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We present an atomic-orbital-based approximate scheme for self-interaction correction �SIC� to the local-
density approximation �LDA� of density-functional theory. The method, based on the idea of Filippetti and
Spaldin �Phys. Rev. B 67, 125109 �2003��, is implemented in a code using localized numerical atomic-orbital
basis sets and is now suitable for both molecules and extended solids. After deriving the fundamental equations
as a nonvariational approximation of the self-consistent SIC theory, we present results for a wide range of
molecules and insulators. In particular, we investigate the effect of re-scaling the self-interaction correction and
we establish a link with the existing atomiclike corrective scheme LDA+U. We find that when no re-scaling is
applied, i.e., when we consider the entire atomic correction, the Kohn-Sham highest occupied molecular orbital
�HOMO� eigenvalue is a rather good approximation to the experimental ionization potential for molecules.
Similarly the HOMO eigenvalues of negatively charged molecules reproduce closely the molecular affinities.
In contrast a re-scaling of about 50% is necessary to reproduce insulator band gaps in solids, which otherwise
are largely overestimated. The method therefore represents a Kohn-Sham based single-particle theory and
offers good prospects for applications where the actual position of the Kohn-Sham eigenvalues is important,
such as quantum transport.
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I. INTRODUCTION

Density-functional theory �DFT�, in both its static2 and
time-dependent3 forms, has become by far the most success-
ful and widely used among all the electronic structure meth-
ods. The most obvious reason for this success is that it pro-
vides accurate predictions of numerous properties of atoms,
inorganic molecules, biomolecules, nanostructures, and sol-
ids, thus serving different scientific communities.

In addition DFT has a solid theoretical foundation. The
Hohenberg-Kohn theorem2 establishes the existence of a
unique energy functional E��� of the electron density �
which alone is sufficient to determine the exact ground state
of a N-electron system. Although the energy functional itself
is not known, several of its general properties can be dem-
onstrated rigorously. These are crucial for constructing in-
creasingly more predictive approximations to the functional
and for addressing the failures of such approximations.4

Finally, but no less important, the Kohn-Sham �KS� for-
mulation of DFT �Ref. 5� establishes a one-to-one mapping
of the intrinsically many-body problem onto a fictitious
single-particle system and offers a convenient way for mini-
mizing E���. The degree of complexity of the Kohn-Sham
�KS� problem depends on the approximation chosen for the
density functional. In the case of the local-density approxi-
mation �LDA�,5 the KS problem typically scales as N,3

where the scaling is dominated by the diagonalization algo-
rithm. However, clever choices with regard to basis sets and
sophisticated numerical methods make order-N scaling a
reality.6,7

The energy functional E��↑ ,�↓� ���, �= ↑ ,↓ is the spin
density, �=����� can be written as

E��↑,�↓� = TS��� +� d3r��r�v�r� + U��� + Exc��↑,�↓� ,

�1�

where TS is the kinetic energy of the noninteracting system,
v�r� is the external potential, U is the Hartree electrostatic
energy, and Exc is the exchange and correlation �XC� energy.
This last term is unknown and must be approximated. The
construction of an approximated functional follows two strat-
egies: empirical and “constraint satisfaction.”

Empirical XC functionals usually violate some of the con-
straints imposed by exact DFT, and rely on parametrizations
obtained by fitting representative data. One includes in this
category XC functionals which borrow some functional de-
pendence from other theories. This is, for instance, the case
of the celebrated LDA+U scheme,8,9 where the Hubbard-U
energy takes the place of the LDA energy for certain
“strongly correlated” atomic orbitals �typically d and f
shells�. The method, however, depends on the knowledge of
the Coulomb and exchange parameters U and J, which vary
from material to material, and can also be different for the
same ion in different chemical environments.10,11

In contrast, the construction based on constraint satisfac-
tion proceeds by developing increasingly more sophisticated
functionals, which, nevertheless, satisfy most of the proper-
ties of exact DFT.12 It was argued that this method constructs
a “Jacob’s ladder,”13 where functionals are assigned to dif-
ferent rungs depending on the number of ingredients they
include. Thus the LDA, which depends only on the spin den-
sities, is on the first rung, the generalized gradient approxi-
mation �GGA�,14 which depends also on ���, is on the sec-
ond rung, the so-called meta-GGA functionals,15 which in
addition to �� and ��� depend on either the Laplacian �2��
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or the orbital kinetic energy density, are on the third rung,
and so on. The higher its position on the ladder the more
accurate a functional becomes, but at the price of increasing
computational overheads. Therefore it is worth investigating
corrections to the functionals of the lower rungs, which pre-
serve most of the fundamental properties of DFT and do not
generate massive additional numerical overheads.

One of the fundamental problems intrinsic to the semilo-
cal functionals of the first three rungs is the presence of
self-interaction �SI�.16 This is the spurious interaction of an
electron in a given KS orbital with the Hartree and XC po-
tential generated by itself. Such an interaction is not present
in the Hartree-Fock method, where the Coulomb self-
interaction of occupied orbitals is canceled exactly by the
nonlocal exchange. However, when using semilocal func-
tionals such a cancellation is not complete and the rigorous
condition for KS-DFT,

U��n
�� + Exc��n

�,0� = 0, �2�

for the orbital density �n
�= ��n

��2 of the fully occupied KS
orbital �n

� is not satisfied. A direct consequence of the self-
interaction in LDA/GGA is that the KS potential becomes
too repulsive and exhibits an incorrect asymptotic behavior.16

This “schizophrenic” �self-interacting� nature of semilocal
KS potentials generates a number of failures in describing
elementary properties of atoms, molecules, and solids. Nega-
tively charged ions �H−, O−, F−� and molecules are predicted
to be unstable by LDA,17 and transition-metal oxides are
described as small-gap Mott-Hubbard antiferromagnets
�MnO, NiO�,18 or even as ferromagnetic metals �FeO,
CoO�,18 instead of charge-transfer insulators. Moreover, the
KS highest occupied molecular orbital �HOMO�, the only
KS eigenvalue that can be rigorously associated to a single-
particle energy,19–21 is usually nowhere near the actual ion-
ization potential.16

Finally XC functionals affected by SI do not present a
derivative discontinuity as a function of the occupation.19,20

Semilocal functionals in fact continuously connect the orbital
levels of systems of different integer occupation. This means,
for instance, that when adding an extra electron to an open
shell N-electron system the KS potential does not jump dis-
continuously by IN−AN where IN and AN are, respectively,
the ionization potential and the electron affinity for the
N-electron system. This serious drawback is responsible for
the incorrect dissociation of heteronuclear molecules into
charged ions22 and for the metallic conductance of insulating
molecules.23

The problem of removing the SI from a semilocal poten-
tial was acknowledged a long time ago when Fermi and Am-
aldi proposed a first crude correction.24 However, the modern
theory of self-interaction corrections �SICs� in DFT is due to
the original work of Perdew and Zunger from almost three
decades ago.16 Their idea consists in removing directly the
self-Hartree and self-XC energy of all the occupied KS or-
bitals from the LDA XC functional �the same argument is
valid for other semilocal functionals�, thus defining the SIC
functional as

Exc
SIC��↑,�↓� = Exc

LDA��↑,�↓� − �
n�

occupied

�U��n
�� + Exc

LDA��n
�,0�� .

�3�

Although apparently simple, the SIC method is more in-
volved than standard KS DFT. The theory is still a density-
functional one, i.e., it satisfies the Hohenberg-Kohn theorem,
however, it does not fit into the Kohn-Sham scheme, since
the one-particle potential is orbital dependent. This means
that one cannot define a kinetic energy functional indepen-
dently from the choice of Exc.

16 Two immediate conse-
quences are that the �n

� are not orthogonal, and that the
orbital-dependent potential can break the symmetry of the
system. This last aspect is particularly important for solids
since one has to give up the Bloch representation.

