in interband scattering which together with the lower
in-plane effective mass is expected to enhance the mobility
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significantly. If we can completely neglect interband scatter-
ing we may imagine that the scattering phase space and
hence the scattering rate is reduced by a factor of 2. There-
fore, the mobility enhancement is expected to be stronger
than we predict by approximately a factor of 2 due to the
suppression of interband scattering.

This expectation is supported by previous theoretical
calculations® which have found the in-plane hole mobility to
be 10000 cm?/ Vs for a biaxial tensile strain of 1.0%, which
is more than a factor of 4 higher than the unstrained case.

B. Strain in the [111] and [110] directions

We perform a calculation similar to the [100] case pre-
sented above for the [111] case. In this case, as has been
pointed out by Martin et al.,'” it is necessary to account for
the distortion of the relative displacement of the basis atom.
Taking the experimental value for the lattice displacement
parameter {, we find from our EPM calculations that a 1%
biaxial expansive strain splits the heavy- and light-hole
bands by 83 meV, which is in quantitative agreement with
experimental measurement.'® This splitting being somewhat
higher than room temperature allows a single band to domi-
nate the conductance. The effective masses are similar to the
[100] strain case. The in-plane effective mass of the higher
valence band edge state is 0.44m,, while the out of plane
mass is 0.090m,. The average density of states effective mass
is 0.23m, for the upper band and 0.08m, for the other. The
[111] strain reduces the density of states effective mass in a
way similar to the [100] strain but appears to increase the
in-plane transport effective mass.

Biaxially straining the crystal in the [110] direction re-
duces the DOS effective mass in a way similar to the other
two cases, however, in one in-plane direction it increases the
transport effective mass similar to the [111] case and leaves
the other transport effective mass relatively unchanged, as in
the [100] case. The in-plane effective masses for the higher
valence band edge state are 0.64m, and 0.26m,, while the out
of plane mass is 0.10m,. The density of states effective mass
is 0.22m, for the upper band and 0.08m, for the other band.

Unlike the situation involving the conduction band, alloy-
ing a small amount of Sn does not change the structure of the
valence band in any qualitative way. This may be understood
in terms of the effective masses being determined by k.p
perturbation theory from the various gaps. As has been noted
earlier the addition of about 5% Sn does not alter the spin-
orbit coupling qualitatively, at least on the scale that strain
itself alters the band structure. Therefore, the hole mobility is
not altered significantly by the addition of Sn except for the
possibility of reduced mobility due to alloy scattering.

VII. ALLOY SCATTERING

In the previous sections we considered the phonon limited
mobility of Ge-Sn alloys and found that it was possible to
increase both the electron and hole mobilities of Ge by al-
loying with Sn and straining. However, it is known in Si-Ge
alloys that alloy scattering can lead to reductions in mobility,
which often offsets any advantage gained from alloying Ge.®
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Moreover, calculations of alloy scattering in semiconductors
until recently'® were based on an alloy scattering parameter®
and were therefore not suitable for a first-principles calcula-
tion where experimental mobility data is not available.

Therefore, we calculate the alloy scattering contribution
to mobilities in Ge-Sn alloys following the first-principles
approach of Murphy-Armando et al.'® and calculate the scat-
tering rate given by

1 2w ;
—="N1 —x)%z (V) PP(E), (11)
To B

where x is the Sn content, a is the cubic lattice constant, 8
labels states and p? is the density of states per spin, and the
scattering matrix is defined by

(Vagd = (Vag) = (Vo) = N[ (Ve = VSN @), (12)

where i are the eigenstates of the system with the Sn impu-

rity and ¢ are the wave functions of the pure Ge system.
We average the above scattering rate over a Boltzmann

distribution of energies for the electrons?! and get

L@y, KT, (V. >|2<2—mj‘:’)3/2 (13)
r, 3omh VTSR as\ )

The matrix elements are calculated using a 128 atom su-
percell with one impurity atom. The calculations are per-
formed in a plane-wave pseudopotential formalism using the
PARATEC!?0 code. We relax the atoms around the impurity
up to second nearest neighbors and calculate the matrix ele-
ments indirectly from the eigenvalues using two approaches.
In the first approach we calculate the difference in the eigen-
values at I' between the calculations with and without an
impurity atom, and in the other we consider the splitting of
degeneracies at the edge of the folded-back supercell Bril-
louin zone. From perturbative treatments of bandstructures in
the nearly free electron model it is known that both these
quantities are related to the scattering matrix element of the
potential. The splitting at the edge of the Brillouin zone from
degenerate perturbation theory is twice the matrix element
while the eigenvalue shift is equal to the matrix element. For
a finite supercell, the splitting approach calculates the matrix
elements for states different from I' since these states are at
the edge of the supercell Brillouin zone. For the 128 atom
supercell, used, this can lead to significant errors for the ex-
tremely light conduction band state at I", so we use the ei-
genvalue splitting as a rough check for the hole calculations.
However, the determination of the eigenvalue splitting is in-
dependent of the total potential shift which has to be ac-
counted for in the eigenvalue shift approach. Finally, we ac-
count for GW (Ref. 8) and spin-orbit corrections to the
matrix elements by calculating shifts in the band edges due
to these effects. The spin-orbit shift is calculated within the
EPM. The total matrix elements V, obtained from the eigen-
value shift and eigenvalue splitting approach and the corre-
sponding mobilities with 8% Sn are shown in Table IV. In
Table IV we have given the scattering matrix element used in
Eq. (13) from the two methods used to calculate them, i.e.,
from the eigenvalue shift at I' and the splitting at the edge of
the supercell Brillouin zone. In the next two columns we

PHYSICAL REVIEW B 75, 045208 (2007)

TABLE IV. Impurity scattering matrix elements in eV and mo-
bilities in [cm?/(Vs)].

