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Even though graphene is a low-energy system consisting of a two-dimensional honeycomb lattice of carbon
atoms, its quasiparticle excitations are fully described by the �2+1�-dimensional relativistic Dirac equation. In
this paper we show that, while the spin-orbit interaction in graphene is of the order of 4 meV, it opens up a gap
of the order of 10−3 meV at the Dirac points. We present a first-principles calculation of the spin-orbit gap, and
explain the behavior in terms of a simple tight-binding model. Our result also shows that the recently predicted
quantum spin Hall effect in graphene can occur only at unrealistically low temperature.
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Recently, the electronic properties of graphene, a single-
layer graphite sheet, have attracted great interest both theo-
retically and experimentally. The key difference of graphene
compared with most other two-dimensional materials is the
linear energy spectrum around two nodal points in the Bril-
louin zone, which makes the low-energy dynamics of elec-
trons in this system equivalent to that of relativistic fermions,
as described by the massless Dirac equation.1 The two sub-
lattices in the graphene honeycomb lattice play the role of
pseudospin degrees of freedom. In Refs. 2 and 3, the quan-
tum Hall effect in graphene is observed; it shows the non-
conventional quantization rule �H= �2e2 /h��2n+1�, n�Z.
Such an “abnormal” quantum Hall effect agrees with theo-
retical calculations based on the massless Dirac equation un-
der external magnetic field,4–6 and can be considered as a
consequence of the chiral anomaly in two-dimensional mass-
less fermions. Moreover, a recent experiment on the low-
field magnetoresistance7 shows that graphene remains metal-
lic under temperatures as low as T=4 K, which confirms that
any possible gap opened at the Dirac cones cannot be larger
than kBT�0.34 meV.

Nevertheless, it has been proposed that a small gap can
open on the two Dirac points of graphene due to spin-orbital
coupling �SOC�,8 which at the same time makes the system a
spin Hall insulator9 with quantized spin Hall conductance.
Physically, this proposal is a spinful version of Haldane’s
model for the quantum Hall effect without magnetic field,10

in which a spin-dependent next-nearest-neighbor hopping
term is introduced to induce opposite mass terms for the two
Dirac cones. Reference 8 estimates the spin-orbit gap in
graphene to be 2.4 K. In this paper we provide systematic
calculations of the spin-orbital gap in graphene by both first-
principles calculation and the tight-binding model, and show
that the actual gap is much smaller compared to the crude
estimate given in Ref. 8, this explains the �near� gaplessness
observed in experiments and also defines a much more nar-
row temperature range for the quantum spin Hall effect to be
observed.

The sp2 hybridization of the 2s orbital and two 2p orbitals
of the carbon atom creates � bonds to form the honeycomb
lattice of graphene, which is bipartite with two carbon atoms

in one unit cell. The � band consisting of the remaining 2p
orbitals controls the low-energy physics of graphene and
makes it a semimetal. One can describe the � and � elec-
trons by two tight-binding �TB� Hamiltonians separately,
which in momentum space is a 2�2 matrix H��k�� for the �

band, and a 6�6 matrix H��k�� for the � band.11 If the spin
degeneracy of electrons is taken into account, the dimensions
of these two matrices are doubled. The diagonal entities of
the matrices are the on-site energies of different orbitals and
the off-diagonal entities are the possible hopping between
different sublattices.

The SOC is a relativistic effect described by a Hamil-
tonian with the form ��� · ��� V� p�� / �4m2c2��L� ·�� . �� is the
Pauli matrix. For a single carbon atom, there is no SOC
between 2s and 2p orbitals due to their different azimuthal
quantum numbers, and SOC exists only among the 2p orbit-
als. Its magnitude �0 can be estimated to be of order 4 meV
by directly computing the overlap integral of SOC between
2pz and 2px orbitals. Note that the SOC changes the mag-
netic quantum number accompanied with a spin flip of elec-
trons; hence no SOC exists within the same atomic orbital.

For graphene, only the SOC in the normal direction with
the form Lz�z has a nonzero contribution due to the reflection
symmetry with respect to the lattice plane. Even this term
vanishes for the � orbitals between nearest neighbors �NNs�,
since there is an additional vertical reflection plane along the
nearest-neighbor bond. Under mirror reflection at this plane,
the 2pz wave functions of the adjacent atoms are unchanged;
however, the angular momentum Lz changes its sign, and
hence the matrix element of Lz�z between NNs vanishes.
This is different from the carbon nanotube12 where the cur-
vature effect can provide a SOC between 2p orbitals of NNs
although it is still vanishing for large tube radius. Thus, to
realize the SOC effect of the � band within the NN approxi-
mation we need the aid of the � band. This process turns out
to be a second-order one, which is three orders of magnitude
smaller than �0. On the other hand, the SOC can act directly
within the � band; it will open a gap at some degenerate
points with the same order of magnitude as �0�4 meV.