In this paper we explore an approximate method for SIC
to the LDA, which has the benefit of preserving the local
nature of the LDA potential, and therefore maintains all of
the system’s symmetries. We have followed in the footsteps
of Filippetti and Spaldin,1 who extended the original idea of
Vogel and co-workers25–27 of considering only the atomic
contributions to the SIC. We have implemented such a
scheme into the localized atomic-orbital code SIESTA,28 and
applied it to a vast range of molecules and solids. In particu-
lar we have investigated in detail how the scheme performs
as a single-particle theory, and how the SIC should be res-
caled in different chemical environments.

II. REVIEW OF EXISTING METHODS

The direct subtraction proposed by Perdew and Zunger is
the foundation of the modern SIC method. However, the
minimization of the SIC functional �3� is not trivial, in par-
ticular for extended systems. The main problem is that Exc
itself depends on the KS orbitals. Thus it does not fit into the
standard KS scheme and a more complicated minimization
procedure is needed.

Following the minimization strategy proposed by Levy,29

which prescribes to minimize the functional first with respect
to the KS orbitals �n

� and then with respect to the occupation
numbers pn

�, Perdew and Zunger derived a set of single-
particle equations,

�−
1

2
�2 + veff,n

� �r�	�n
� = �n

�,SIC�n
�, �4�

where the effective single-particle potential veff,n
� �r� is de-

fined as

veff,n
� �r� = v�r� + u����;r� + vxc

�,LDA���↑,�↓�;r� − u���n�;r�

− vxc
�,LDA���n

↑,0�;r� , �5�

and

u����;r� =� d3r�
��r��

�r − r��
, �6�

vxc
�,LDA���↑,�↓�;r� =

�

����r�
Exc

LDA��↑,�↓� . �7�
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These are solved in the standard KS way for atoms, with
good results in terms of quasiparticle energies.16 In this par-
ticular case the KS orbitals �n

� show only small deviations
from orthogonality, which is re-imposed with a standard
Schmidt orthogonalization.

The problem of the nonorthogonality of the KS orbitals
can be easily solved by imposing the orthogonality condition
as a constraint to the energy functional, thus obtaining the
following single-particle equation:

�−
1

2
�2 + veff,n

� �r�	�n
� = �

m

�nm
�,SIC�m

� . �8�

Even in this case where orthogonality is imposed, two major
problems remain: the orbitals minimizing the energy func-
tional are not KS-type and in general do not satisfy the sys-
tem’s symmetries.

If one insists in minimizing the energy functional in a KS
fashion by constructing the orbitals according to the symme-
tries of the system, the theory will become size-inconsistent,
or in other words it will be dependent on the particular rep-
resentation employed. Thus one might arrive at a paradox,
where in the self-interaction of N hydrogen atoms arranged
on a regular lattice of large lattice spacing �in such a way that
there is no interaction between the atoms� vanishes, since the
SIC of a Bloch state vanishes for N→�. However, the SIC
for an individual H atom, when calculated using atomiclike
orbitals, accounts for essentially all the ground-state energy
error.16 Therefore a size-consistent theory of SIC DFT must
look for a scheme where a unitary transformation of the oc-
cupied orbitals, which minimizes the SIC energy, is per-
formed. This idea is at the foundation of all modern imple-
mentations of SICs.

Significant progress towards the construction of a size-
consistent SIC theory was made by Pederson, Heaton, and
Lin, who introduced two sets of orbitals: localized orbitals
�n

� minimizing Exc
SIC and canonical �Kohn-Sham� de-

localized orbitals �n
�.30–32 The localized orbitals are used for

defining the densities entering into the effective potential �5�,
while the canonical orbitals are used for extracting the La-
grangian multipliers �nm

�,SIC, which are then associated to the
KS eigenvalues. The two sets are related by unitary transfor-
mation �n

�=�mMnm
� �m

� , and one has two possible strategies
for minimizing the total energy.

The first consists in a direct minimization with respect to
the localized orbitals �n

�, i.e., in solving Eq. �8� when we
replace � with � and the orbital densities entering the defi-
nition of the one-particle potential �5� are simply �n

�= ��n
��2.

In addition the following minimization condition must be
satisfied:


�n
��vn

SIC − vm
SIC��m

�� = 0, �9�

where vn
SIC=u���n� ;r�+vxc

�,LDA���n
↑ ,0� ;r�. An expression for

the gradient of the SIC functional, which also constrains the
orbitals to be orthogonal, has been derived33 and applied to
atoms and molecules with a mixture of successes and bad
failures.34–36

The second strategy uses the canonical orbitals � and
seeks the minimization of the SIC energy by varying both the
orbitals � and the unitary transformation M. The corre-
sponding set of equations is

Hn
��n

� = �H0
� + �vn

SIC��n
� = �

m

�nm
�,SIC�m

� , �10�

�n
� = �

m

Mnm�m
� , �11�

�vn
SIC = �

m

Mnmvm
SIC�m

�

�n
� , �12�

where H0
� is the standard LDA Hamiltonian �without SIC�.

Thus the SIC potential for the canonical orbitals appears as a
weighted average of the SIC potential for the localized orbit-
als. The solutions of the set of equations �10� is somehow
more appealing than that associated to the localized orbitals
since the canonical orbitals can be constructed in a way that
preserves the system’s symmetries �for instance, translational
invariance�.

A convenient way for solving Eq. �10� is that of using the
so-called “unified Hamiltonian” method.30 This is defined as
�we drop the spin index ��

Hu = �
n

occup

P̂nH0P̂n + �
n

occup

�P̂nHnQ̂ + Q̂HnP̂n� + Q̂H0Q̂ ,

�13�

where P̂n= ��n
��
�n

�� is the projector over the occupied orbital

�n
�, and Q̂ is the projector over the unoccupied ones Q̂=1

−�n
occupP̂n. The crucial point is that the diagonal elements of

the matrix �nm
�,SIC and their corresponding orbitals �n

� are, re-
spectively, eigenvalues and eigenvectors of Hu, from which
the whole �nm

�,SIC can be constructed. Finally, and perhaps
most important, at the minimum of the SIC functional, the
canonical orbitals diagonalize the matrix �nm

�,SIC, whose eigen-
values can now be interpreted as an analog of the Kohn-
Sham eigenvalues.32

It is also interesting to note that an alternative way for
obtaining orbital energies is that of constructing an effective
SI-free local potential using the Krieger-Li-Iafrate method.37

This has been recently explored by several groups.38–40

When applied to extended systems the SIC method de-
mands considerable additional computational overheads over
standard LDA. Thus for a long time it has not encountered
the favor of the general solid-state community. In the case of
solids the price to pay for not using canonical orbitals is
enormous since the Bloch representation should be aban-
doned and in principle infinite cells should be considered.
For this reason the second minimization scheme, in which
the canonical orbitals are in a Bloch form, is more suitable.
In this case for each k-vector one can derive an equation
identical to Eq. �10�, where �nm

�,SIC=�nm
�,SIC�k� and n is simply

the band index.41 The associated localized orbitals �, for
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instance, can be constructed as Wannier functions and the
minimization scheme proceeds in a similar way to that done
for molecules.

The problem here is that in practice, the cell needed to
describe the localized states � may be considerably larger
than the primitive unit cell. This is not the case for ionic
insulators,41 where the localized orbitals are well approxi-
mated by atomic orbitals. Such a simplification is, however,
not valid in general. For example supercells as large as 500
atoms have been considered for describing the localized d
shells in transition-metal oxides.42–44 Despite these difficul-
ties the SIC scheme has been applied to a vast range of
solid-state systems with systematic improvement over LDA.
These include, in addition to transition-metal
monoxides,42,44,45 rare-earth materials,46 diluted magnetic
semiconductors,47 Fe3O4,48 heavy element compounds,49 just
to name a few.

In order to make the SIC method more scalable several
approximations have been proposed. One possibility is that
of incorporating part of the SIC into the definition of the
pseudopotentials.50 The idea consists in subtracting the
atomic SI from the free atom, and then transferring the re-
sulting electronic structure to the definition of a standard
norm-conserving pseudopotential. This approximation is sus-
tained by the fact that the transformation M, which relates
canonical and localized orbitals, does hardly mix core and
valence states.32 Thus the SIC contribution to the total en-
ergy can be separated into the contributions from the core
and the valence and in first approximation the latter can be
neglected.51 The benefit of this method is that translational
invariance is regained and the complicated procedure of
minimizing M is replaced by a pseudopotential calculation.

