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Equation of state and thermodynamic functions for the fcc soft-core multiple-Yukawa solid and

application to fullerenes with compressible molecular radius
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The generalized free volume theory is applied to the soft-core multiple-Yukawa solid, and the hard-core
multiple-Yukawa is included in as a special case. The expressions for equation of state and internal energy are
derived. The formalism developed is applied to the Cg,, C74, and Cgy solids. The effective diameter of Cgy
molecule is taken as the experimental value; the parameters of the double Yukawa (DY) potential for carbon-
carbon atoms are determined through fitting the experimental data of cohesive energy, the lattice constant, and
the compression curve of Cg solid at ambient temperature. The effective diameter of C;4 and Cgq molecules
are determined through fitting the experimental lattice constants at ambient temperature. The numerical results
of Cg solid from the soft-core DY potential are in good agreement with the experiments, including the lattice
constant and compression curve. The lattice constant versus temperature relationship for C4¢ and Cgy solids
calculated from the DY potential is qualitatively in accordance with experimental data as same as the Girifalco
potential. The compression curve of the Cg, solid calculated from the DY potential deviates from and is softer
than the experimental data available. The reason for deviation is discussed, and it is concluded that the
influence of compressibility of fullerene molecules to thermophysical quantities is important at high-pressure

conditions.
DOI: 10.1103/PhysRevB.75.035424

I. INTRODUCTION

In recent decades, Yukawa fluids have been studied exten-
sively by computer simulations and theories.'™!> This poten-
tial has a screened Coulomb form, and has been applied to
many systems, such as the simple fluids,'”!* colloid
fluids,''=13 liquid metals,'*!3 et al. Perhaps the most appeal-
ing feature for the Yukawa potential is its analytical avail-
ability and simplicity in solving the Ornstern-Zernike (OZ)
integral equation under the mean spherical approximation
(MSA).'-10 Apart from the MSA solutions in the r space,>
Tang and Lu proposed a perturbative method to solve the OZ
equation for both pure fluids and mixtures.”!” They found
that the first-order perturbative MSA solution (FMSA) has an
outstanding merit in that its results for the one-Yukawa po-
tential are linearly extendible to multiple-Yukawa cases, pro-
viding great flexibility to simulate true intermolecular poten-
tials. By mapping the Lennard-Jones (LJ) potential with a
two-Yukawa potential, Tang et al. developed a MSA theory
for the LJ fluid—the basis for studying more complex fluids
such as associating chain molecules.”!? Note that these stud-
ies would have been much more cumbersome had they been
performed by the full MSA solution.

However, we notice that the research on Yukawa solids is
scarce in contrast to the Yukawa fluids; even the equations of
state (EOS) are unavailable both for single and multiple-
Yukawa solids. The situation obviously is not suitable for the
research of solid-liquid phase transition and phase graph of
Yukawa systems. The free volume theory (FVT) has been
primitively proposed by Lennard-Jones and Devonshire
(LJD) for the LJ liquid.'® The FVT assumes that all mol-
ecules of a system are situated in their equilibrium positions
except one, which roams near the center of the cell. The
assumption is in more agreement with the practical case of
solids; so many works have been done to apply the model to
solids. Although the correlation effect has been completely
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ignored in the FVT, the anharmonic effect can be well taken
into account. And Westera and Cowley'” and Barker'® have
shown that the contribution of correlation effect to thermo-
dynamic quantities is fairly small in conventional cases, ex-
cept the solids with long-range interaction, such as alkali-
halide solids.

The FVT have been demonstrated that can describe satis-
factorily the thermophysical properties for the hard-sphere
solid,' the square-well solid,”® the fcc Lennard-Jones (LJ)
crystal,!”?!  exponential-6 model solid,”> and sodium
chloride,?? as compared with the Monte Carlo simulations or
experiments. Wasserman et al.?* further applied this model to
a metallic solid iron, in which the calculated properties are in
agreement with available static and shock-wave experimen-
tal measurements well. Sun et al. extended the FVT to a
generalized LJ solid including the quantum modification,?%%
from which the numerical results are in good agreement with
experimental data of solid xenon, both at low and high tem-
peratures.

Recently, Wang et al.”’-3° proposed an analytic mean field
potential (AMFP) approach, and successfully applied it to
many materials. However, this approach was later proven to
be equivalent to the FVT, and just is an analytic approxima-
tion of FVT.3! For this reason, we think it is more valuable to
directly use the strict FVT than the approximate AMFP, in
this case that the equation of state can be derived based on
this strict FVT. Recently, we developed a generalized free
volume theory (GFVT),*? through which the equations of
state and thermodynamic functions can be derived for most
practical potentials. And the GFVT has been applied to a
generalized Girifalco Cgy model solid. In this paper, we will
apply the GFVT to the soft-core single- and multiple-
Yukawa solids; the results for the multiple-Yukawa solid can
be seen as linear combination of single-Yukawa solid and the
hard-core multiple-Yukawa is included in as special cases.
Considering that other realistic intermolecular potentials can
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be mapped by multiple-Yukawa potential, the results in this
paper also provide great flexibility to research thermody-
namic properties of real solids and solid-liquid phase prop-
erties.

