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Using the Hubbard chain at quarter filling as a model system, we study the ground state properties of highly
doped antiferromagnets. In particular, the Hubbard chain at quarter filling is unstable against 2kF- and
4kF-periodic potentials, leading to a large variety of charge and spin ordered ground states. Employing the
density matrix renormalization group method, we compare the energy gain of the ground state induced by
different periodic potentials. For interacting systems the lowest energy is found for a 2kF-periodic magnetic
field, resulting in a band insulator with spin gap. For strong interaction, the 4kF-periodic potential leads to a
half-filled Heisenberg chain and thus to a Mott insulating state without spin gap. This ground state is more
stable than the band insulating state caused by any non-magnetic 2kF-periodic potential. Adding more elec-
trons, a cluster-like ordering is preferred.
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I. HOLE DOPED ANTIFERROMAGNETS

The study of low-dimensional doped antiferromagnets
was triggered by investigations of the phase diagram of high
temperature superconductors. Upon doping, they show a
transition from an antiferromagnetic to a superconducting
state. On the other hand, the investigation of one-
dimensional compounds is also an active field. A simple
form of low doping in a Cu-chain is the replacement of a few
Cu ions by nonmagnetic ions such as Zn. In this case, the
system is well described by the Heisenberg model with some
spins removed.1 The charge and spin order of highly doped
compounds, on the contrary, are not understood at all. A
prototypical material revealing strongly doping dependent
charge order and antiferromagnetism in a less than half-filled
band is the spin chain compound �Ca,Sr�14Cu24O41. This
composite crystal contains two different structural compo-
nents along the c axis: Cu2O3 ladders and CuO2 chains.
Whereas the ladders contain only Cu2+ ions, nearly all Cu3+

ions are located on the chains.2 Substitution of calcium on
the strontium sites leads to a transfer of holes from the chains
into the ladders. For the Ca-rich compounds one generally
assumes one hole per formula unit on the ladders and five on
the chains. Near the quarter-filled band antiferromagnetic
order is established.3

DFT-LDA calculations,4 using the ASW method,5 reveal
that the ladder and chain substructures can be treated indi-
vidually. In particular, the density of states of the chains
shows a partially filled valence band, as illustrated in Fig. 1.
The origin of antiferromagnetism in these compounds is still
unclear, and the doping dependence of the charge order and
spin gap is discussed controversially.6 Recent studies on the
basis of the Heisenberg model show that a simple spin model
is not appropriate to describe the magnetization,7 indicating
the necessity of studying more advanced models, such as,
e.g., the Hubbard model.

In this article we address the stability of the proposed
charge order �clusterlike versus staggered�8 in
�Ca,Sr�14Cu24O41, considering the competition between ki-
netic energy, interaction, and periodic distortions, on the ba-
sis of the Hubbard model. Since no periodic lattice
distortion—with either two-site or four-site periodicity—is
found in the crystal structure9 we consider only periodic po-

tentials. Nevertheless, our results are relevant for all corre-
lated materials with quarter filled bands. Thus we aim at
understanding a whole class of materials on a common basis.

II. PERIODIC DISTORTIONS IN INTERACTING
CHAINS

Charge order—independent of magnetic ordering—in less
than half-filled bands is found, for example, in organic
charge transfer salts, such as the Bechgaard salts
�TMTSF�2X, with X=PF6, AsF6, ClO4, ReO4, or Br, or their
sulfur analogs �TMTTF�2X. These systems, which consist of
stacks of organic molecules forming weakly coupled one-
dimensional chains, exhibit a large variety of low tempera-
ture phases.10,11 They have been studied using a purely elec-
tronic model, namely, the extended Hubbard model with
next-nearest-neighbor interaction. Recent results have been
obtained by mean-field approaches12 and exact
diagonalization.13 On the other hand, charge order is often
connected to a structural transition and hence to electron-
phonon coupling. The coupling of a one-dimensional metal
to an elastic lattice results in an instability towards a periodic
lattice distortion commensurate to the band filling, known as
Peierls transition. Within a lattice model, the Peierls transi-

FIG. 1. �Color online� Partial Cu 3d density of states for the
CuO2 chains of Sr14Cu24O41.
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tion is captured by a modulated hopping term in the Hamil-
tonian of the noninteracting system.14 A periodic potential,
instead of a modulated hopping, has similar effects on the
electronic structure of the one-dimensional metal, leading to
a band insulator.

