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We develop a diagrammatic approach with local and nonlocal self-energy diagrams, constructed from the
local irreducible vertex. This approach includes the local correlations of dynamical mean-field theory and
long-range correlations beyond. It allows us, for example, to describe �para�magnons and weak localization
effects—in strongly correlated systems. As a first application, we study the interplay between nonlocal anti-
ferromagnetic correlations and the strong local correlations emerging in the vicinity of a Mott-Hubbard
transition.
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I. INTRODUCTION

Strongly correlated electron systems represent both an op-
portunity and a challenge for modern physics. They are an
opportunity because fascinating phenomena occur such as
high-temperature superconductivity in cuprates, “colossal”
magnetoresistance in manganites, and quantum critical be-
havior in heavy Fermion compounds. But at the same time
they are a challenge because the very same correlations that
are responsible for these phenomena make a theoretical un-
derstanding and hence an experimental optimization of these
effects particularly difficult.

One of the key issues that arises due to strong electronic
correlations and that cannot be described by perturbation
theory is the Mott-Hubbard metal-insulator transition.1 In
this respect, dynamical mean-field theory �DMFT� �Refs. 2
and 3� was a big step forward to a more thorough under-
standing of this transition. DMFT becomes exact in the limit
of high spatial dimensions �d→�� and already accounts for
a large �local� part of electronic correlations—the part that
provides for the radical changes upon going from a metal to
a Mott insulator. Real physical systems are, however, one-,
two-, or three-dimensional. Hence, nonlocal correlations,
which are neglected in DMFT, may be of importance. Cor-
rections of order 1 /d have been considered in Ref. 4, result-
ing in a two-impurity problem, and account for short-range
correlations. There has also been recent progress to go be-
yond DMFT through cluster extensions,5 which include cor-
relations within the cluster. These correlations are also nec-
essarily short-range in nature due to numerical limitations of
the cluster size.6

Often, however, long-range correlations are of vital im-
portance. They are responsible for a rich variety of phenom-
ena, ranging from magnons and screening of the Coulomb
interaction to quantum criticality. Long-range correlations
are also generally pivotal in the vicinity of phase transitions.
The existing theories describing long-range �e.g., magnetic�
correlations such as the fluctuation exchange approximation,7

the two-particle self-consistent approximation,8 and the func-
tional renormalization group9 are restricted to the weak-
coupling regime. For strongly correlated systems, e.g., in the
vicinity of a Mott-Hubbard transition, an extension of DMFT
by nonlocal �particularly long-range� correlations is therefore
needed.

For static mean-field theories, such corrections have been
studied since decades, e.g., for localized10 and itinerant
magnets;11,12 for disordered systems, such nonlocal effects
have also been considered.13 But there have been only a very
few attempts so far to include long-range correlations be-
yond dynamical mean-field theory: The DMFT self-energy
was supplemented by an “external” k-dependent self-energy
that describes spin fluctuations in the spin-fermion model14

or that stems from the self-consistent renormalization
theory,15 and one might also subsume the GW+DMFT
approach16 here. Let us also note the extended DMFT
�EDMFT �Ref. 17��, which considers the effect of nonlocal
interactions on the purely local self-energy.

In this paper, we aim at a systematic diagrammatic exten-
sion of DMFT by long-range correlations and at an investi-
gation of their effect on the nonlocal self-energy. Diagram-
matically, DMFT corresponds to all topologically distinct but
local Feynman diagrams for the self-energy. On the next
level, we assume the locality of the fully irreducible two-
particle vertex, and consider all �local or nonlocal� self-
energy diagrams that can be constructed from this vertex.
One might generalize this approach, requiring locality of the
fully irreducible n-particle vertex. Then, one has DMFT for
n=1, the dynamical vertex approximation �D�A� for n=2,
and the exact solution for n→�. We think, however, that the
one- and two-particle levels �n=1,2� are the most relevant
approximations. If one is interested in a specific physical
problem, a restriction of D�A to certain ladder diagrams is
reasonable. In the particle-hole channels, the ladder diagrams
yield �para�magnons11 and random-phase approximation
�RPA� screening; in the particle-particle channel, the coop-
eron diagrams are responsible for attractive pairing interac-
tions and weak localization effects. D�A includes such lad-
der diagrams beyond DMFT, but with the local vertex
instead of the bare interaction so that strong correlations are
accounted for.