A further improvement over the pseudopotential method
was recently presented by Vogel and co-workers25–27 and
then extended by Filippetti and Spaldin.1 The method still
assumes separability between the core and the valence con-
tributions to the SIC, but now the SIC for the valence elec-
trons is approximated by an atomiclike contribution, instead
of being neglected. This atomic SIC �ASIC� scheme is cer-
tainly a drastic approximation, since it implicitly assumes
that the transformation M minimizing the SIC functional
leads to atomiclike orbitals.

In the work of Vogel this additional contribution is not
evaluated self-consistently for the solid, while the implemen-
tation of Filippetti assumes a linear dependance of the SIC
over the orbital occupation. In spite of the approximations
involved, the method has been applied successfully to a
range of solids including II-VI semiconductors and
nitrites,1,25,26 transition metal monoxides,1,52 silver halides,27

noble metal oxides,53 ferroelectric materials,1,54,55 high-k
materials56 and diluted magnetic semiconductors.57,58 Inter-
estingly most of the systems addressed by the ASIC method
are characterized by semicore d orbitals, for which an atomic
correction looks appropriate, and a similar argument is prob-
ably valid for ionic compounds as recently demonstrated for
the case of SiC.59

Here we further investigate the self-consistent ASIC
method1 by examining both finite and extended systems, and
by critically considering whether a scaling factor, additional
to the orbital occupation, is needed for reproducing the cor-
rect single-particle spectrum.

III. FORMALISM AND IMPLEMENTATION

In this section we derive the fundamental equations of the
ASIC method, while looking closely at the main approxima-
tions involved in comparison to the fully self-consistent SIC
approach. Our practical implementation is also described.

A. ASIC potential

The starting point of our analysis is the SIC Schrödinger-
like equation �10� for the canonical orbitals. Let us assume,
as from Ref. 51, that the rotation M transforming localized
orbitals �to be determined� into canonical orbitals �see Eq.
�11�� does not mix core and valence states. We also assume
that core electrons are well localized into atomiclike wave-
functions and that they can be effectively described by a
norm-conserving pseudopotential.

Let us now assume that M is known and so are the lo-
calized orbitals �m

� . In this case the canonical orbitals diag-
onalize �nm

�,SIC and Eq. �10� simply reduces to

�H0
� + �vn

SIC��n
� = �n

�,SIC�n
�, �14�

with �vn
SIC defined in Eq. �12�. The Hamiltonian H0

�+�vn
SIC

can be then rewritten in a convenient form as

H0
� + �vn

SIC = H0
� + �

m
vm

SICP̂m
� , �15�

where vm
SIC is the self-interaction potential for the localized

orbital �m
� , and P̂m

� is the projector over the same state,

P̂m
��n

��r� = �m
��r� � d3r��n

��r���m
�†�r�� = �m

��r�
�m
� ��n

�� .

�16�

Two main approximations are then taken in the ASIC
approach.1,25 First the localized states �m

� are assumed to be
atomiclike orbitals 	m

� �ASIC orbitals� and the SIC potential
is approximated as

�
m

vm
SIC�r�P̂m

� → 
�
m

ṽm
�SIC�r�P̂m

	, �17�

with ṽm
�SIC�r�=u���m� ;r�+vxc

�,LDA���m
↑ ,0� ;r� and �m

� = �	m
� �2,

P̂m
	 is the projector of Eq. �16� obtained by replacing the �’s

with the ASIC orbitals 	, and 
 is a scaling factor. Note that
the orbitals 	m are not explicitly spin dependent and one
simply has 	m

� =	mpm
� with pm

� the orbital occupation
�pm

� =0,1�. The factor 
 is an empirical factor, which ac-
counts for the particular choice of ASIC orbitals. This first
approximation is expected to be accurate for systems retain-
ing an atomiclike charge density as in the case of small mol-
ecules. It is also formally exact in the one-electron limit �for

=1�. In the case of extended solids the situation is less
transparent, since in general the functions minimizing Exc

SIC

are Wannier-like functions.60

The second approximation taken in the ASIC method is

that of replacing the nonlocal projector P̂m
	 with its expecta-

tion value. The idea is that the SIC potential for the canonical
orbitals �vn

SIC is formally a weighted average of the SIC
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potential for the localized orbitals vm
SIC. For the exact SIC

method the weighting factor is the nonlocal projector

Mnm
�m

�

�n
� . This means that the SIC potential for a given ca-

nonical orbital �n is maximized in those regions where the
overlap with some of the localized orbitals �m is maximum.
In the ASIC method such nonlocal projector is replaced more
conveniently by a scalar. In the original proposal by Vogel
and co-workers25–27 this was simply set to 1. Here we con-
sider the orbital occupation pm

� of the given ASIC orbital 	m,

i.e., we replace P̂m
	 with its expectation value

P̂m
	 → 
P̂m

	� = pm
� = �

n

fn
�
�n

��P̂m
	��n

�� , �18�

where fn
� is the occupation number of the Kohn-Sham orbital

�n
�. The final form of ASIC potential is then

vASIC
� �r� = 
�

m
ṽm

�SIC�r�pm
� . �19�

Let us now comment on the empirical scaling factor 
. In
Ref. 1 
 was set to 1/2 in order to capture eigenvalue relax-
ation. This choice, however, violates the one-electron limit of
the SIC potential, which is correctly reproduced for 
=1. We
can then interpret 
 as a measure of the deviation of the
ASIC potential from the exact SIC potential. Ultimately 

reflects the deviation of the actual ASIC projectors �	�
	�
from the localized orbitals defining the SI corrected ground
state. One then expects 
 to be close to 1 for systems with an
atomiclike charge density, and to vanish for metals, whose
valence charge density resembles that of a uniform electron
gas.61 Intermediate values are then expected for situations
different from these two extremes, and we will show that a
values around 1/2 describe well a vast class of mid-to wide-
gap insulators.

B. Implementation

The final form of the SIC potential to subtract from the
LSDA �local spin-density approximation� one �Eq. �19�� is
that of a linear combination of nonlocal pseudopotential-like
terms. These are uniquely defined by the choice of exchange
and correlation potential used and by ASIC orbitals 	m. The
practical way of constructing such potentials, i.e., the way of
importing the atomic SIC to the solid state, depends on the
specific numerical implementation used for the DFT algo-
rithm. At present plane-wave and Gaussian orbital imple-
mentations are available,1,25–27 while here we present our
scheme based on the pseudoatomic orbital �PAO� �Ref. 65�
code SIESTA.28

We start by solving the atomic all-electron SIC-LSDA
equation for all the species involved in the solid-state calcu-
lation. Here we apply the original Perdew-Zunger �PZ-SIC�
formalism16 and we neglect the small nonorthogonality be-
tween the Kohn-Sham orbitals. Thus we obtain a set of SI
corrected atomic orbitals 	m, which exactly solve the atomic
SIC-LSDA problem. The atomic orbitals 	m describing the
valence electrons are then used to define the ASIC potentials
ṽm

�SIC,

ṽm
�SIC�r� = u���m�;r� + vxc

�,LDA���m
↑ ,0�;r� �20�

with �m
� = �	m�2.

