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We report the results of first-principles density functional theory calculations of the Young’s modulus and
other mechanical properties of hydrogen-passivated Si �001� anowires. The nanowires are taken to have
predominantly �100� surfaces, with small �110� facets. The Young’s modulus, the equilibrium length, and the
residual stress of a series of prismatic wires are found to have a size dependence that scales like the surface
area to volume ratio for all but the smallest wires. We analyze the physical origin of the size dependence and
compare the results to two existing models.
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Nanoscale mechanical devices have been proposed for ap-
plications ranging from nanoelectromechanical systems
�NEMSs� such as high-frequency oscillators and filters1 to
nanoscale probes2 to nanofluidic valves3 to q-bits for quan-
tum computation.4 The process of design and fabrication of
these devices is extremely challenging, complicated in part
by uncertainties about how even ideal devices should be-
have. The mechanical response of nanoscale structures is
known to be different than that of their macroscopic analogs
and surface effects in these high-surface-to-volume devices
are important,5 but a predictive theory of nanomechanics re-
mains an open problem.

Much of what is known about the mechanics of nanode-
vices has been learned from atomistic calculations based on
empirical potentials. The first such calculations were done
for single-crystal �-quartz beams, finding that the Young’s
modulus decreased with decreasing size.6,7 These and calcu-
lations of the Young’s modulus for various other materials
have found a size-dependent modulus with an additive cor-
rection to the bulk value that scales like the surface area to
volume ratio.8,9 A few studies claim an additional contribu-
tion that scales like the edge to volume ratio �cf. Ref. 6�, and
such a contribution, with a factor of the logarithm of the
separation of the edges, has been discussed for epitaxial
quantum dots.10,11 An intuitive way of understanding these
effects is that there is a layer of material at the surface �and
edges� whose mechanical properties differ from those of the
bulk including different elastic moduli and eigenstrains. The
formalism of nanoscale mechanics based on the surface en-
ergy and its first two strain derivatives �the surface stress and
modulus� has been developed.9,12 Recently it has been pro-
posed that the size dependence of the Young’s modulus can
be due to the anharmonicity �nonlinearity� of the bulk elastic
moduli together with the strain resulting from the surface
stress.13

To date, experimental data on the size dependence of
nanostructure mechanics are very limited. Atomic force mi-
croscopy �AFM� measurements of the Young’s modulus14

�E� of cast metallic nanowires show a strong size
dependence.15 Recent experiments have also found a strong
size dependence for E of ZnO nanowires16 and other me-
chanical properties of ZnO and GaN nanowires.17 Measure-
ments of E for silica nanobeams have demonstrated that the
way in which the beam is clamped �i.e., the boundary con-
ditions� affects the apparent value.18 A study using a different

AFM technique reported a value of E of 18±2 GPa for a
�10-nm Si �100� nanowire;19 for 100–200-nm Si�111�
wires, E has been found to be consistent with the bulk
value.20 Experimental challenges measuring the intrinsic
nanoscale Young’s modulus make this a topic of continued
activity, leveraging earlier work on the mechanics of
nanotubes.21

In the absence of definitive experimental data, first-
principles quantum mechanical calculations can provide ro-
bust predictions of nanowire mechanical properties, but few
results have been reported. One quantum study based on an
empirical tight-binding technique has been published.22 The
electronic and optical properties of nanowires have been
studied using first-principles techniques, leading to interest-
ing predictions about size-dependent phenomena as evi-
denced by an increase in band gap due to quantum
confinement23,24 and a switch from an indirect, to a direct,
band gap.25,26 We are not aware of any ab initio calculations
of nanowire moduli.