In this paper, we introduce D�A and apply it for studying
long-range antiferromagnetic fluctuations in the three-
dimensional Hubbard model. The interplay of these nonlocal
spin fluctuations with the local DMFT fluctuations is surpris-
ing: Close to the metal-insulator transition, the nonlocal fluc-
tuations strongly suppress the spectral function, in contrast to
the weak-coupling expectation for three dimensions.18
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The plan of the paper is the following. In Sec. II, we
introduce the D�A. Specifically, we derive the full D�A
scheme based on the parquet equations in Sec. II A, and a
simplified version based on a ladder subset of diagrams in
Sec. II B. The latter yields the most important diagrams for
the specific problem considered in this paper, i.e., the para-
magnon fluctuations in the proximity of the AF transition.
We compare this approach with the 1/d expansion in Sec.
II C. The details concerning the calculation of the local ver-
tex within an exact diagonalization impurity solver are re-
ported in Sec. III �and in the Appendix�. Results for the local
irreducible vertex and the D�A self-energy and spectral
functions are presented in Secs. IV A and IV B, respectively.
Finally, we give a conclusion and discuss the potential of our
method in Sec. V.

II. DYNAMICAL VERTEX APPROXIMATION

The starting point of our considerations is the Hubbard
model on a cubic lattice,

H = − t �
�ij��

ci�
† cj� + U�

i

ni↑ni↓, �1�

where t denotes the hopping amplitude between nearest
neighbors, U the Coulomb interaction, ci�

† �ci�� creates �an-
nihilates� an electron with spin � on site i, and ni�=ci�

† ci�. In
the following, we restrict ourselves to the paramagnetic
phase with n electrons/site and temperature T.

Let us suppose we know the two-particle vertex �kk�q
����↑↓.

Then, we can calculate the �nonlocal� self-energy through the
exact relation �following from the equation of motion; see
Fig. 1�a� and, e.g., Refs. 20 and 21�

�k,� = U
n

2
− T2U�

k�q
���

�kk�q
����↑↓Gk�+q,��+�Gk�,��Gk+q,�+�, �2�

where Gk,�= �i�n−�k+	−�k,��−1 is the nonlocal Green func-
tion, �k=−2t�
=x,y,zcos k
 is the bare electronic dispersion,

and 	 is the electronic chemical potential. Generally, �kk�q
����↑↓

can be expressed diagrammatically, e.g., by taking the fully
two-, three-, and more-particle irreducible local vertices as
building blocks and connecting these blocks by local and
nonlocal Green functions.

A. Parquet equations

In the D�A, we restrict ourselves to the local fully irre-
ducible two-particle vertices �fir

loc. From these building

blocks, the reducible vertices �kk�q
����↑↓ can be obtained

through the self-consistent solution of the parquet
equations.19,20 Representing this vertex as a sum of contribu-
tions of different channels, one has19–21

�kk�q
����↑↓ = �fir,loc

����,↑↓ + Ckk�q
���� + Zkk�q

���� + Z̃kk�q
����, �3�

�kk�q
����↑↑ = �kk�q

����↑↓ − �̄kk�q
����↑↓. �4�

Here, �̄kk�q
����↑↓=�k,k+q,k−k�

�,�+�,�−��↑↓ and the contribution of the three
channels can be written in the following form �see Fig. 2�:

Ckk�q
���� = �↑↓ � G � G � ��fir,loc

↑↓ + Z + Z̃� , �5�

Zkk�q
���� = �↑↓ � G � G � ��fir,loc

↑↓ + C + Z̃� , �6�

Z̃kk�q
���� = ��↑↑ + �↑↓� � G � G � ��fir,loc

↑↓ + C + Z�

− �↑↓ � G � G � ��̄fir,loc
↑↓ + C̄ + Z̄� , �7�

where � stands for multiplication and summation over the
momenta and frequencies given in Fig. 2.