At the same time a standard LSDA calculation for the
same atoms is used to construct the pseudopotentials describ-
ing the core electrons. These are standard norm-conserving
scalar relativistic Troullier-Martins pseudopotentials62 with
nonlinear core corrections.63 Thus we usually neglect the SIC
over the core states, when constructing the pseudopotentials.
This is justified by the fact that the eigenvalues for the SIC-
LSDA pseudoatom, i.e., for the free atom where the effects
of core electrons are replaced by LSDA pseudopotentials but
SIC is applied to the valence electrons, are in excellent
agreement with those obtained by all-electron SIC-LSDA
calculations.25

The final step is that of recasting the ASIC potentials
ṽm

SIC�r�, which have a −2/r asymptotic behavior, in a suitable
nonlocal form. This is obtained with the standard
Kleinman-Bylander64 scheme and the final ASIC potential
�Eq. �19�� is written as

vASIC
� = �

m

��m
��
�m

� �
Cm

� , �21�

where the ASIC projectors are given by

�m
��r� = 
pm

� ṽm
�SIC�r�	m� �r� . �22�

and the normalization factors are

Cm
� = 
pm

�
	m� �ṽm
�SIC�	m� � . �23�

The orbital functions 	m� are atomiclike functions with a
finite range, which ensure that the ASIC projectors �m do not
extend beyond that range. These are constructed in the same
way as the SIESTA basis set orbitals, i.e., as solutions of the
pseudoatomic problem with an additional confining potential
at the cutoff radius rcutoff.

65 The choice of the appropriate
cutoff radius for the SIC projectors should take into account
the two following requirements. On the one hand it should be
sufficiently large to capture most of the SIC corrections. A
good criterion1 is that the SIC-LSDA contribution to the or-
bital energy of the free atom,

��SICm
� = 
	m� �ṽm

�SIC�	m� � , �24�

is reproduced within some tolerance. On the other hand, the
cutoff should be reasonably short so as not to change the
connectivity of the matrix elements of the PAO Hamiltonian.
In other words, we need to ensure that orbitals otherwise
considered as disconnected in evaluating the various parts of
the Hamiltonian matrix are not considered connected for the
vASIC

� matrix elements alone.
As a practical rule we set the cutoff radius for a particular

orbital of a given atom to be either equal to the longest
among the cutoff radii of the PAO basis set for that particular
atom �typically the first  of the lowest angular momentum�,
or, if shorter, the radius at which ��SICm

� �0.1 mRy. Typi-
cally, when reasonable cutoff radii �6–9 bohr� are used, we
find that the atomic SIC-LSDA eigenvalues are reproduced
to within 1–5 mRy for the most extended shells and to
within 0.1 mRy for more confined shells. Thus ��SICm

� are
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rather well converged already for cutoff radii defined by a
PAO energies shifts28 of around 20 mRy, although usually
smaller PAO energy shifts are necessary for highly con-
verged total energy calculations.

Finally the matrix elements of the SIC potential are cal-
culated as usual over the SIESTA basis set. Additional basis
functions �m are constructed from the confined localized
atomic orbitals described before using the split-norm
scheme.65–67 The density matrix �� is represented over such
basis ���

� and the orbital populations are calculated as

pm
� = �

��

Sm����
� S�m, �25�

where Sm� is a matrix element of the overlap matrix. Note
that in principle the orbital population should be constructed
for the atomic SIC orbital 	m. However, we notice that pm

� is
rather insensitive to the specific choice of orbital, once this
has a reasonable radial range. For practical numerical rea-
sons in the present implementation, we always use the orbital
populations projected onto the basis set subspace consisting
of the most extended first- orbitals of the atomic species
involved. The matrix elements of the SIC potential are sim-
ply

�vASIC
� ��� = �

m


����m
��
�m

� ����
Cm

� , �26�

and the ASIC-KS equation takes the final form

�−
1

2
�2 + vPP + u + vxc

�,LSDA − vASIC
� 	�n

� = �n
�,SIC�n

� �27�

with vPP the pseudopotential.

C. Total energy

The energy corresponding to the SIC-LSDA functional is
given by16

ESIC��↑,�↓� = ELSDA��↑,�↓� − �
n�

occ.

�U��n
�� + Exc

LSDA��n
�,0�� ,

�28�

where

U��n
�� =� d3r

1

2
�n�r�u���n�;r� , �29�

Exc
LSDA���n

�,0�� =� d3r�n�r�Exc
LSDA���n�;r� , �30�

with Exc
LSDA the LSDA exchange and correlation energy den-

sity. The orbital densities entering in the SI term are those
associated to the local orbitals �. As we have already men-
tioned, this functional needs to be minimized with respect to
the �’s, which are an implicit function of the total spin den-
sity ��. In the ASIC approximation these orbitals are not
minimized, but taken as atomic functions. This means that in
the present form the theory is not variational, in the sense
that there is no functional related to the KS equation �27� by

a variational principle. With this in mind we adopt the ex-
pression of Eq. �28� as a suitable energy, where the orbital
densities are those given by the ASIC orbitals,

�m
��r� = pm

� �	m�2. �31�

In our implementation the LSDA KS energy ELSDA is di-
rectly available as calculated in the SIESTA code28 and thus
only the second term of Eq. �28� needs to be calculated. This
is easily done by calculating both U and Exc

LSDA on an atomic
radial grid for each atomic orbital in the system.

D. ASIC and LDA+U

We now compare our ASIC method with another atomic-
like correction to LSDA, namely the LDA+U method.8,9 In
LDA+U one replaces the LSDA exchange and correlation
energy associated to the “correlated” orbitals �d or f shells�,
with the Hubbard-U energy. Thus the functional becomes

ELDA+U���r�� = ELSDA���r�� + EU��pm
�� − EDC��pm

�� ,

�32�

where the Hubbard energy EU and the double counting term
EDC depend on the orbital populations pm

� of the correlated
orbitals. Several forms for the LDA+U functional have been
proposed to date. A particularly simple and transparent
one,10,68 which is also rotationally invariant, redefines the U
parameter as an effective parameter Ueff=U−J and the func-
tional takes the form

EU − EDC =
Ueff

2 �
I

�
m�

�pmm
I� − �

n

pmn
I� pnm

I� 	 , �33�

wherein we separate out the index for the atomic position I
from the magnetic quantum number m, and introduce the

off-diagonal populations pmn
I� =�
f


�
�

��P̂mn

I	 ��

�� with P̂mn

I	

= �	m
I �
	n

I �. Note that the LDA+U functional is SI free for
those orbitals that are corrected.

Although a rotationally invariant form of the ASIC poten-
tial can be easily derived, we assume here for simplicity that
the system under consideration is rotationally invariant, or
alternatively that we have carried out a rotation, which di-
agonalizes the pmn

I� matrix. In this case the energy becomes
simply

EU − EDC =
Ueff

2 �
Im�

pm
I��1 − pm

I�� , �34�

with pm
I�= pmm

I� . It is then easy to compute the KS potential

vLDA+U = vLSDA + �
Im�

Ueff�1

2
− pm

I�	P̂m
I	, �35�

and the orbital energy

�m
I� =

�E

�pm
I� = �m

I�LSDA + Ueff�1

2
− pm

I�� . �36�

These need to be compared with the ASIC potential
�Eq. �19�� and orbital energy
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�m
I� = �m

I�LSDA − 
pm
I�
	m

I��ṽIm
�SIC�	m

I�� , �37�

where the last term follows from �E
�pm

I� =Cm
I� and from Eq. �28�.

The main difference between the ASIC and LDA+U meth-
ods is in the way in which unoccupied states are handled. In
fact, while LDA+U corrects unoccupied states and pushes
the orbital energies upwards by �Ueff /2, ASIC operates only
on occupied states, that are shifted towards lower energies by

Cm
I�

. This reflects the fact that the SIC is defined only for
occupied KS orbitals. An important consequence is that the
opening of band gaps in the electronic structures, one of the
main features of both the LDA+U and ASIC schemes, is
then driven by two different mechanisms. On the one hand in
LDA+U, gaps open up since occupied and unoccupied states
are corrected in opposite directions leading to a gap of
�Ueff. On the other hand ASIC is active only over occupied
states and gaps open only if occupied and unoccupied bands
have large differences in their projected atomic orbital con-
tent. Thus one should not expect any corrections for covalent
materials where conduction and valence bands are simply
bonding and antibonding states formed by the same atomic
orbitals. This is, for instance, the case of Si and Ge. In con-
trast ASIC will be extremely effective for more ionic situa-
tions, where the orbital contents of conduction and valence
bands are different.