Here we present first-principles calculations of the me-
chanical properties of silicon nanowires, studying the
Young’s modulus due to its direct relevance to the function
of nanoscale devices such as flexural-mode mechanical
resonators1 and as an archetype for a variety of mechanical
properties. We address several important open questions in
nanomechanics. Can the modulus size dependence seen with
empirical potentials be verfied from first principles or are the
potentials missing essential physics? What aspects of the
electronic bonds dominate the size-dependent mechanical
properties? We focus on prismatic Si �001� nanowires with a
combination of �100� and �110� H-passivated surfaces and
single-crystal cores as in experiment.1,27 We have chosen the
�001� orientation for the longitudinal axis because of its rel-
evance to the NEMS devices;1 Si nanowires grown rather
than etched typically have different orientations.28 Hydrogen
passivation results from rinsing the oxidized Si surfaces with
HF, and it provides a standard system suitable for a system-
atic study of the size dependence in nanomechanics. With
other surface conditions the band gap can vary greatly, and
nanowires can go from semiconducting to metallic,29 but the
H-passivated wires remain semiconducting30 and the sur-
faces do not change the nature of Si-Si chemical bonding
from its covalent character.

First-principles density functional theory �DFT� has been
employed: specifically, the Vienna ab initio simulation pack-
age using the projector augmented-wave method31,32 within
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the generalized gradient approximation �GGA�.33 The energy
cutoff for the plane-wave expansion is 29.34 Ry and higher,
and six points in the one-dimensional irreducible Brillouin
zone are used for k-point sampling. Each supercell is peri-
odic, is one Si cubic unit cell long along the wire, and has
more than 10 Å vacuum space in the transverse directions.

To calculate E, we define the cross-sectional area to be the
area bounded by the centers of the outermost �H� atoms. This
choice is motivated by the fact that the volume excluded by
the wire from access by outside atoms is determined from
the forces arising from electron interactions. Most of the
electron density is enclosed by the boundary formed by H
atoms and the electron density from Si atoms essentially van-
ishes beyond this point. The positions of the nuclei are well
defined and not subjective. Other definitions of the bounding
surface exist: for example, the midplane between two iden-
tical H-passivated surfaces at their minimum energy
separation.34

The cross-sectional shape of the Si �001� wire is a trun-
cated square with four �100� facets and four �110� facets.
Some wires studied have no �100� facets; for those that do,
the ratio of the facet areas is taken to be roughly in accor-
dance with the Wulff shape for a bare wire with �110�-�1
�1� and �100�-p�2�2� surface reconstructions; i.e., the ra-
tio of �100� to �110� area is 3.5:1. For each of the nanowire
geometries shown in Fig. 1, the Si atoms were initially po-
sitioned at their bulk lattice sites and hydrogen atoms were
added to terminate the bonds at the surfaces. On the �100�
facets the H atoms were added in a dihydride configuration
preferred over monohydride at low temperature.35 The sys-
tem was then relaxed to its zero-temperature minimum en-
ergy with the length of the periodic supercell held fixed at
the bulk value in the longitudinal direction. The axial stress
in this configuration, �zz�L0�= 	V−1�U /��zz	0, where U is the
DFT total energy, is indicative of the residual stress in a
doubly clamped beam etched from a single-crystal substrate.
It is plotted in Fig. 2.

Next the relaxed total energy was calculated for each wire
in a series of longitudinal strains at increments of roughly
0.5%. These total energy values were fit to a polynomial. The
minimum of the polynomial gives the equilibrium length,
and the value of the curvature at the minimum gives the
Young’s modulus, E= 	V−1�2U /��zz

2 	�zz−min
. The equilibrium

elongation and modulus are plotted in Figs. 2 and 3, respec-
tively.

The calculated Young’s modulus of the 1.49-nm wire is
tabulated in Table I. The table gives an indication of the
sensitivity to the order of the polynomial fit. For the given
order, a higher cutoff energy offers little improvement. We
find that the second-order fit with 29.34 Ry energy cutoff is
reasonably good, differing by less than 2% compared with all

FIG. 1. �Color online� Cross sections of fully relaxed hydrogen-
passivated wires, with each Si atom colored as shown in the legend
corresponding to its transverse relaxation in Å. The widths of wires
are �a� 0.61 �b� 0.92, �c� 1.00, �d� 1.39, �e� 1.49, �f� 2.05, �g� 2.80,
and �h� 3.92 nm, respectively. The width is defined as the square
root of the cross-sectional area.

FIG. 2. Silicon nanowire axial stress and equilibrium elongation
strain calculated in DFT as a function of wire size. The solid curve
is a fit to C /w of the elongation strain to 4 data points from 1.49 nm
and larger wires, with C=1.9% nm. The predictions of Eq. �1� are
also plotted using the stresses from DFT calculations of hydrogen-
ated 14-layer �100� and 15-layer �110� slabs. The asterisklike sym-
bols are from overlaps.