For determining the fully irreducible local vertex �fir
loc,

which is constructed from purely local Feynman diagrams
only, we resort to the Anderson impurity model �AIM�.22 In
fact, the AIM has only one interacting site, so it yields the
same local diagrams—and hence the same irreducible
vertex—provided that the local Green function is identical.
Hence a practical way to obtain �fir

loc is through the �e.g.,
numerical� solution of the AIM. The starting point can be the
�local� spin and charge susceptibility of the AIM,

�s�c�,loc
���� = �loc

����,↑↑ +
�−� �loc

����,↑↓, �8�

from which we can obtain the full �reducible� local vertex
�s�c�,loc and the irreducible local vertices in the spin-, charge-,
and particle-particle channel ��s,ir, �c,ir, and �pp,ir, respec-
tively� via the standard relations

�s�c�,loc
���� = �0�,loc

� ���� + �0�,loc
� �s�c�,loc

���� �0�,loc
�� , �9�

�s�c�,loc
���� = ���s�c�,ir

���� �−1 − �0�,loc
�� �����

−1, �10�

�pp,loc
����,↑↓ = ���pp,ir

�,��,�̃−���,�̃
−1 − 
0�̃+��,loc

�̃ ���̃��̃=�+�
−1 , �11�

where

�0�,loc
�� = − TGloc����Gloc�� + ��� ,


0�,loc
�� = TGloc����Gloc�� − ��� . �12�

From these vertices, we can in turn calculate the fully irre-
ducible vertex as

FIG. 1. �a� From the reducible vertex, we directly obtain the
self-energy. �b� and �c� The two particle-hole channels contributing
to the self-energy �longitudinal and transversal� in the ladder ap-
proximation. Instead of the bare interaction, ladder diagrams are
constructed from the irreducible local vertices �crosshatched� in
D�A.
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�fir,loc
����,↑↓ =

1

2
��s,ir

���� − �c,ir
����� + �s,ir

�,�+�,��−� + �pp,ir
���� − 2�loc

����↑↓.

�13�

B. Ladder approximation

In this paper, we are particularly interested in paramagnon
contributions affecting the self-energy in the vicinity of the
antiferromagnetic phase. Hence, as discussed in the Introduc-
tion and with some justification in 1/d �see Sec. II C�, we
restrict ourselves to the ladder subset of the parquet diagrams
in the two particle-hole channels shown in Figs. 1�b� and
1�c�. These diagrams can be derived from the general parquet

set of diagrams of Fig. 2, supposing the locality of C ,Z , Z̃ on
the right-hand side of Eqs. �5�–�7�. Expressing the ladder
diagrams through the vertices in the spin �s� and charge �c�
channels �s�c�,q

���� , which depend on the momentum transferred
q only, the sum of the vertices of Figs. 1�b� and 1�c� is
obtained as

�kk�q
����,↑↓ =

1

2
��s,q

���� − �c,q
����� + �s,k�−k

�,�+�,��−� −
1

2
��s,loc

���� − �c,loc
����� .

�14�

Here, the first two terms of Eq. �14� describe the longitudinal
and transverse paramagnons in Figs. 1�b� and 1�c�, respec-
tively, and the last term subtracts the double-counted local
contribution. Note that the nonlocal contribution of the
particle-particle channel to the self-energy, which is not rel-
evant near magnetic instabilities, has been neglected here.

The quantities on the right-hand side of Eq. �14� are cal-

culated from the local vertex �s�c�,ir
���� , irreducible in the spin

�charge� channel, via

�s�c�,q
���� = ���s�c�,ir

���� �−1 − �0q�
�� �����

−1, �15�

where �0q�
�� =−T�kGk,��Gk+q,��+� with Gk,�= �i�−�k+	

−�loc����−1, �loc being the local �DMFT� self-energy. Note
that contrary to the full parquet solution in Sec. II A, the
self-energy of the internal Green functions is considered
purely local in accordance with the assumption of the local-

ity of the vertex �s�c�,ir
���� . The results of this non-self-consistent

approach are expected to be close to those of the self-
consistent one, due to the cancellations between �self-
consistent� nonlocal self-energy and corresponding correc-
tions to the vertex �s�c�,ir, cf. Ref. 23.

Substituting Eq. �14� into Eq. �2�, we obtain after a shift
of the momenta and frequencies

�k,� =
1

2
Un +

1

2
TU �

���,q

�0q�
�� �3�s,q

���� − �c,q
���� + �c,loc

����

− �s,loc
�����Gk+q,�+�. �16�

Equation �16� reduces to the DMFT self-energy if the non-
local quantities are replaced by local ones. But beyond that,
it describes the nonlocal ladder diagrams of Figs. 1�b� and
1�c�.