The interplay of electron-lattice and electron-electron in-
teraction is conveniently studied in the framework of the
Hubbard model. With interaction, the Peierls and the so-
called ionic model show different ground-state phase
diagrams.15 Many results are available for the half-filled
Hubbard model with periodic hopping or potential, for which
the transition from a band insulator to a Mott insulator has
been studied in.16–20 On the other hand, away from half fill-
ing no insulator-insulator-transition is present, but a variety
of ordering processes has to be taken into account.21 The
stability of the different ground states of the quarter-filled
Hubbard model with respect to a periodic potential has been
investigated22,23 less extensively as compared to the half-
filled model. The phase diagram of the quarter-filled Peierls-
Hubbard model is discussed in Ref. 24. Hence, we restrict
our calculations to the ionic potentials.

We access the stability regions of the ionic Hubbard
model by introducing several potentials connected with dif-
ferent ordering processes of charge and spin degrees of free-
dom into the Hamiltonian. In particular, we investigate
which potential leads to the largest energy gain, and analyze
against which potential or order the system is most unstable,
indicating which order will be established in nature. In our
calculations, we concentrate on the ionic Hubbard model at
quarter filling, for both weak and strong interaction. We de-
termine the ground state and the ground state energy as a
function of interaction, doping and potential strength, using
the density matrix renormalization group method.25 Thus,
our calculations give detailed insights into the properties of
hole-doped antiferromagnets.

III. MODELS

In the following section we first discuss the properties of
noninteracting electrons on a chain with different periodic

potentials and the phase diagram of the homogeneous Hub-
bard chain. In the last subsection we discuss some basic
features of the periodic Hubbard model.

A. Peierls model

The Peierls model is the prototypical model to study the
coupling of noninteracting electrons to the lattice. The
Hamiltonian is given by

HPeierls = − �
i,�

N

ti�ci,�
+ ci+1,� + H . c . � , �1�

where we consider a modulated hopping term with ti= t�1
+u cos�Qa · i��. N denotes the number of lattice sites and a
the lattice constant. In addition, Ne is the number of electrons
on the chain and Q the wave vector of the periodic distortion.
In the case of a commensurate distortion we have Q=2mkF,
m=1,2 , . . . . The dimerized chain Q=� /a at half filling
n=Ne /N=1 was investigated by Su, Schrieffer, and Heeger
�SSH�.14 Due to the periodic distortion a band gap �=4ut
opens at k�=Q /2. Since at half filling we have k�=kF, the
system is insulating. As is characteristic for a band insulator,
the gaps for charge and spin excitations are identical. In the
following, we concentrate on the quarter-filled band and
4a-periodic distortions, because in case of the 2a-periodic
distortion the quarter-filled system is metallic, since k��kF.

To begin, we determine the energy bands and the energy
gain due to a periodic modulation of the hopping parameter
with Q=� /2a. For quarter filling, kF=� /4a, this system
shows the Peierls transition, since Q=� /2a=2kF. The Fou-
rier transformation of the hopping term yields, in analogy
with the SSH model, the expression

HPeierls = �
k

�ck
+ck+Q

+ ck+2Q
+ ck+3Q

+ �tĥ���
ck

ck+Q

ck+2Q

ck+3Q

� , �2�

where the matrix ĥ�� is given by

ĥ�� =�
− 2 cos ka − u�eika + ie−ika� u�eika − ie−ika�

u�ieika − e−ika� − 2 sin ka − u�e−ika + ieika�
u�ie−ika − eika� 2 cos ka u�eika + ie−ika�

u�e−ika + ieika� u�e−ika − ieika� 2 sin ka
� . �3�

The eigenvalues of this matrix are

��k� = ± t�2�1 + 2u2 ± �cos2 2ka + 4u2�1 + sin2 2k�� ,

�4�

compare.26 The four energy bands are separated by the
energy gaps

�1 = 4ut, �2 = 2u2t, and �3 = �1, �5�

where �1=�2�k=kF�−�1�k=kF� and �2=�3�k=2kF�−�2�k
=2kF�. The energy gain of the fermions, for the quarter-filled
case, obtained by summing up the contributions of all
occupied states, is found to be �u2t ln u, as for half filling.
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B. Ionic model

Another type of periodic distortion is given by local
potentials, resulting in the so-called ionic model

Hionic = − t�
i,�

N

�ci,�
+ ci+1,� + H . c . � + �

i

N

Wini − �
i

N

hiSi
z.