The SOC mixes the � and � bands and the total Hamil-
tonian reads
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H = �H� T

T† H�
� . �1�

Here, H� and H� should be enlarged to be 4�4 and 12
�12 matrices, respectively, by the spin indices. The SOC
term T bridging the � and � bands is a 4�12 matrix of
order �0; its explicit form is not important at present, and will
be given later. The wave vector k� is omitted for simplicity
hereinafter because it is always a good quantum number.

Since we are concerned with the low-energy physics, an
effective �-band model with SOC derived from the original
Hamiltonian Eq. �1� is more advantageous. For this purpose,
one can perform a canonical transformation

H → HS = e−SHeS,

S = � 0 M

− M† 0
� , �2�

where M should satisfy

MH� − H�M = T , �3�

so that HS is block diagonal up to order �0
2. Clearly M is also

a 4�12 matrix. The effective Hamiltonian Hef f is then ex-
tracted from the diagonal part of HS as

Hef f � H� −
1

2
�TM† + MT†� . �4�

The second term is just the effective SOC for the �-band
electrons.

The matrix M can be calculated iteratively through Eq.
�3�,

M = TH�
−1 + H�TH�

−2 + ¯ . �5�

Around the Dirac points, the spectrum of H� is close to zero
measured from the on-site potential of the 2p orbital, while
that of H� is of order several eV; hence we can take M
�TH�

−1 approximately. The effective SOC of the � band
then reads

− TH�
−1T†, �6�

whose magnitude is roughly estimated as �1���0�2 /� with �
being of the order of the energy difference at the Dirac points
between the � and � bands. �1 is of the order 10−3 meV,
since � is of order eV.

So far we have not used the explicit forms of H� and T in
the above discussions. To derive �1 and the SOC analytically,
we need more details of H� and T. H� can be written as

H� = � E �

�† E
� � I , �7�

where I is the identity matrix for the spin degrees of free-
dom. The matrix E represents the on-site energy of different
atomic orbitals, which can be written as

E = �0 0 0

0 0 0

0 0 ��

	 �8�

if we arrange the three sp2 hybridized orbitals in the se-
quence of 
2py ,2px ,2s�. Here, �� is the energy difference
�2s−�2p between the 2s and 2p orbitals. � describes the
hopping between the two sublattices in the momentum space.
To give its exact form, we first consider the hopping between
the two adjacent atoms in real space, which can also be de-
scribed by a 3�3 matrix. Suppose the two adjacent atoms
are placed on the horizontal x axis, i.e., the bond angle is
zero; then this hopping matrix can be written as follows:

	0 = �Vpp� 0 0

0 Vpp� Vsp�

0 Vsp� Vss�

	 . �9�

One can obtain the hopping matrix 	�
� for arbitrary bond
angle 
 by a rotation R�
� in the xy plane as

	�
� = R†�
�	0R�
� ,

R�
� = �cos 
 − sin 
 0

sin 
 cos 
 0

0 0 1
	 . �10�

The parameters Vpp�, Vpp�, Vsp�, and Vss� correspond to the
� or � bonds formed by the 2s and 2p orbitals, whose em-
pirical value can be found in textbooks, for example, Ref. 11.
Note that we do not consider the wavefunction overlap ma-
trix in our TB approximation scheme for the sake of simplic-
ity. Then the hopping matrix in the momentum space reads

��k�� = �
�

	�
��eik�·d��, �11�

where d�� with �=1,2 ,3 are the bond vectors connecting the
carbon atom and its three nearest neighbors and 
� is the

angle between d�� and the x axis.
For T, as we have described above, the spin flip on the

same atom takes place only between the 2pz and two in-
plane 2px,y orbitals. A straightforward calculation leads to the
on-site spin flip

T0 = �0�− �x,�y,0� , �12�

with �x,y the Pauli matrices. Then T can be written as

T = �T0 0

0 T0
� . �13�

Notice that there are two T0 terms in the above matrix cor-
responding to different sublattices.

Since H� has a large gap near the Dirac points K and K*,

we can expect that H��k� +K� �=H��K� �+o�k�, which means we

can substitute H�
−1�K� � into Eq. �6� as a good approximation.