C. Comparison to the 1/d expansion

Let us compare the result Eq. �16� to that of the 1/d
expansion. While the DMFT self-energy contains the local

FIG. 2. Graphical notation of
the parquet Eqs. �3� and �5�–�7�.
C, Z, and Z̃ denote the contribu-
tions of the particle-particle,
particle-hole, and interaction
channels to the nonlocal vertex
�k1,k4,k3−k1

�1,�4,�3−�1,↑↓ �the momentum and
frequency k2 ,�2 are determined
by conservation laws�.
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Green functions and vertex only �Fig. 3�a��, the leading non-
local corrections to the self-energy are proportional to
O�1/d1/2� and the consideration of the diagrams containing
two different sites is sufficient at this order.4 The possible
types of these diagrams for the self-energy are shown in
Figs. 3�b�–3�f�. The first type of corrections �Fig. 3�b�� in-
volves the nonlocal Green functions only. The second type of
corrections �Figs. 3�c�–3�e�� contains the nonlocal vertices
with two legs at i and two at j sites. To leading �zeroth� order
in 1/d, these vertices can be expressed as a ladder of local
vertices connected by the nonlocal Green functions, as in
Fig. 3�g�. The contributions of Figs. 3�b�–3�e� are hence in-
cluded in the D�A with the ladder approximation, i.e., in Eq.
�16�. The last type of 1 /d1/2 corrections to the self-energy
�Fig. 3�f�� involves the three-particle local vertex �Fig. 3�h��
�and are of order �U / t�5�. According to the classification of
the Introduction, these corrections should be taken into ac-
count on the next level of approximation beyond D�A and
are the only 1/d1/2 corrections neglected in D�A. Therefore,
the D�A reproduces correctly the leading 1/d correction to
the self-energy with the three-particle local vertex neglected.

III. CALCULATION OF THE LOCAL FOUR-POINT
VERTEX

The calculation of the self-energy �16� requires the
knowledge of the local vertex, either fully irreducible—for
the general scheme—or irreducible in the spin �charge�
channel—for the ladder diagrams of Figs. 1�b� and 1�c� �Eq.
�16��. As already noted, this local vertex can be obtained
numerically from the Anderson impurity model. For obtain-

ing the four-point vertex �s�c�,loc
���� , we need to calculate the

AIM susceptibility for three Matsubara frequencies,24

�loc
������� = T2�

0

1/T

d�1d�2d�3e−i�1�ei�2��+��e−i�3���+��

���T� ci�
† ��1�ci���2�ci��

† ��3�ci���0��

− �T� ci�
† ��1�ci���2���T� ci��

† ��3�ci���0��� ,

�17�

where � ,�� and � are the two fermionic and the bosonic
�transferred� Matsubara frequency, respectively; �T�¯ � indi-
cates the thermal expectation value of the time-ordered op-
erators and the last term represents the nonconnected contri-
butions. With a spin �anti�symmetrization �8�, we obtain the

corresponding charge and spin susceptibilities �s�c�,loc
���� . From

these, we can either determine the fully irreducible local ver-
tex and through the parquet equations the reducible vertex
and the self-energy along the lines of Eqs. �13�, �3�, and �2�,
or we can directly calculate the particle-hole ladders along
the lines of Eqs. �14� and �16�. We implement the latter by �i�
solving the DMFT equations using exact diagonalization
�ED�, �ii� calculating via Eq. �17� the local vertices, and �iii�
constructing from these through Eq. �16� the D�A self-
energy. In principle, this k-dependent self-energy yields new
Green functions and a new vertex. However, because of the
ladder approximation, we do not perform such a self-
consistent calculation here.

Within ED, the calculation of �loc �Eq. �17�� is straight-
forwardly �albeit lengthy� performed by resorting to its
Lehmann representation, whose explicit expression is re-
ported in the Appendix. The Lehmann representation of �loc
requires four summations over all the Hilbert states of the
discretized AIM �compared with only two summations for
evaluating the local Green function�. This is the higher com-
putational cost of D�A compared with DMFT. By perform-
ing a parallel computation of �loc, we were able to calculate
AIMs with Ns=5 sites and evaluate �loc for the lowest
Nmax=20 �or, in some cases, 25� Matsubara frequencies. This
turned out to be sufficient for getting a stable analytic con-
tinuation of Eq. �16�, using the Padé algorithm. For the mo-
mentum summation of Eq. �16�, we have used Nk=96 points
for each directions.