�6�

Again, for the half-filled band the same calculation as before
can be performed for a periodic potential, with �c=�s=2W.
In case of the ionic model for a quarter-filled system we
compare several potentials, which correspond to different
charge and spin patterns.

�a� First, we study a simple potential with 2kF�4a� period,
given by Wi=W cos��i /2�. Here, the charge order for
zero hopping is given by 1/0.5/0/0.5 electrons per site,
periodically continued. Spin order is not established.

�b� A modification of �a� given by Wi=W cos��i /2�
+W cos���i+1� /2�, which leads to two occupied and two
unoccupied sites �“cluster”�,13 i.e., a 1/1/0/0 charge order.

�c� A charge order with a 1/0/1/0 pattern, i.e., a
4kF�2a�-periodic order, is forced by a potential with
Wi=W cos��i�. With interaction we likewise expect mag-
netic ordering.

�d� In addition, a local magnetic field with
hi=W cos��i /2��ni,↑−ni,↓� enforces a ↑ /0 / ↓ /0 pattern.
As in �c�, we expect a 2kF�4a� period for the spins and
correspondingly a 4kF�2a� period for the charges.

Diagonalizing the resulting Hamilton matrix, as described
above, yields the dispersions

�a�, �d� ��k�= ± t�2+w2 /2±�4 cos2�2k�+2w2+w4 /4,
�b� ��k�= ± t�2+w2 /2±�4 cos2�2k�+4w2,
�c� ��k�= ± t�w2+4 cos2k,

with w=W / t. Figure 2 shows the dispersion for potentials �a�

and �c�. In comparison to the Peierls model not only a gap
opens at k=Q /2 but the lower and upper bands are shifted
down and up, respectively. In case of a small perturbation,
the dispersion is similar for the Peierls and the ionic model,
as well as for potentials �a� and �b�. Potentials �a� and �d� are
equivalent in the noninteracting case.

The energy gain in the quarter filled band is found to be
about −W1.65 in cases �a�, �b�, and �d�. For small W, the
energy gain here is nearly the same in cases �a� and �b�,
whereas it becomes weaker in case �b� than in case �a�
at W	0.5t. In case �c�, the energy gain is quadratic,
E�W�−E�0�= 8

3W2. It mainly traces back to the band shift.
Accordingly, the gaps are given by

�a�, �d� �1=W, �2=�2W, �3=W;
�b� �1
W for small W, �1→�1

� for strong W,
�2=�2−W /2, �3=�1;
�c� �1=0, �2=W, �3=0.

C. Hubbard model

The Hubbard model is known to capture the interplay
between kinetic energy �delocalization� and interaction �lo-
calization� in electronic systems. The Hamiltonian is given
by

HHubb = − �
i,�

N

ti�ci,�
+ ci+1,� + H . c . � + U�

i

N

ni,↑ni,↓. �7�

The Hubbard model in one dimension is exactly solvable by
means of the Bethe ansatz.27 Note that in one dimension
another useful formulation of the Hubbard model is available
on the basis of the bosonization technique. The low lying
excitations of the noninteracting as well as the interacting
fermions system are sound waves, i.e., the Fermi system can
be described as a noninteracting Bose system, called a Lut-
tinger liquid, showing spin-charge separation. In the clean
case, the Hubbard model has three phases. For U	0, the
spin excitation spectrum has a gap and the low-lying charge
excitations can be described by those of a Luttinger liquid.
For U
0 and away from half filling, spin and charge exci-
tations are those of a Luttinger liquid. The last phase occurs
for U
0 and half filling, where the charge excitations have
a gap and the spin excitations are of Luttinger type. A rel-
evant 4kF-Umklapp scattering term, only present for half fill-
ing, is responsible for the Mott gap in the latter phase. The
bosonization technique is adequate for metallic systems or in
the weak coupling regime. It is useful to determine the phase
boundary between metals and insulators but it is not suitable
for distinguishing different insulating phases for intermediate
or strong perturbations.