Finally, by comparing the corrections to the orbital energy
of a fully occupied state, one finds

U = 2

	m
I��ṽIm

�SIC�	m
I�� , �38�

which establishes an empirical relation between the Hubbard
energy and the ASIC correction. Since U is sensitive to the
chemical environment due to screening,10 while all the other
quantities are uniquely defined by an atomic calculation, we
can re-interpret the parameter 
 as empirically describing the
screening from the chemical environment within the ASIC
scheme.

IV. RESULTS: EXTENDED SYSTEMS

The test calculations that we present in this work are for
two classes of materials: extended and finite. First we inves-
tigate how our implementation performs in the solid state. In
particular we discuss the role of the parameter 
 in determin-
ing the band structure of several semiconductors, considering
both the KS band gap and the position of bands associated
with tightly bound electrons.

A. Estimate of � for semiconductors

The quasiparticle band gap Eg in a semiconductor is de-
fined as the difference between its ionization potential I and
electron affinity A. These can be rigorously calculated from
DFT as the HOMO energy, respectively, of the neutral and
negatively charged systems. This actual gap cannot be di-
rectly compared with the KS band gap Eg

KS, defined as the
difference between the orbital energy of the HOMO and low-
est occupied molecular orbital �LUMO� states of the neutral
system. In fact, the presence of a derivative discontinuity in
the DFT energy as a function of the electron occupation

establishes the following rigorous relation:20,69

Eg = Eg
KS + �xc, �39�

with

�xc = lim
�→0+

���Exc�n�
�n

�
N+�

− ��Exc�n�
�n

�
N−�
�

nN

. �40�

This is valid even for the exact XC potential, and therefore in
principle one has to give up KS band structures as a tool for
evaluating semiconductor band gaps. The size of �xc is, how-
ever, not known for real extended systems and the question
of whether most of the error in determining Eg from Eg

KS is
due to the approximation in the XC potential or due to the
intrinsic �xc is a matter of debate.

In general, SI-free potentials bind more than LSDA and
one expects larger gaps. Surprisingly, functionals based on
exact exchange, provide KS gaps rather close to the experi-
mental values.70,71 The reason for such a good agreement is
not fully understood, but it is believed that the exact KS gaps
should be smaller than the actual ones.

With this in mind, we adopt a heuristic approach and we
use the KS band gap as a quality indicator for interpreting
the parameter 
 and for providing its numerical value for
different classes of solids. Here we investigate the depen-
dence of Eg

KS over 
 and we determine the value for 
 yield-
ing the experimental band gap. Assuming that �xc does not
vary considerably across the materials investigated, this will
allow us to relate 
 to the degree of localization in a semi-
conductor and to extract the value useful for ASIC to be an
accurate single-particle theory.

In Fig. 1 we present the band gap of four representative
semiconductors as a function of 
 together with the value
needed to reproduce the experimental band gap. LSDA cor-
responds to 
=0 and while 
=1 accounts for the full ASIC.
In general Eg

KS increases as 
 increases, as a result of the
stronger SIC. The Eg

KS�
� curve is almost linear with a slope,
which appears to be material specific.

FIG. 1. �Color online� Calculated band gap for NaCl, MgO,
AlN, and ZnO as a function of the parameter 
. 
=0 corresponds to
normal LSDA and 
=1 to using the atomic SIC at full strength. The
lattice parameters used for the calculations are either the equilib-
rium LSDA or the experimental when available.
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For the most ionic compound, NaCl, the experimental gap
is reproduced almost exactly by 
=1, i.e., by the full ASIC.
This is somehow expected since the charge density of solid
NaCl is rather close to a superposition of the Na+ and Cl−

ionic charge densities. In this case of strongly localized
charge densities the ASIC approximation is rather accurate
yielding results substantially identical to those obtained with
full self-consistent PZ-SIC.41 Indeed, earlier calculations for
LiCl �Ref. 41� demonstrate that the SIC band structure is
rather insensitive of the localized orbitals � once these have
an atomiclike form.

For the other compounds the localized orbitals �’s are not
necessarily atomiclike functions and deviations from 
=1
are expected. Interestingly we find that, for all the materials
investigated, a value of around 1/2 reproduces the experi-
mental band gap rather accurately. As an illustration, in Table
I we compare the experimental band gap Eg

exp to the calcu-
lated Eg

KS for ASIC �
=1� and LDA, for several semicon-
ductors ranging from ionic salts to wide-gap II-VI and III-V
semiconductors. We also report the value of 
=
* needed
for Eg

exp=Eg
KS.

Clearly for all the strongly ionic compounds �LiCl, NaCl,
and KCl� the full ASIC correction 
=1 reproduces quite
accurately the experimental gap and agrees with previous
self-consistent SIC calculations.81 For all the other com-
pounds a value of around 1/2 is always adequate, confirming
the initial choice of Filippetti and Spaldin. For these materi-
als we do not find any particular regularity. In general 
 is
large when the experimental gap is large, however, there is

no direct connection between 
 and the ionicity or covalency
of a compound. In fact, the improvement of the band gap is
not simply due to a rigid shift of the valence band, but usu-
ally corresponds to a general improvement of the whole qua-
siparticle spectrum. Examples for ZnO and GaN will be pre-
sented in the next section.

As a further proof of this point in Table II we present the
valence bandwidth for the semiconductors investigated as
calculated from LSDA �Ev

LSDA and ASIC for both 
=1
��Ev

ASIC1� and 
=
* ��Ev
ASIC
*�. We also report the experi-

mental values �Ev
exp whenever available, although a direct

comparison with experiments is difficult, since these values
are rather imprecise and sometimes not known. The general
feature is that ASIC produces only minor corrections over
LSDA, and that these corrections do not follow a generic
trend. Thus while for the nitrites ASIC always increases the
bandwidth, it does just the opposite for KCl, SrO, and CaO.

B. Wide-gap semiconductors: ZnO and GaN

Having established 
=1/2 as an appropriate value for
II-VI and III-V semiconductors, we now look at the whole
band structure �not just the fundamental gap� for a few test
cases. Here we consider ZnO and GaN for which photoemis-
sion data disagree quite remarkably from LSDA calculations.
In Fig. 2 we compare the band structure of wurtzite ZnO
obtained, respectively, from LSDA and our ASIC.

In ZnO, the valence-band top �VBT� is predominantly
oxygen 2p in character and the conduction-band minimum

TABLE I. Experimental Eg
exp and KS Eg

KS band gap �in eV� for a number of semiconductors. Eg
KS are calculated with both LSDA and

ASIC �
=1�. In the last column we report the value of 
=
* needed for Eg
exp=Eg

KS. The lattice parameters used for the calculations are either
the equilibrium LSDA or the experimental when available �in Å�. RS=rocksalt, WZ=wurtzite, ZB=zinc blende. The value for the experi-
mental gaps are from the literature.

Solid Structure Eg
exp Eg

KS-LSDA Eg
KS-ASIC 


LiCl RS �a=5.13� 9.4a 6.23 9.76 0.89

NaCl RS �a=5.63� 8.6b 4.91 8.51 1.02

KCl RS �a=6.24� 8.5c 4.90 8.51 0.99

MgO RS �a=4.19� 7.8d 4.86 9.36 0.65

CaO RS �a=4.74� 7.08d 4.93 9.28 0.49

SrO RS �a=5.03� 5.89e 4.20 7.80 0.47

AlN WZ �a=3.11, c=4.98� 6.20f 4.47 7.56 0.56

GaN WZ �a=3.16, c=5.13� 3.39g 2.21 5.03 0.44

lnN WZ �a=3.54, c=5.70� 0.7h 0.09 2.09 0.45

ZnO WZ �a=3.23, c=5.19� 3.43i 0.85 5.13 0.57

ZnS ZB �a=5.40� 3.78i 2.47 4.90 0.53

ZnSe ZB �a=5.63� 2.82i 1.77 3.53 0.58

aReference 72.
bReference 73.
cReference 74.
dReference 75.
eReference 76.
fReference 77.
gReference 78.
hReference 79.
iReference 80.
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�CBM� is essentially zinc 4s. With a value of �0.5 for the
scaling parameter 
, the ASIC band gap closely matches the
experimental gap of Eg=3.43 eV, whereas the LDA band
gap is very small ��0.85 eV�. Some part of the LDA band
gap error in ZnO can be traced to an underestimation of the
position of the semicore Zn 3d states. The LDA binding en-
ergy for the Zn 3d states is �5.5 eV while photoemission
results place them at around �7.8 eV. ASIC, however, rec-
tifies the problem and is in very good agreement with experi-
ment. This results furthermore in the removal of the spurious
Zn3d-O2p band mixing seen in LDA. An additional feature is
that the bandwidth of the valence band increases consider-
ably as an effect of the downshift of the d manifold. Its worth
mentioning that the positions of the Zn 3d levels obtained
from ASIC in the case of ZnS, ZnSe, and ZnTe also agree
remarkably well with experiment.