IV. RESULTS

A. Local vertex close to a Mott-Hubbard transition

First, we discuss our results for the local irreducible ver-
tex. Since we are mainly interested in long-range antiferro-
magnetic fluctuations, we consider temperatures slightly
above the DMFT Néel temperature �see the inset of Fig. 4�.
In this case, the largest contribution to the nonlocal part of
the D�A self-energy stems from the terms of Eq. �16� pro-
portional to the local vertex irreducible in the spin channel,
particularly with zero bosonic frequency.

In Fig. 4, we show the �s,ir
���,�=0 as a function of �� �with �

fixed to its lowest value �T� at half-filling for three different
values of the Hubbard interaction �U=1D, 1.5D, and 2D,
where D=2	6t is twice the variance of the noninteracting
density of states� and temperature �T=0.067D, 0.089D, and

FIG. 3. Diagrams for the self-energy in terms of the vertex to
order 1 /d0 ��a�, i.e., DMFT� and 1/d1/2 ��b�–�f��. The ladder dia-
gram �g� shows how diagrams �b�–�e� can be constructed from a
fully irreducible local two-particle vertex. In contrast, for diagram
�f� a local three-particle vertex is needed, see �h�. Hence the contri-
bution �f� is the only one not included in the D�A.
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0.1D�. This choice allows us to highlight the remarkable dif-
ferences occurring when moving from the metallic regime to
the crossover region of the DMFT phase diagram of the Hub-
bard model. In particular, we note that �s,ir correctly ap-
proaches the corresponding value of the bare interaction U
for large ��. On the other hand, at small �� we observe a
radically different behavior of the local vertex depending on
the U value: At U=1D, �s,ir displays a smooth minimum in
the region of small ��, while at U=1.5D �and even more at
U=2D�, a very pronounced maximum of �s,ir appears at ��
=�. While the behavior of �s,ir at small U can be easily
interpreted as the screening of the bare interaction, typical of
the metallic phase, the huge maximum of �s,ir at larger U
stems from particle-hole fluctuations in the vicinity of the
metal-insulator transition, as discussed in Ref. 21.

B. D�A self-energy and spectral function

The striking behavior of �s,ir has consequences for the
D�A self-energy on the real axis and spectral function, pre-
sented in Fig. 5 for the same three different U’s and T’s of
Fig. 4 �left inset�.

At U=1D, i.e., in the metallic regime of the phase dia-
gram, DMFT shows a quasiparticle peak that is only weakly
damped for k vectors on the Fermi surface. In D�A, the
quasiparticle scatters at nonlocal antiferromagnetic fluctua-
tions, resulting in a broadening of the quasiparticle with a
now significant damping given by Im �k�0�. For this U
value, the distinct features of �s,ir are not yet particularly
pronounced in Fig. 4. It is the strongly enhanced antiferro-
magnetic susceptibility close to the Néel temperature that
leads to this damping in Eq. �16�. Stronger damping effects
can be observed, studying the Hubbard model in d=2, e.g.,
by means of the cluster extensions of DMFT,5 which predict
a pseudogap opening at low temperatures. Actually, a stron-
ger damping in d=2 than in the three-dimensional case con-
sidered here is expected from weak-coupling perturbation

theory. Unfortunately, to our knowledge, no cluster-DMFT
calculation has been performed for the case of d=3, since it
poses severe constraints on the cluster size.

At U=2D, the stronger electronic correlation reflects in
more pronounced changes of the spectral function. Now, it is
the huge �s,ir of Fig. 4 that strongly suppresses the spectral
weight at the Fermi level. This weight is transferred to the
Hubbard subbands, which get some additional structure as an
effect of magnetic fluctuations. The nonlocal fluctuations re-
sult in a much more insulating solution, even though the
Green function is still nonlocal.25

We emphasize that the mechanism of spectral weight sup-
pression at U=2D is very different from that in the weak-
coupling regime �Ref. 18 and our U=1D results�, where
long-range magnetic fluctuations in the immediate vicinity of
the magnetic phase transition play the key role. In contrast at
U=2D, already relatively short-range spin fluctuations are
important because of the strong correlations reflected in the
enhanced �s,ir. The spectral weight suppression is therefore
also quite robust upon increasing T, i.e., upon going farther
away from the antiferromagnetic transition �not shown�.

At U=1.5D, we have something in between the two cases
discussed above: The vertex is already enhanced, but long-
range antiferromagnetic fluctuations are still essential. This
leads to a suppression of the quasiparticle weight and struc-
tured Hubbard bands. Altogether this shows that scattering at
nonlocal fluctuations close to a strongly correlated antiferro-
magnet is very different from that in the vicinity of a weakly
correlated Slater antiferromagnet.