D. Periodic Hubbard model

A commensurate periodic distortion—i.e., commensurate
to the band filling—introduces an additional nonlinear term
in the bosonized Hamiltonian, which couples spin and charge
degrees of freedom and destroys the integrability of the clean
Hubbard model. In the half-filled case we therefore find a

FIG. 2. �Color online� One-particle energy ��k� versus momen-
tum k, where W=0.1t and the horizontal lines indicate the Fermi
level of the half-filled and quarter-filled band. The straight line cor-
responds to the Q=� /a-periodic potential, the dashed line to the
Q=� /2a-periodic potential. The reduction of the Brillouin zone of
the clean model is obvious.
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transition between two possible insulating phases, i.e., the
band �Peierls� insulator �W ,ut�U� with charge and spin gap
of the same order and the Mott insulator �W ,ut�U� with a
charge gap proportional to the interaction, but vanishing spin
gap, where periodic distortion and interaction oppose each
other. However, the transition is fundamentally different for
the Peierls and the ionic Hubbard model.15,28 In the Peierls
model the transition between the two phases is smooth and
continuous,30 whereas a third phase—a spontaneous dimer-
ized insulating phase—is found in the ionic Hubbard model.
Within this phase, charge and spin gap are non-zero, and the
dimerization operator has a nonzero expectation value. In
fact, the extension of this phase is discussed controversially.

The situation in the quarter filled band is completely dif-
ferent. With interaction, no insulating phase is established,
except for very strong interaction, where higher order terms
of the Umklapp scattering can cause a Mott insulator on its
own.22 In the quarter-filled case with 2kF-periodic potential
we expect from bosonization a transition from the Luttinger
liquid to the band insulator in the noninteracting as well as in
the interacting system. The interaction modifies the expo-
nents of the gaps and the energy gain. Since they become
smaller with increasing interaction, interaction stabilizes the
band insulator. Here, the interplay between periodic distor-
tion and interaction is weak, since the quarter filled model
with interaction is still a metal. A similar situation is found
for half filled spinless fermions for weak interaction, where
the Umklapp scattering induces the insulator at finite inter-
action strength.29 In case of a 4kF-periodic potential Um-
klapp scattering becomes relevant23 due to the doubling of
the unit cell or, equivalently, due to the reduction of the
Brillouin zone, see the straight line in Fig. 2. In this case, the
system undergoes a transition from the Luttinger liquid to a
Mott insulating phase when the potential and the interaction
are present. Potential and interaction hence cooperate rather
than oppose each other as in the half filled ionic model.

An analysis of the ionic Hubbard model with another
2kF-periodic potential is given in Ref. 31. The authors find
the band insulator for weak interaction but strong potential.
Our 4kF-periodic pattern, hence the Mott insulator, is ob-
tained in their model in the limit of strong interaction. Both
phases are separated by a bond ordered phase. Thus, the
model potential used in Ref. 31 reveals the features of the
half filled ionic Hubbard model. The analysis, however, con-
centrates on large �U−W�. In our case, the 4kF-periodic
pattern is not a limit of the 2kF-periodic patterns.

In the following, we concentrate on the ionic Hubbard
model at weak to intermediate potential strength and inter-
mediate to strong interaction. In addition, we study the
region of stability for each potential.

IV. NUMERICAL RESULTS FOR THE IONIC HUBBARD
MODEL AT QUARTER FILLING

In the following we discuss the numerical data for the
ground state energy, the charge and spin gap, and the spin-
spin correlation function. The numerical results are obtained
by the density matrix renormalization group method
�DMRG�, as implemented by Brune.32 The DMRG is a

quasiexact numerical method to determine the ground state
properties, i.e., the ground state and the ground state energy,
of long one-dimensional �non-integrable� systems with rea-
sonable accuracy.25 Regarding different boundary conditions,
it is useful to take into account the equivalence of fermion
and spin models and to implement the spinless-fermion
model in terms of an equivalent spin chain, and the Hubbard
model as two coupled spin chains without perpendicular XY
coupling. Using the DMRG, it is possible to extend the trac-
table system lengths for the Hubbard chain to N
=60, . . . ,100 sites. In our simulations we perform five lattice
sweeps and keep 300 to 500 states per block. Correlation
functions can be obtained within an error of 10−6 in the Hub-
bard model when using open boundary conditions. A
memory of about 700 MB is required.

A. Energy

First, we determine the ground state energy as a function
of W and U. The energy gain depends almost quadratically
on the potential strength for all potential types, and is domi-
nated by the band shift. The numerical data are depicted in
Fig. 3. In case of a coupling to the charge density Wini, the 2
kF-periodic potential is stabilized for small U �case a�, and
the 4kF-periodic potential �case c� for large U, as found for
the Hubbard-Holstein model.33 This energy gain is mainly
due to the prefactors. A more detailed analysis of the alge-
braic behavior for W→0 shows that Ea�W1.68 and Ec�W2 if
U=2t, but Ea�W1.76 and Ec�W1.76 if U=10t. In case �a� the
exponent increases with interaction, in case �c� it decreases.
For all interactions, however, term �d�, hiSi

z, is dominant. Of
course, in a real system, a potential coupled to the density is
much bigger than a magnetic field. It leads—similar to po-
tential �c�—to 4kF oscillations in the charge density and 2kF
oscillations in the magnetization. In the non-interacting sys-
tem the data points for potentials �a� and �d� lie nearly on top
of each other �by use of open boundary conditions the exact
equivalence of �a� and �d� is waived�, but in the interacting
system the energy gain due to potential �d� grows faster with
interaction than in all other cases. To be more specific, we
find Ed�W1.62 for U=2t and Ed�W1.44 for U=6t.