In the research of solid Cg, Girifalco® firstly derived a
central potential by using the Lennard-Jones (LJ) (12-6)
function, &(r)=B/r'>~A/r®, to average over the pair of Cg,
cages,

el
s() =2, (—1°  t+1)° 10

G Ry
— e t(t—1)3+t(t+l)3_t4 ’ M

&, =N?A/12D°,

&,=N2B/90D", 2)

where t=r/D, D is the diameter of fullerene cages, and N, is
the number of carbon atoms in a fullerene molecule. Nowa-
days, the Girifalco potential®* is most popular in the research
of thermodynamic properties of fullerene liquids and
solids.3*~° However, most of these works are computer
simulations; most of them are not analytic theories for the
complicity of the Girifalco potential. In order to derive the
analytic equation of state for the Cg, fluid, Guérin firstly
mimics the Girifalco potential by a double-Yukawa (DY)
potential.>” And Bahaa Khedr et al. further studied the prop-
erties of Cg fluid by using the DY potential.’® The DY po-
tential has an important merit as integrated on two facing
spheres; it yields another DY function. This is fairly conve-
nient for practical applications.

Otherwise, it has been shown that the Girifalco potential
is too hard at high pressure.’>* We think it is possible to
solve the problem by using the DY potential to replace the
Girifalco potential. Recently, Abramo et al.>* have explored
the influence of atomistic model of Cg, molecules on the
compression effect. However, Ruoff and Ruoff®®¢! have
pointed out that the Cq, molecule is not a stiff sphere but a
soft sphere with molecular bulk modulus B,, approximately
equal to 820 GPa. Although the value of B,, is fairly large, or
the compressibility of the Cg, molecule is fairly small, we
believe that it has important influence to the compression
properties of Cg solid at high pressures, whereas we have
not found any work to research its physical effects up to now.
And to the best of our knowledge, we believe that no ap-
proach can take the physical effect into account at present,
including the computer simulation approaches and theoreti-
cal approaches based on the Girifalco potential. The reason
can be shown in the formalism developed in the next section,
where it can be seen that the compressibility of molecules
would make EOS of the system become a differential equa-
tion. We must consistently solve pressure, bulk modulus, and
thermal expansivity of the system at the same time. Such
solving procedure can be implemented just based on the
Yukawa-type potential and generalized FVT.

In this paper, we have three main goals. The first goal is to
derive expressions of the EOS and internal energy for the
soft-core multiple-Yukawa solid by using the GFVT.3? The
formalism for hard-core potential can be included in as spe-
cial cases. Considering that computer simulations have
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shown the original Girifalco potential is too hard®*-? and in
the solid state at moderately high pressures, this leads to
serious discrepancies with respect to the atomistic simulation
results, and to only a poor reproduction of the EOS of real-
life C¢; our second goal is to apply the DY potential and the
formalism developed to fcc Cg, solid. With the parameters
determined by fitting the compression data, lattice constant at
300 K, and the cohesive energy, we can predict the variation
of lattice constant versus temperature and all other thermo-
dynamic properties.

Otherwise, we know from Eq. (1) and Eq. (2) that the
Girifalco potential can be applied to not only Cg, but also
other fullerenes. And it has been applied to C,>> C4, and
Cgy (Ref. 59) solids with just two adjustable parameters, N,
and D, for different fullerenes; the theoretical results are
qualitatively in agreement with the experimental data avail-
able. Thus our third goal is to apply the DY potential and the
formalism developed to other fullerenes, including C;4 and
Cgy, because some experimental data is available for the two
fullerenes.

In Sec. IT we present the soft-core multiple-Yukawa po-
tential for fullerenes and some formalism on compressibility
of fullerene molecules. In Sec. III, we derive formalism of
thermodynamic quantities for the soft-core multiple-Yukawa
solid based on the GFVT. In Sec. IV the formalism is applied
to fce Cg solid. In Sec. V, the formalism is applied to fcc Coq
and Cg, solids. In Sec. VI, the conclusive remark is pre-
sented.

II. SOFT-CORE MULTIPLE-YUKAWA POTENTIAL FOR
FULLERENES

Supposing the atom-atom interaction is the multiple-
Yukawa potential,

¢c(s) = (eo/s) 2 (= )eh™), 3)
j=1

with s=r/a, gy, o, and \; are potential parameters. We have
m=2 for double-Yukawa potential. The integral over pair of
cages yields another multiple-Yukawa potential,>®