The wide-gap III-V semiconductor GaN presents similar
phenomenology to that of ZnO. Figure 3 compares the band

structure for wurtzite GaN obtained from LSDA and ASIC.
When compared to x-ray photoemission spectra,89 the LSDA
band structure of GaN has several shortcomings. First, the
band gap between N 2p bands �VBT� and Ga 4s bands
�CBM� is underestimated at around 2.2 eV against the ex-
perimental value of 3.4 eV. Second, the 3d states of Ga are
too shallow in LSDA, leading to a spurious 3d−2s hybrid-
ization. As a result the Ga 3d states overlap with and split the
N 2s bands. ASIC rectifies the picture on both counts by
improving the band gap and lowering the position of the Ga
3d bands with respect to the N 2s bands. These results cor-
roborate those of Refs. 1, 25, and 26 where in ZnO and GaN
have previously been discussed in a pseudopotential based
SIC context.

C. Transition-metal oxide: MnO

Transition-metal oxides like MnO and NiO are character-
ized by partially filled 3d orbitals and an associated local

TABLE II. Valence-band experimental bandwidth �Ev
exp compared with those obtained from ASIC �
=1� �Ev

ASIC1, LSDA ��Ev
LSDA�, and

ASIC with the optimal 
=
* from Table I �Ev
ASIC
*

for a number of semiconductors. The lattice parameters used for the calculations are
either the equilibrium LSDA or the experimental when available �in Å�. The experimental values are from the literature �last column�.

Solid �Ev
exp �Ev

ASIC1 �Ev
LSDA �Ev

ASIC
*
Reference

LiCl 4–5 3.52 3.06 3.51 81

NaCl 1.7–4.5 2.11 2.06 2.11 81

KCl 2.3–4.3 1.09 1.21 1.09 81

MgO 3.3–6.7 5.16 4.83 5.06 82 and 83

CaO 0.9 2.72 2.89 2.82 83

SrO 2.21 2.53 2.39

AlN 6.0 7.44 6.27 6.92 84

GaN 7.4 8.42 7.33 7.85 85

InN 6.0 6.66 6.01 6.34 86

ZnO �5 5.66 4.77 5.54 87

ZnS 5.5 6.49 5.57 6.05 88

ZnSe 5.6 7.14 5.35 6.38 88

FIG. 2. �Color online� Calculated band structure of wurtzite
ZnO obtained from LSDA �left� and ASIC �right�. Owing to the
ionic character of ZnO each group of bands can be clearly labeled
according to a single, dominant orbital character as shown. The
VBT is aligned at 0 eV.

FIG. 3. �Color online� Calculated band structure of wurtzite
GaN obtained from LDA �left� and ASIC �right�. The primary or-
bital character of the bands is indicated. The VBT is aligned at
0 eV.
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magnetic structure. In particular the Mn2+ ions in MnO are
magnetic with a half filled 3d shell. In the ground state, MnO
is an A type antiferromagnetic insulator in the intermediate
charge-transfer Mott-Hubbard regime with a band gap in the
region of 3.8–4.2 eV. The VBT is expected to be of mixed
Mn 3d-O 2p character and the CBM pure Mn 3d in charac-
ter. However, the LSDA description of MnO is flawed in
several aspects, most notably in describing MnO as a narrow
gap �Eg=0.92 eV� Mott-Hubbard insulator with both the
VBT and CBM composed of purely of Mn 3d states. This is
due to the severe underestimation of d electron binding en-
ergies in LSDA. The calculated antiferromagnetic band
structures of MnO from LSDA and ASIC �
=1/2� are
shown in Fig. 4.

Note that these are for the rhombohedral unit cell with
four atoms per cell. The two Mn ions are antiferromagneti-
cally aligned and the oxygen ions are nonmagnetic. This re-
sults in a layered ferromagnetic order of the �111� planes,
which in turn are antiferromagnetically coupled to each
other. Also in this case, ASIC is a considerable improvement
over LSDA. The size of the fundamental gap now resembles
the experimental one and the VBT recovers some p charac-
ter. We point the reader once again to Ref. 1 wherein
transition-metal oxides have been discussed in much more
detail.

V. RESULTS: MOLECULES

A. Ionization potentials

In view of the fact that the ASIC method gives improved
eigenvalue spectra for several solid-state systems, it is worth
taking a cautious look at how it performs with molecules.
This is particularly important for assessing whether the ASIC
scheme can be adapted to work in DFT electron transport
schemes based on the KS spectra.23,90 In exact KS DFT only
the highest occupied orbital eigenvalue ��HOMO� has a rigor-
ous physical interpretation and corresponds to the negative
of the first ionization potential.19,20 More generally, for a N
electron system, the following equations hold in exact KS-
DFT:

�HOMO�M� = − IN for �N − 1 � M � N� , �41�

�HOMO�M� = − AN for �N � M � N + 1� , �42�

where −IN and −AN are the ionization potential �IP� and the
electron affinity �EA�, respectively. Therefore we start our
analysis by looking at these quantities as calculated by ASIC.
Also in this case we investigate different values of 
. How-

TABLE III. Experimental ionization potential �IP� compared to calculated HOMO eigenvalues for neutral molecules. Columns 3 and 4
present the results from ASIC with, respectively, 
=1/2 and 
=1. The experimental data are taken from Ref. 91.

Molecule

�HOMO �eV� −IP �eV�

LSDA ASIC1/2 ASIC1 Experiment

CH3 −4.65 −7.34 −10.06 −9.84

NH3 −5.74 −8.21 −10.79 −10.07

SiH4 −7.95 −10.14 −12.41 −11.00

C2H4 −6.28 −8.00 −9.74 −10.51

SiCH4 −5.89 −7.57 −9.35 −9.00

CH3CHCl2 −7.23 −8.97 −10.72 −11.04

C4H4S −5.95 −7.65 −9.35 −8.87

C2H6S2 −5.56 −7.54 −9.53 −9.30

Pyridine −4.83 −6.57 −8.31 −9.60

Benzene −5.92 −7.59 −9.28 −9.24

Isobutene −5.39 −6.98 −8.6 −9.22

Nitrobenzene −6.49 −8.76 −10.67 −9.92

Naphthalene −5.49 −7.04 −8.59 −8.14

C60 −5.06 −6.53 −8.02 −7.57

C70 −4.92 −6.40 −7.89 −7.36

FIG. 4. �Color online� Calculated band structure of antiferro-
magnetic MnO obtained from LSDA �left� and ASIC �right�. In our
calculation we obtain an LSDA band gap of �0.65 eV whereas the
ASIC band gap is much improved at �3.5 eV. The VBT is aligned
at 0 eV.
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ever, here we limit ourselves only to 
=1 �ASIC1� and 

=1/2 �ASIC1/2�.