B. Charge and spin gap

We note that the excitation gaps

�c =
1

2
�E�Ne + 1� + E�Ne − 1� − 2E�Ne��

and

�s =
1

2
�E�Sz = 1� + E�Sz = − 1� − 2E�Sz = 0��

are calculated for finite systems only. An extrapolation to the
thermodynamic limit, �=�0+ f�N� with f�N�→0 for N→�,
is not performed, for the following reasons: for small gap �0
the accuracy of the DMRG away from half filling is not
accurate enough and for large �0 we have f�N�	0 for the
considered system sizes. The dependence of the excitation
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gaps on the potential strength is shown in Fig. 4. In cases �a�,
�b�, and �d� we see that �s
�c, according to the band insu-
lating state. An almost linear dependence on W, as for non-
interacting particles, is recovered in the interacting system
for the charge gap in cases �a�, �b�, and �c�. The saturation of
the gaps in case �b�, as discussed in Sec. III B, is obtained for
the spin gap in the considered parameter regime. The influ-
ence of the interaction in the band insulating state can be
summarized as follows. In case �a� the charge gap becomes
smaller with interaction, the spin gap even more. In case �b�
the charge gap increases with interaction for small U, but
saturates for strong interaction. The spin gap decreases rap-
idly with interaction. In case �d� the charge gap increases but
does not saturate. The spin gap shows a maximum for inter-
mediate interaction strength. For U=10t it is even smaller
than in the noninteracting system. On the contrary, we find
for potential �c� a linear increase of �c with U and W as well
as �s�W ,U ,N�
1/U ,1 /W ,1 /N→0, indicating the Mott in-
sulating state. Due to the finite system size, we are not able
to obtain exponents for small W. As a consequence, a
comparison with bosonization or the energy data, see Sec.
IV A, is not possible. To conclude, for strong interaction and

small potential we find a large charge gap but a small
spin gap.

C. Correlation function

In order to calculate the spin-spin correlation function
�Si

zSj
z
 within DMRG we again use open boundary conditions

and the Parzen filter function34 to reduce the Friedel oscilla-
tions. In the Mott insulating regime, the Friedel oscillations
in the spin sector are long ranged, but decay fast in spin gap
systems.35 The main question concerns the correspondence
of the spin-spin correlation functions of the 2a-periodic po-
tential �case c� and the Heisenberg model. For comparison,
we calculate the spin-spin correlation function of the half-
filled Hubbard model, which can be mapped onto a Heisen-
berg chain in case of strong interaction. In the Heisenberg
model we have

�Si
zS0

z
 =
1

4��ai�2 +
a2kF

cos�2kFai�

ai
.

In gapped systems, the spin-spin correlation functions re-
flect the behavior of the energy gaps. Thus, the spin-spin

FIG. 3. �Color online� Energy gain per site versus square of the
potential strength �both in units of t�. We compare potentials �a�,
�b�, �c�, and �d�. The number of sites varies between N=28 and
N=60, where �E�0�−E�W�� /N is almost independent of N. The
interaction is U=2t in the upper plot and U=6t in the lower plot.

FIG. 4. �Color online� Charge and spin gap versus potential
strength �both in units of t�. In the upper plot we show �c and in the
lower �s, comparing potentials �a�, �b�, �c�, and �d�. The number of
sites varies between N=28 and N=60 and the interaction strength is
U=6t.
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correlation function decreases exponentially in cases �a� and
�b�, which show a spin gap without spin order. In case �d� the
spins are fixed by the potential hi. The exponentially decay-
ing part is hard to extract from the mean magnetization in the
numerical data due to the incomplete suppression of the
boundary oscillations.