State V (shift) V (split) w (shift)  u (split)
SiGe holes 1.564 1.144 380.088 701.4
strained GeSn holes 0.89 1.58 135694.5 4455.2
GeSn electrons 0.788 0.1 100 very large

give the impurity scattering contribution to the mobility cal-
culated from the two matrix elements.

In the above calculation we have ignored the effect of
biaxial strain on the matrix elements and other effects such
as the use of finite unit cells. We expect that these introduce
small errors into the calculation. However, we find that the
results in SiGe are in reasonable agreement with experimen-
tal data, and so we expect to be able to predict basic trends in
mobility. Therefore, based on these calculations we can rea-
sonably expect that a concentration of 8% Sn does not sig-
nificantly affect the electron mobility, while the effect of al-
loy scattering on the hole mobility still allows an increase in
the total mobility to about 4500 [cm?/(Vs)] or more, which
is more than a factor of 2 from the unstrained mobility.

VIII. CONCLUSION

In summary, we have examined the effect of strain and
alloying Sn on electron and hole mobilities in Ge-Sn group
IV semiconductor alloys. Consistent with previous work we
find that the electron mobility can be increased by at least a
factor of 4 by applying about 2.5% tensile uniform volume
strain to lower the bottom of the conduction band at I' below
the bottom of the conduction band at L. We have examined
two ways of achieving this. One of them is to strain the
lattice biaxially through epitaxial strain. For this we estimate
that Ge would have to be grown on a Ge-Sn alloy with
12.4% Sn. The other possibility was to alloy Ge and Sn to
increase the lattice constant of Ge. In agreement with experi-
ment we find that one would need to alloy 15% Sn.

For the hole mobility we found that the application of
about 1% of biaxial strain would split the light-hole and
heavy-hole bands, increasing the phonon-limited mobility by
a factor of 4. The proposed epitaxial strain technique strains
the in-plane lattice constant biaxially by 1.8%, which would
presumably increase the hole mobility further.

Therefore, from our study it appears that Ge biaxially
strained by growing Ge on a Ge-Sn alloy with 12.4% Sn
would increase both electrons and hole mobility. However, a
Ge thin film with a large in-plane lattice constant strain of
1.8% might be unstable to the formation of various defects
making this scheme impractical.

So we propose a combination of the two methods where
we grow a Ge-Sn alloy conduction layer on another Ge-Sn
alloy buffer layer, which has a larger concentration of Sn, so
that it can create a biaxial strain of 1% in the conduction
layer. As previously noted, 1% biaxial tensile strain increases
the volume by 1.3%. This decreases the difference between
the I'; and L conduction states to 0.06 V. Therefore, to trans-
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form the conducting layer into a direct gap semiconductor
one needs to alloy 7.5% Sn into the conduction layer Ge-Sn
alloy. In order for the buffer layer to have a sufficiently large
lattice constant so that it can apply a 1% tensile biaxial strain
to the conduction layer, it should contain 3.7% Sn in excess
of the conduction layer. This requires a composition of
11.2% Sn for the buffer layer. Apart from the reduction of
mobility due to alloy scattering, the above proposed Ge-Sn
system can be expected to be stable and have an increased
electron and hole mobility by a factor of 4. We also note that
to avoid interband electron scattering between the I" and L
valleys in the Ge-Sn alloy, we may need to raise the calcu-
lated Sn content in the above by about 10%. We find that
alloy scattering for the electrons is weak while it may reduce
the hole mobility to about 4500 [cm?/(V s)] which is lower
than the phonon-limited value by about a factor of 2, but still
continues to be higher than the unstrained case by more than
a factor of 2. However, it might also be possible to use the
Ge-Sn alloy only for electron transport and use a pure ger-
manium layer with 1% biaxial strain for hole transport. In
this case, one can obtain an enhancement of a factor of 4 in

PHYSICAL REVIEW B 75, 045208 (2007)

both carrier mobilities. Factors other than phonon and alloy
scattering such as segregation and misfit dislocations can
also limit the mobilities of Ge-Sn alloy layers.?>>3 However,
recently Kouvetakis et al.'?> have shown that it is possible to
grow high quality Ge-Sn alloys with relatively low levels of
segregation of Sn and misfit dislocations. Moreover, we are
restricting ourselves to a region of 1% tensile strain where
for Si-Ge alloys surface roughness is not very large.?
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