V. CONCLUSIONS

We developed the dynamical vertex approximation
�D�A� based on the assumption of the locality of the irre-

FIG. 4. �Color online� Dependence of the local vertex

�s,ir
�=�T,��,�=0 on the incoming fermionic frequency ��, for the three

different values of U and T indicated as symbols in the left inset,
which shows the DMFT phase diagram with paramagnetic metallic
�PM�, insulating �PI�, and antiferromagnetic �AF� phase. Right in-
set: Same as the main panel but at fixed U=1D and at different �’s
�circles: �=0; triangles: �=6�T; squares: �=12�T�.

FIG. 5. �Color online� Self-energy �left: real, middle: imaginary
part� and spectral function �right� at k= �� /2 ,� /2 ,� /2�, U=1D
�top�, 1.5D �central�, and 2D �bottom� and the same T’s of Fig. 4.
Compared to DMFT �light blue line�, quasiparticles are damped
through scattering at nonlocal spin fluctuations in D�A �dark red
line�, and the system is more insulating. At U=1.5D and 2D, these
effects are drastically enhanced because of strong local correlations
reflected in �s,ir
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ducible vertex. For the half-filled three-dimensional Hubbard
model, we found that the local vertex �irreducible in the
particle-hole spin channel� strongly depends on all three fre-
quencies; it is hugely enhanced at some particular frequen-
cies for large U. These strong local correlations entail simi-
larly strong nonlocal fluctuations. The scattering of the
quasiparticles at these nonlocal spin fluctuations, in turn,
drastically reduces their lifetimes; spectral weight is trans-
ferred to the Hubbard bands, which develop some additional
structure. These nonlocal effects of strong electronic correla-
tions are very different from those at weak coupling. It is a
strength of D�A to reveal them.

Including long-range correlations, D�A opens the door to
study a wide variety of physical phenomena, previously de-
scribed only for weakly correlated systems, such as magnons
in strongly correlated �anti�ferromagnets,28 the interplay of
weak localization effects and strong electron interactions,
and vertex corrections to the RPA screening. A self-
consistent realization of the approach might also allow us to
study how nonlocal fluctuations suppress magnetic long-
range ordering, whether antiferromagnetic fluctuations in the
vicinity of the metal-insulator transition result in unconven-
tional superconductivity, and how physical quantities change
in the vicinity of ferro- and antiferromagnetic quantum criti-
cal points.

Note added. During the completion of our paper, we
learned about a related study, Ref. 26. Also note the preprint
Ref. 27.
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APPENDIX: LEHMANN REPRESENTATION OF THE
LOCAL SUSCEPTIBILITY

In this appendix, we report the explicit expression of the
Lehmann representation for the local �and spin-dependent�
susceptibility, which is necessary for performing the calcula-
tion of the basic “brick” of the D�A �i.e., the local four-point
vertex� within the ED algorithm �see Sec. III�.

We start with the evaluation of the T-ordered product ap-
pearing in the definition of the �spin-dependent� local sus-
ceptibility in Eq. �17�,

�̃loc
������� = T2�

0

�

d�1d�2d�3e−i�1�e+i�2��+��e−i�3���+��

� �T�ci�
† ��1�ci���2�ci��

† ��3�ci���0��

= T2�
0

�

d�1
�
0

�1

d�2��
0

�2

d�3 − �
�2

�1

d�3 + �
�1

�

d�3�
− �

�1

�

d�2��
0

�1

d�3 − �
�1

�2

d�3 + �
�2

�

d�3�

� e−i���1−�2�ei���2−�3�e−i���3�¯�

=
T2

Z
��loc

123 + �loc
132 + �loc

312 + �loc
213 + �loc

231 + �loc
321� , �A1�

where �=1/T, Z is the partition function and with �¯� we
indicate the thermal and quantum average of the four fermi-
onic operators on the right-hand side of the first line of the
equation, which are already ordered in terms of decreasing
times �with no further sign change�. The six different contri-
butions �loc

123 ,�loc
132 ,¯ appearing in the last line of Eq. �A1�

reflect the six different ways of arranging the order of the
three Matsubara times �1, �2, and �3 in the time integral of
Eq. �17�. �loc