In Table III and Fig. 5 we compare the experimental nega-
tive IP for several molecules with the corresponding ��HOMO�
obtained using LSDA and ASIC. It is clear that LSDA
largely underestimates the removal energies in all the cases
and that the values obtained from ASIC1/2 are also consis-
tently lower than the experimental value. However, as made
evident by the figure the agreement between ASIC1 and ex-
periments is surprisingly good. In fact, the mean deviation
��X� �X=LSDA, ASIC1/2, ASIC1� from experiment,

��X� =
��

i=1

N

��X
HOMO,i + IPExpt

i �2

N
,

is 3.56 eV for LSDA, 1.69 eV for ASIC1/2, and only 0.58 eV
for ASIC1 �N runs over the molecules of Table III�. It is

worth noting that we have excellent agreement over the
whole range of molecules investigated going from N2 to
large fullerenes C60 and C70.

For comparison in Fig. 5 we have also included results
obtained with a full self-consistent PZ-SIC approach.35 Sur-
prisingly our atomic approximation seems to produce a bet-
ter agreement with experiments than the self-consistent
scheme, which generally overcorrects the energy levels. This
is a rather general feature of the PZ-SIC scheme and it is
generally acknowledged that some re-scaling procedure is
needed.92,93

B. Electron affinities

In Hartree Fock theory where Koopmans’ theorem
holds,94 the lowest unoccupied molecular orbital �LUMO�
energy ��LUMO�, corresponds to the vertical EA of the N elec-
tron system, if one neglects electronic relaxation. No such
interpretation exists for ��LUMO� in DFT and so the EA is not
directly accessible from the ground-state spectrum of the N
electron system. However, as Eq. �42� indicates, the EA is in
principle accessible from the ground-state spectrum of the
N+1− f �0� f �1� electron system and asserts in particular
that it must be relaxation free through noninteger occupation.
Unfortunately, the LSDA/GGA approximate functionals usu-
ally perform rather poorly in this regard as the N+1 electron
state is unbound with a positive eigenvalue. So one resorts
instead to extracting electron affinities from more accurate
total-energy differences,95 or by extrapolating them from
LSDA calculations for the N electron system.96 This failing
of approximate functionals has been traced in most part to
the SI error and so SIC schemes are expected to be more
successful in describing the N+1 electron spectrum.

In Table IV we compare HOMO energies �denoted as
�N+1

HOMO� of several singly negatively charged molecules with
the experimental electron affinities. We also report the
LUMO energies for the corresponding neutral species

FIG. 5. �Color online� Experimental negative ionization poten-
tial IP compared to the calculated HOMO eigenvalues for mol-
ecules. The experimental data are from Ref. 91, while the star sym-
bol represents full PZ-SIC calculations from Ref. 35.

TABLE IV. Calculated HOMO eigenvalues for singly negatively charged molecules compared to experimental negative electron affinities
�−EA�. Columns 6, 7, and 8 present the LUMO eigenvalues for the corresponding neutral species.

Molecule

�N+1
HOMO �eV�

Expt. −EA �eV�

�N
LUMO �eV�

LSDA ASIC1/2 ASIC1 LSDA ASIC1/2 ASIC1

CN− 0.84 −0.79 −2.48 −3.86 −8.13 −9.03 −9.42

C2H− 0.94 −0.80 −2.68 −2.97 −6.91 −7.38 −7.48

CH3S− 2.42 0.65 −1.14 −1.87 −5.20 −5.31 −5.34

OH− 3.82 1.09 −1.80 −1.83 −0.16 −0.43 −0.69

SiH3
− 4.61 3.13 1.61 −1.41 −2.66 −3.30 −4.07

HOO− 3.10 −0.07 −3.34 −1.08 −5.30 −6.14 −6.40

NH2
− 3.83 1.51 −0.98 −0.77 −5.27 −4.80 −4.39

CH2
− 3.07 1.21 −0.45 −0.65 −3.80 −3.84 −3.91

CH3CO− 2.90 1.76 0.40 −0.42 −2.94 −3.88 −4.85

CHO− 3.55 2.02 0.42 −0.31 −3.30 −4.40 −5.51

CH3
− 4.15 1.99 −0.34 −0.08 −2.73 −2.59 −2.47

C60
− 0.03 −1.19 −2.45 −2.65 −3.44 −4.66 −5.90

C70
− 0.00 −1.22 −2.47 −2.73 −3.17 −4.41 −5.66
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�denoted as �N
LUMO�. LSDA relaxed geometries for the neutral

molecule are used for both the neutral and charged cases. We
find that various �N+1

HOMO obtained from ASIC1 once again are
in reasonably good agreement with corresponding experi-
mental electron affinities while LSDA and ASIC1/2 continue
to be poor even in this regard. In this case ��X� stands at 4.1,
2.31, and 0.83 eV for LSDA, ASIC1/2, and ASIC1, respec-
tively. Notice that �N+1

HOMO from LSDA is positive in most
cases as the states are unbound.

In Fig. 6 we present our data together with �N+1
HOMO as

calculated using the PZ-SIC.35 Again ASIC1 performs better
than PZ-SIC, that also for the EA systematically overcor-
rects.

C. Vertical excitations

Having shown that ASIC offers a good description of both
IP and EA for a broad range of molecules, we turn our atten-
tion to the remaining vertical ionization potentials. As men-
tioned before, KS-DFT lacks of Koopmans theorem, and
therefore the KS energies are not expected to be close to the
negative of the vertical ionization potentials. However, at
least for atoms, the introduction of SIC brings a remarkable
cancellation between the negative relaxation energy and the
positive non-Koopmans corrections.16 For this reason the
SIC KS eigenvalues are a good approximation to the relaxed
excitation energies. As an example, in Table V we present
the orbital energies calculated with ASIC1 and ASIC1/2 for
the N2 molecule. These are compared with experimental
data97 and orbital energies obtained, respectively, with

Hartree-Fock �HF�, self-consistent SIC, and SIC where mo-
lecular orbitals are used instead of localized orbitals
�D-SIC�.31

Remarkably ASIC1 seems to offer good agreement over
the whole spectrum, improving considerably over LSDA and
in some cases even over SIC and HF results. This improve-
ment is not just quantitative, but also qualitative. For in-
stance, while rectifying the LSDA spectrum of the N2 mol-
ecule, ASIC1 preserves the correct order between 3�g and
1�u orbitals, which are erroneously inverted by both SIC and
HF. So why does ASIC perform better than the other meth-
ods with regards to removal energies? In LSDA, electron
relaxation typically cancels only half of the non-Koopmans
contributions, resulting in energies that are too shallow.16 In
contrast HF lacks energy relaxation and the orbital energies
are too deep. The reason why ASIC1 performs better than
self-consistent SICs is less clear. As a general consideration,
also for the case of vertical ionization energies self-
consistent SICs seem to overcorrect the actual values. Thus
the SIC potential appears too deep, and the averaging proce-
dure behind the ASIC approximation is likely to make it
more shallow.

As a further test we calculated the orbital energies for a
few other molecules and compared them both with LSDA
and experiment.98 These are presented in Table VI. Again the
ASIC1 results compare rather well with experiment, and we
can conclude that the ASIC method offers a rather efficient
and inexpensive theory for single-particle vertical excita-
tions.

D. HOMO-LUMO gap and discontinuity of the exchange and
correlation potential

We are now in a position to discuss the HOMO-LUMO
gap in ASICs. As already mentioned, even for the exact XC
functional, the KS gap Eg

KS=�LUMO−�HOMO does not account
for the actual quasiparticle gap Eg= IN−AN. This in turn is
the sum of Eg

KS and the discontinuity of the exchange and
correlation potential �xc. Equivalently,

�xc = lim
f→0+

�N+f
HOMO − �N

LUMO, �43�

i.e., �xc is the discontinuity in the eigenvalue of the LUMO
state at N. Therefore in order to extract the actual gap from
the KS gap, provided that the spectrum is reasonably well
described at integer electron numbers N, what remains is to
model the derivative discontinuity at N and ensure that

FIG. 6. �Color online� Experimental negative electron affinities
�−EA� compared to calculated HOMO eigenvalues of negative
radicals.