FIG. 3. Silicon nanowire Young’s modulus calculated in DFT as
a function of wire size. For comparison values of continuum for-
mula �3� are also plotted, using the �100� and �110� surface elastic
constants obtained in DFT from hydrogenated 14-layer �100� and
15-layer �110� slabs, respectively. The solid curve E=Ebulk

DFT−C /w,
with C=66.11 GPa/nm, is the best fit to a pure surface area to
volume size dependence.
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the higher-order combinations tested. The second-order fit
also permits direct comparison with the results from larger
wires where the number of data points and the energy cutoff
are limited by the computational cost of systems up to 405 Si
and 100 H atoms.

These calculations allow us to analyze the physical origin
of the size dependence. Size dependences of the residual
stress and the elongation evident in Fig. 2 are driven by the
same physics: compressive surface stress. The residual axial
stress of the Si beam may be decomposed into core, H ada-
tom and Si surface parts: core contributions from the Si at-
oms, extrinsic contributions from hydrogen �H-H� interac-
tions, and intrinsic surface contributions from the change to
the Si bonds near the surface compared to the Si bulk �Si-H
and modified bond order Si-Si�. Since DFT only provides a
total energy, this decomposition is somewhat ambiguous. We
estimate the H-H interactions as equal to those of neighbor-
ing hydrogens in two silane molecules in the orientation and
separation of the H-passivated surface and the core contribu-
tion to be the axial stress in bulk Si uniformly strained to
match the nanowire; the intrinsic contribution is the remain-
der. The extrinsic contribution is most important, as we now
show. The intrinsic surface stress is small, as expected since
the dangling Si bonds are well terminated with H and the
Si-Si bond order is not significantly different than in the
bulk. The small magnitude of the intrinsic stress is best seen
in the case of the 1.39-nm wire for which the elongation is
less than 0.1% compared to 
1.5% of the 1.49-nm wire. The
absence of �100� facets on this wire leads to a small extrinsic
stress since the H-H separation on the �110� facets is rela-
tively large. The vacant Si sites above the facets are filled by
one and two H atoms on �110� and �100�, respectively, and
the double occupancy, albeit with 
2 Å H-H separation due
to the shorter Si-H bond, leads to more repulsion for �100�.36

The extrinsic surface stress due to the H-H repulsion on
the �100� facets quantitatively accounts for both the com-
pressive residual stress �zz�L0� and the elongated equilibrium
length Leq of the nanowires. They are related to leading order
through the linear elasticity:

�zz�L0� = �zz�core� +
1

A
�

i

�zz
�i�wi, �1�

�L0 − Leq�/Leq 
 �zz�L0�/E , �2�

where A is the cross-sectional area, wi is the width, �zz
�i� is the

longitudinal surface stress of facet i, and L0 is the bulk length

of the beam. E is the Young’s modulus of the beam. For
constant surface stress, the second term in Eq. �1� is propor-
tional to the surface area to volume ratio; the core stress is
too, since the surface stress causes a transverse expansion of
the wire that induces a tensile core stress. We now use much
smaller periodic slabs to quantify these contributions and
compare with the nanowire results. Using H-passivated slabs
we calculate in DFT the surface stress of the ground-state
canted �100� surface to be −55.0 meV/Å2 and that of the
�110� surface to be −1.3 meV/Å2.37 The negative stress in-
dicates compression. The core stress may be estimated
through a generalized Young-Laplace law to be �zz�core��
−8��zz

�100� /	w, where �=C12/ �C11+C12� is the Poisson ratio.
The details of these calculations will be given elsewhere.36

Using these values in Eq. �1� gives predictions in very good
agreement with the full nanowire calculations as shown in
Fig. 2. The scatter for 1.49- and 2.05-nm wires may be ac-
counted for by small edge effects. The 0.61-, 1.00-, and
1.39-nm wires have no �100� facets and almost no elongation
as described above. In the case of the second smallest
�0.92 nm� wire all of the �100� atoms undergo substantial
relaxation, as shown in Fig. 1, lowering the magnitude of the
surface stress and the elongation. This high level of agree-
ment gives us confidence that we understand the physics of
the size dependence of the residual stress.