Finally we get the effective Hamiltonian with SOC at the low
energy scale,
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Hef f
K� � �1 + � �1�z vF�kx + iky�

vF�kx − iky� − �1�z
� ,

Hef f
K*� � �1 + � − �1�z vF�kx − iky�

vF�kx + iky� �1�z
� . �14�

The off-diagonal terms in the above equations come from the
well-known form of H�, and vF is just the Fermi velocity of
� electrons at the Dirac points. The effective SOC �1 in our
TB scheme has the explicit form

�1 � ��0�2�2���/�9Vsp�
2 � . �15�

Equation �15� is the key result from our tight-binding calcu-
lation. Equation �14� leads to a spectrum E�k��
= ±��vFk�2+�1

2. Taking the values of the corresponding pa-
rameters from Ref. 11, one can estimate �1 to be of order
10−3 meV, so the energy gap is 2�1 at the Dirac points.

Equations �14� are similar to those in Ref. 8, except that
the SOC constant �1 is three orders of magnitude smaller
than their estimate. We can also consider the SOC of � or-
bitals between next nearest neighbors �NNNs� which is not
forbidden by the symmetry. In this case the electron moving
between NNNs will be accelerated by atoms other than the
two NNN ones, which provides the corresponding SOC. This
will involve three-center integrals, i.e., two orbital centers
and a potential center, which are different with each other.
Generally speaking, such integrals are very small, which
leads to SOC of order at most 10−3 meV by our estimate, and
it may actually be smaller.

The argument above is supported by accurate first-
principles calculations based on density-functional theory.
The relativistic electronic structure of graphene was calcu-
lated self-consistently by the plane-wave method13 using a
relativistic fully separable pseudopotential in the framework
of noncollinear magnetism.14 The exchange-correlation po-
tential is treated by the local density approximation �LDA�
whose validity for the system considered here has been dem-
onstrated by many other studies. The experimental lattice
parameter a=2.456 Å is used in the calculation. The conver-
gence of calculated results with respect to the number of k
points and the cutoff energy has been carefully checked.

Figure 1 shows the band structure of graphene. We can
see that the gap induced by SOC for the � orbit is 9.0 meV
at the � point. The figure also indicates that there is a gap
induced by SOC for the � orbit at the K point, and the
magnitude of the splitting gap is 0.8�10−3 meV, which is in
good agreement with the estimate obtained from the tight-
binding model discussed above. Since the number discussed
here is so small, a few notes are necessary: �1� the calcula-
tions are valid within the LDA; �2� the numeric accuracy of
the present calculations reaches 10−6 meV per atom; �3� the

convergence of gap size with respect to the number of k
points and cutoff energy is better than 1�10−4 meV; �4� the
Kramer doublet degeneracy can be reproduced down to
10−5 meV. Nevertheless, it is clear that the gap induced by
SOC at the K point is of order 10−3 meV. Considering that
graphene may be typically deposited on substrates, the
graphene layers are generally strained due to small lattice
mismatches; thus the lattice mismatch strain can tune the
splitting gap at the K point. We have calculated the band
structure for different lattice constants of graphene, and have
found that the splitting gap increases a little with compres-
sion while the gap decreases with tensile strain.

In conclusion, we provided a careful calculation on the
spin-orbit gap of graphene, which leads to the same mass
term for the relativistic Dirac fermions in the continuum
limit,8 but with a much smaller magnitude of the gap
10−3 meV. The physical reason for the smallness of the spin-
orbit gap can also be understood from the tight-binding
model as coming from the lattice C3 symmetry, which leads
to the vanishing of the leading-order contributions. Such a
small gap is consistent with the experimental observation of
semimetallic behavior of graphene. It shows that the pro-
posed quantum spin Hall effect in graphene cannot be ob-
served until temperatures as low as T�10−2 K. In addition,
impurity scattering in a disordered sample may also destabi-
lize the effect.
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FIG. 1. Calculated relativistic band structure of graphene.

SPIN-ORBIT GAP OF GRAPHENE: FIRST-PRINCIPLES… PHYSICAL REVIEW B 75, 041401�R� �2007�

RAPID COMMUNICATIONS

041401-3



5 V. P. Gusynin and S. G. Sharapov, Phys. Rev. B 73, 245411
�2006�.

6 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B
73, 125411 �2006�.

7 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin,
L. A. Ponomarenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett.
97, 016801 �2006�.

8 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 �2005�.
9 S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. Lett. 93,

156804 �2004�.
10 F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 �1988�.
11 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Prop-

erties of Carbon Nanotubes �Imperial College Press, London,
1998�.

12 T. Ando, J. Phys. Soc. Jpn. 69, 1757 �2000�.
13 Z. Fang and K. Terakura, J. Phys.: Condens. Matter 14, 3001

�2002�.
14 G. Theurich and N. A. Hill, Phys. Rev. B 64, 073106 �2001�.

YAO et al. PHYSICAL REVIEW B 75, 041401�R� �2007�

RAPID COMMUNICATIONS

041401-4