TABLE V. Orbital energies of N2 calculated with various methods. The results for Hartree-Fock and SIC are from Ref. 31. Experimental
results are from Ref. 97.

Orbital HF SIC D-SIC ASIC1 ASIC1/2 LSDA Expt.

2�g −41.49 −38.86 −37.85 −38.29 −33.22 −28.16

2�u −21.09 −20.27 −16.44 −18.42 −15.64 −12.93 −18.75

3�g −17.17 −17.39 −13.88 −14.01 −11.70 −9.90 −15.58

1�u −16.98 −16.33 −16.68 −15.97 −13.74 −11.54 −16.93
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�N±f
HOMO is relaxation free for �0� f �1�. Local and semilocal

�LSDA/GGA� XC functionals lack such a discontinuity,
while self-interaction corrections are able to restore it, at
least in part. For instance the PZ-SIC scheme is successful in
this regard.

In Fig. 7 we illustrate the ionization curve for the ethylene
�C2H4� molecule as the occupation of the HOMO state is
varied from 0 to 1 in going from the ionized C2H4

+ to the
netural C2H4 configuration. It is seen that among the three
schemes presented, only the PZ-SIC scheme approximately
models the behaviour required by Eq. �41�. The ASIC
HOMO eigenvalue roughly agrees with the PZ-SIC eigen-
value at integer occupation but behaves linearly through non-
integer values. Thus we find that the derivative discontinuity
for the molecule is smoothed out in ASIC, which still con-
nects continuously different integer occupations. This is one
of the limitations of the atomic representation employed in
ASICs.

In view of the foregoing discussion, the actual size of the
HOMO-LUMO gap in ASICs becomes significant with a di-

rect bearing on the physics described. Ideally, we want
�LUMO�N� �LUMO for the N-electron system� to be as close
to �HOMO�N+1� so that the range of eigenvalue relaxation
through fractional occupation numbers M � �N ,N+1� is
minimized. Looking at columns 6, 7, and 8 in Table IV,
however, we see that for almost all the molecules, this is
hardly the case. The agreement between �LUMO�N� and −EA
from experiment ���HOMO�N+1�� for ASIC1 is quite poor
implying a considerable energy range spanning fractional
particle number. We still expect this energy range to be
smaller for ASIC1 than LSDA. It is also apparent from the
Table IV that �ASIC

LUMO�N� usually differs from �LSDA
LUMO�N� and in

fact by considerable magnitudes in some cases. Thus the
ASIC1 “correction” to the empty LUMO state does not van-
ish in contrast to the PZ-SIC scheme where, by definition,
the empty eigenstates are SIC free.

Since the SIC operator vASIC
� is constructed in an atomic-

orbital representation, the correction to any KS eigenstate �n
�

either filled or empty,

TABLE VII. HOMO-LUMO gap obtained from ASIC compared to the LSDA value. The values marked with � correspond to unbound
LUMO levels.

Molecule

�LUMO−�HOMO �eV�

LSDA ASIC1/2 ASIC1

CH3 1.92 4.75 7.59

NH3 7.1* 9.29* 11.61*

SiH4 8.44* 9.68 10.94

C2H4 5.81 6.59 7.38

SiCH4 6.19 7.07 8.06

CH3CHCl2 5.79 6.84 7.88

C4H4S 4.46 5.13 5.8

C2H6S2 4.44 6.02 7.6

Pyridine 3.85 4.56 5.26

Benzene 5.22 5.9 6.59

Isobutene 4.88 5.56 6.26

Nitrobenzene 3.25 4.03 4.42

Naphthalene 3.36 3.83 4.29

C60 1.62 1.87 2.12

C70 1.75 1.99 2.23

TABLE VI. Orbital energies for CO, HF, and H2O calculated with LSDA and ASIC1. The experimental results are from Ref. 98 and
references therein.

Molecule Orbital LSDA ASIC1 Expt.

CO 5� −8.74 −12.85 −14.01

1� −11.54 −16.64 −16.91

4� −13.97 −19.36 −19.72

HF 1� −9.83 −16.96 −16.19

3� −13.61 −19.68 −19.90

H2O 1b1 −7.32 −13.38 −12.62

3a1 −9.32 −14.66 −14.74

1b2 −13.33 −18.03 −18.55
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�EASIC
n� = 
�n

��vASIC
� ��n

�� , �44�

is not necessarily zero unless �n
� only projects onto empty

atomic orbitals. Also this correction to the LUMO with re-
spect to the LSDA is negative in most cases, exceptions be-
ing NH2 and CH3 where it is desirably positive. Thus the
fundamental HOMO-LUMO gap in ASICs is a combination
of both the HOMO and LUMO corrections. Table VII shows
how this combination works out in ASIC1/2 and ASIC1 when
compared to LSDA. The molecular test set is the same as
that in Table III.

We see in almost all cases the ASIC gap is systematically
larger than the LSDA one. This is expected because the cor-
rection to the HOMO is usually much stronger than that to
the LUMO. In general, ASIC is expected to work well for
systems where the occupied and unoccupied KS eigenstates
of the extended system have markedly different atomic or-
bital signatures being derived predominantly from filled and
empty atomic orbitals, respectively. In such a case, the ASIC
correction to the empty states would be nullified in being
scaled by near-zero atomic-orbital populations. In some
cases, provided phase factors combine suitably, the correc-
tion to the empty states can even be positive with respect to
the same in LSDA.

E. Final remarks

Before we conclude, we discuss some general properties
of the ASIC method which are relevant to any orbital depen-
dent SIC implementation and also some possible pitfalls. As
with other SIC schemes, ASIC is not invariant under unitary
transformations of the orbitals used in constructing the SIC
potential. Thus the ASIC correction is likely to change as the
atomic orbitals used for projecting onto the KS eigenstates of
the system are rotated or transformed otherwise. Unlike the
Perdew-Zunger method, however, there can be no variational
principle over all possible unitary transformations of the
atomic orbitals because in the general case they do not rep-
resent the Hamiltonian of the system under consideration.
This also implies that if the scheme is used with a system
that is already well described by LSDA, the “correction”
additional to the LSDA result does not necessarily vanish.

Simple metals and narrow gap systems are likely candidates
for this scenario.

Furthermore, it is pertinent to mention that ASIC becomes
ineffective if not counterproductive for materials with homo-
nuclear bonding, in which valence and conduction bands
have the same atomic orbital character. In this situation the
ASIC potential will shift the bands in an almost identical
way, without producing any quantitative changes, such as the
opening up of the KS gap. Note that this is a pitfall of the
ASIC approximation, which distinguishes occupied from
empty states only through their projected atomic orbital oc-
cupation, but not of the SIC in general. Typical cases are
those of Si and Ge. The KS gap in Si goes from 0.48 eV in
LSDA to only 0.57 eV for ASIC1/2, while Ge is a metal in
both cases. In addition the LSDA calculated valence band-
widths of 12.2 eV for Si and 12.8 eV for Ge, in good agree-
ment with experiments, are erroneously broadened to 14.3
and 14.8 eV, respectively.

VI. CONCLUSIONS

In conclusion, we have implemented the ASIC scheme
proposed by Filipetti and Spaldin within the pseudopotential
and localized orbital framework of the SIESTA code. We have
then investigated a broad range of semiconductors and mol-
ecules, with the aim of providing a reasonable estimate for
the scaling parameter 
. We found that 
=1, which accounts
for the full atomic SI, describes surprisingly well ionic semi-
conductors and molecules. In particular for molecules, both
the IP and the EA can be obtained with good accuracy from
the HOMO KS eigenvalues, respectively, for the neutral and
singly charged molecule. This makes the ASIC scheme par-
ticularly suited for applications such as quantum transport,
where the position of the HOMO level determines most of
the I−V curve.

In contrast III-V and II-VI semiconductors are better de-
scribed by 
=1/2, which corrects the atomic SI for screen-
ing. This makes ASIC1/2 an interesting effective band theory
for semiconductors. The relation of the present scheme with
the fully self-consistent SIC methods has been emphasized,
and so has been that with LDA+U.
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