123 ,�loc
132 ,¯ can be explicitly expressed in a very

convenient way for ED scheme, i.e., in terms of the eigenen-
ergies EN and the matrix elements �N�c�

�†��M�= �c�
�†��NM, of

the associated AIM, through the standard Lehmann represen-
tation. The evaluation of the six time integrals in Eq. �A1� is
straightforward, albeit lengthy, and yields the following
results:

�loc
123 = �

N,M,L,S

− 1

i��� + �� − EL + ES

 1

i�� − ��� + EM − ES
� e−�EN + e−�ES

i�� − EN + ES
−

e−�EM + e−�EN

i� − EN + EM
�

−
1

i�� + �� + EM − EL
� e−�EL − e−�EN

i� + EN − EL
−

e−�EM + e−�EN

i� − EN + EM
�
�c�

†�NM�c��ML�c��
† �LS�c���SN, �A2�

�loc
132 = �

N,M,L,S

1

i��� + �� − EM + EL

 1

i�� + �� + EL − ES
� e−�EN + e−�ES

i�� − EN + ES
+

e−�EL − e−�EN

i�� + �� + �� − EN + EL
�

+
1

i�� − ��� + EM − ES
� e−�EM + e−�EN

i� + EM − EN
−

e−�ES + e−�EN

i�� + ES − EN
�
�c�

†�NM�c��
† �ML�c��LS�c���SN, �A3�
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�loc
213 = �

N,M,L,S

1

i��� + �� + EL − EM

1

i�� + �� + ES − EN
� e−�EM − e−�ES

i� + ES − EM
+

e−�EL − e−�EN

i�� + �� + �� − EN + EL
+

e−�EM + e−�EN

i� + EM − EN
−

e−�ES + e−�EL

i�� + EL − ES
�

� �c�
†�NM�c��

† �ML�c���LS�c��SN, �A4�

�loc
231 = �

N,M,L,S

− 1

i��� + �� + EM − EN

 1

i�� − ��� − EM + ES
� e−�EM + e−�EL

i� + EL − EM
−

e−�EL + e−�ES

i�� + EL − ES
�

−
1

i�� + �� + ES − EN
� e−�EL − e−�EN

i�� + �� + �� + EL − EN
−

e−�EL + e−�ES

i�� + EL − ES
�
�c��

† �NM�c�
†�ML�c���LS�c��SN, �A5�

�loc
312 = �

N,M,L,S

− 1

i��� + �� + EM − EN

1

i�� + �� + EL − ES
� e−�EM − e−�ES

i� + EM − ES
+

e−�EL + e−�EM

i� + EL − EM
−

e−�EN + e−�ES

i�� + ES − EN
+

e−�EN − e−�EL

i�� + �� + �� + EL − EN
�

� �c��
† �NM�c�

†�ML�c��LS�c���SN, �A6�

�loc
321 = �

N,M,L,S

1

i��� + �� + EM − EN

 1

i�� + �� + EM − EL
� e−�ES + e−�EL

i� + ES − EL
+

e−�ES − e−�EM

i� + EM − ES
�

−
1

i�� − ��� + EN − EL
� e−�ES + e−�EL

i� + ES − EL
−

e−�ES + e−�EN

i�� + ES − EN
�
�c��

† �NM�c��ML�c�
†�LS�c���SN. �A7�

After the DMFT self-consistency condition has been ful-
filled, the ED-DMFT evaluation of the local susceptibility
Eq. �17� is obtained directly by plugging the eigenvalues EN
and the matrix elements �c��NM of the associated AIM in
Eqs. �A2�–�A7� and performing the corresponding four sum-
mations over the Hilbert space. The relevant numerical effort
related to the Hilbert space summations can be handled by
means of a parallel computations for the case considered
here �i.e., Ns=5 and Nmax�20�, states for which all Boltz-
mann weights �e−�E� or matrix elements that are smaller than
10−6 are neglected.

For the numerical implementation, let us note that some
denominators in Eqs. �A2�–�A7�, characterized by a bosonic
Matsubara frequency �e.g., those with i� or with i��−����,
can vanish during the summations over the Hilbert space.

However there are no divergences, since the correspond-
ing numerators are simultaneously vanishing, so that their
limit is always well defined. To avoid computational prob-
lems, we simply add a very small energy shift in all the terms
with a vanishing denominator �e.g., EN→EN+10−8�, in order
to evaluate numerically the correct limiting values.
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