What about the Young’s modulus? As shown in Fig. 3, it
softens monotonically from the bulk value �Ebulk

DFT

=122.53 GPa� in proportion to the surface area to volume
ratio. It does not exhibit a strong dependence on the ratio of
the �100� to �110� area seen in the equilibrium length. As
with the residual stress, the Young’s modulus may be decom-
posed into intrinsic, core, and extrinsic contributions. From
continuum mechanics neglecting edge and nonlocal effects,
the modulus can be expressed, slightly generalizing Ref. 9,
as

E = E�core� +
1

A
�

i

S�i�wi, �3�

where S�i� is the surface elastic constant, a strain derivative of
the surface stress including both extrinsic and intrinsic parts.
The insensitivity to the facet ratio suggests several conclu-
sions: The extrinsic contribution to the modulus �which is
strongly facet dependent� is small, the core anharmonicity is
irrelevant since the modulus is not correlated with the equi-
librium elongation, and the intrinsic surface contribution
dominates and its �100� value may be nearly sufficient to
determine E. To study the core stress further, we calculated
that the Young’s modulus of the bulk crystal increases by
only 1.6% when strained 
1.5% to match the most strained
�0.92-nm� wire. This change is negligible compared to the
observed softening �contrary to claims that the bulk anhar-
monicity is dominant13�. The extrinsic effect is also small,
but not negligible. Based on silane interaction forces for the
canted �100� surface geometry we have estimated that the
extrinsic contribution is 
8 GPa for the 1.49-nm wire,36

roughly equal to E�1.49 nm�−E�1.39 nm�—i.e., the differ-
ence in the moduli with and without �100� facets. We have
also calculated the size dependence of the modulus using Eq.

TABLE I. The calculated Young’s modulus in GPa of the 1.49
-nm nanowire as a function of the plane-wave cutoff energy and the
order of the fit. The same ten data points were fit for each polyno-
mial order.

Cutoff
energy
�Ry�

Order of polynomial fitting

Second Third Fourth Fifth Sixth

29.34 78.90 78.88 79.90 79.94 78.61

44.10 79.31 79.28 80.39 80.33 78.95

51.45 79.40 79.37 80.35 80.31 79.01
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�3� based on the surface elastic constant S�100� from a sepa-
rate slab calculation.36 The results, shown in Fig. 3, are in
good agreement with the full first-principles calculation, and
adding the core contribution slightly improves the agree-
ment. Also plotted in the figure is the best fit curve of Ref. 9
from Stillinger-Weber �SW� empirical molecular statics cal-
culations. The SW bulk Young’s modulus is 13% lower and
the coefficient C of the 1/w term is 29% lower than the DFT
values. The errors compensate for each other, leading to rea-
sonable agreement for the nanoscale wires, which is unex-
pected since the SW potential does not have the relevant
nanophysics in its functional form or its fitting database.

In conclusion we have calculated the size dependence of
the Young’s modulus and other mechanical properties of sili-
con nanowires from first principles. In each case the size
dependence scales roughly as the surface area to volume ra-
tio, as observed previously with empirical potentials. Analy-
sis based on the first-principles calculations has shown dif-
ferent reasons for the size dependence. For the equilibrium
length and residual stress it is due to the extrinsic surface
stress from interactions in the H passivation layer; for the

Young’s modulus, it arises from the intrinsic contribution to
the surface elastic constant. Surface parameters from slab
calculations capture most, but not all, of the physics. The
size effect is not strong for the H-terminated surfaces studied
here: the Young’s modulus is softened by about 50% for a
1-nm-diam wire. It may be possible to measure this effect
directly using either AFM deflection or resonant frequency
measurements in a double clamped configuration. Another
interesting possibility is that the effect could be substantially
stronger in Si nanowires with different surfaces, such as bare
or oxide surfaces, making measurements easier. For those
systems, the balance of core, intrinsic, and extrinsic contri-
butions could be different, and indeed, new functional forms
may be needed for the smallest wires.
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