In the Mott insulating regime, however, the linear de-
crease of the spin-spin correlation function with distance is
obtained already for small potential W. For better compari-
son with the data of the half-filled Hubbard chain, we show
data for W= t in Fig. 5. Obviously, the quarter-filled Hubbard
chain with 4kF-periodic distortion can be mapped onto the
Heisenberg model. We note that in case �d� already a weak
potential—connected with a small spin gap—leads to signifi-
cant structures in �Si

zSj
z
, whereas in case �c� the potential has

to be much stronger to yield effects of similar size. The in-
crease of S�q��q appears both in the half-filled Hubbard
chain and in the quarter-filled Hubbard chain with
4kF-periodic potential. S�q� has a sharp maximum at
q=� /2 in case �d�.

V. SUMMARY

In summary, we have studied the effects of periodic po-
tentials on a chain. In particular, we have considered the
one-dimensional Hubbard model at quarter filling. We have
compared periodic potentials yielding different types of be-
havior: �a� a 2kF-periodic potential leading to a band insula-
tor, �b� a 2kF-periodic potential leading to a band insulator
with clusterlike arrangements of the charges, �c� a
4kF-periodic potential leading to a Mott insulator with anti-
ferromagnetic alignment of Heisenberg type spins on next-
nearest neighbor sites, and �d� a 2kF-periodic magnetic field
leading to a band insulator with antiferromagnetic alignment

of Ising type spins. Cases �c� and �d� reveal the same charge
and spin distribution but different spin excitations. In the
Heisenberg case the spin excitations are gapless, whereas in
the Ising case they are gapped.

In noninteracting systems, we find Ea=Ed
Eb
Ec, thus
the band insulator. The charge distribution is quite homoge-
neous, and the cluster like arrangement is not minimal in
energy. Turning on the interaction, potential �d� results in the
largest energy gain, while the order of the remaining poten-
tials depends on both the potential strength and the interac-
tion. The interaction strongly supports the spin order, where
double occupancy is suppressed.

In the following discussion we rely on the potentials �a�–
�c�, where the spin order, if present, is a result of the charge
order. For weak interaction and weak potential, we recover
the behavior of the noninteracting system, with Ea
Eb

Ec. Turning to intermediate values �U	3t, W	 t�, the
clusterlike arrangement of potential �b� gains more energy
than the homogeneous distribution of case �a�, Eb
Ea
Ec.
For strong W→ t, also a 4kF pattern is favored against the
homogeneous case, Eb
Ec
Ea. Thus, for small or interme-
diate interaction and potential, the gain of energy due to the
hopping is stronger than the effects of the repulsive interac-
tion or the underlying potential. With increasing potential,
however, the effects of the potential dominates.

On the other hand, regarding a weak potential but increas-
ing interaction, we find that a pattern related to potential �a�
is established only at small interaction. The cluster-like ar-
rangement is formed at intermediate interaction �U	3−5t�,
but at strong interaction the 4kF-periodic pattern dominates.
Concerning the spin chain compound �Ca,Sr�14Cu24O41, we
have applied the potential only in order to clarify the leading
instability of the system. For comparison with a real material
which shows no lattice effects, the limit W→0 is relevant. In
addition, for copper oxides usually a correlation parameter of
U	8 eV �Ref. 36� is assumed. Together with the band width
of about 1 eV, see Fig. 1, we have U
15t. In this parameter
region, we find—neglecting the magnetic field—the
4kF-periodic charge pattern with antiferromagnetism to be
the most probable ground state. The energetic order found
for weak potentials extends to strong potentials. For strong
interaction, we always have Ec
Eb
Ea. The tendency of
the repulsive interaction to separate the charges dominates
the phase diagram in this region. The influence of the poten-
tial is weaker, leading to a preference of the cluster over the
homogeneous distribution.

Finally, we remark that adding electrons stabilizes the
cluster formation. This observation likewise agrees with ex-
perimental results, obtained for the �Ca,La�14Cu24O41 series,
where the cluster size grows on additional charge. Therefore
we conclude, that the antiferromagnetism is due to the band
filling, thus a commensurability effect.
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FIG. 5. �Color online� Spin-spin correlation function �Si
zS31

z 

versus site i. We compare the half-filled Hubbard chain �straight
line; which is equivalent to a Heisenberg chain�, with the quarter-
filled Hubbard chain on a 4kF-periodic potential �long-dashed line,
W= t; equivalent to a half-filled Heisenberg chain�, and the quarter-
filled Hubbard chain in a 2kF-periodic magnetic field �short-dashed
line, W=0.1t; equivalent to a half-filled Ising chain�. In all data sets
the interaction is U=5t.
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