S(S) = (Nfs()/s)z Cje)‘./'(l‘s)’ (4)
j=1
Ci=(- )‘j[Sinh(ij/O')]z()\jR/o.)—2’ 5)

where R is the radius of fullerene cages, N, is the number of
carbon atoms in a fullerene molecule, and N.=60, 76, and 84
for Cgy, C74, and Cgq molecules, respectively. The derivatives
of e(s) with respect to s and R can be derived as

g'(s)=- (Nfso/sz)z Ci(1+ )\js)e}‘.i(l_‘?), (6)
j=1
Z30) S
R— == (Neeg/s) 2 Cje(1 - ), (7
j=1
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+2(= )/[sinh(\;R/0)][cosh(N\;R/o) J(\;RIo) ™. (8)

2(=)/[sinh(\;R/o) (N R/ o) ™2

In terms of Ruoff and Ruoff,°%6! the dependence of vol-
ume of a fullerene molecule with pressure can be expressed
as

A
P=B,—"-B (L’O—l), )

vm vﬂl

where v,,=47R?/3 and Um0=47TR(3)/ 3, the subscript O repre-

sents the values at zero pressure condition. The pressure de-

pendence of R can be solved as
R=Ry(1+P/B,)'"3. (10)

Here B,
pressure,

is the bulk modulus of a fullerene molecule at zero

B,,=0.449(k/Ry) = (291/R,) GPa, (11)

and ky~67.2 mdyne/nm is the average force constant of
Cc-C bond 61 Although Eq. (11) is derived for the Cg, mol-
ecule, we assume it applies to other fullerenes. From Eq.
(10), we can derive the pressure dependence of bulk modulus
of a fullerene molecule

B, =B, +P. (12)

This means that dB,,,;/dP=1, a much lower value as com-
pared to that of graphite JB,,,,/dP=89 and diamond
OB,/ IP=4, respectively.®! Thus, we modestly estimate
dB,,,,/dP=3 for fullerenes, and correspondingly modify
Egs. (12), (9), and (10) to the following forms:

B,yo1=B,, + 3P, (13)
B 3
P=—’”{(M> —1}, (14)
3 U
R=Ry(1+3P/B,)"""°. (15)

The derivatives of R with respect to reduced volume y [de-
fined by Eq. (22)] and temperature T can be derived as

dR B 3p\!
X—:—(H—) , (16)
Ray Bm Bﬂl
TJR  aTB 3P\"' 1 _yoR
=1+ =—caT=—.  (17)
RJT 3B, B, 37 Ry

In the derivation of Eq. (17), we have used the thermody-
namic relationship
(&P)
— | =aB,
JT),

where « is the thermal expansivity, and B is the bulk modu-
lus of the solid.

(18)
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III. EQUATION OF STATE FOR THE SOFT-CORE
MULTIPLE-YUKAWA SOLID

In terms of the FVT and GFVT, the free energy can be
expressed as'0—32

F

3 u(0)
= InQ2mukT/h?) + —=
NkT =3 n(2mukT/h”) +

T (19)

—1In Uf,

where w is the mass of a fullerene molecule, u(0) is the
potential energy of a molecule as the lattice is static, v, is the
free volume

o= dm J " expl [ulr) — u(O)VATY dr.
0

(20)

Here, u(r) is the potential energy of a molecule as it roams
from the center to a distance r, r,,=(3a*/4mwy)*~a/2 is the
Wigner-Seitz radius, a is the nearest-neighbor distance, and
v is the structure constant; for fcc structure, it equals to \2.62
For simplicity, we introduce the reduced radial coordinate
x, the reduced volume y, and the reduced free volume v £

r 1
-/ =2~ 21
rla, x,=-"~7 (21)
y=alo=(VIV)'®, V=Nda'ly, Vy=Noly, (22)
vf=477a317f=477’y(V/N)l7f, (23)

where V is the volume of the solid. Considering that F
=F(T,V,R), the equation of state and internal energy U can
be derived as follows:*?

PV

PV  yd F P,V

LBV

Z=——=- .4
NKT 39y NKT NKT * NKT © NKT
PV u(0
c  __ L L , (25)
NKT ™~ 6kT  dy |7z
PV Fo) 7
A P e oy (26)
NKT ™" 35, 9y |z 35,

where P. is the cold pressure, P, is the thermal pressure
related to free volume, and P, is the modification introduced
by compressibility of fullerene molecules. With the aid of
Eq. (16), we have

PV _y o B __y R0 F
.V 3R

NkT ~ 3 dyNkT dy IR NKT
Ju(0) Ve

B 3P\ 1
=——(1+— —R———+ (27)
3B, B, 2k 0R vy

By the same procedure, we can derive the expression for the
internal energy

T,V
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U 0 F 3 0 T dv,

UV __ o F 3 w0 Ty

NKT " 9TNKT 2" 2kT 4, 0T
TR 0 F
RJT " GRNKT |,
3 0 U PV
—+M( )+E_&—aTL. (28)
27 24T 5, NKT

In the derivation of Egs. (27) and (28), we have used Egs.
(16) and (19), and following relationship

J F 1 &u(O) e (29)
R NKT v T2kT R vr

The expressions for 0, and its derivatives with respect to T, y
and R are as follows:

U= f v exp{— [u(x) — u(0)VkT}x*dx, (30)
0
U —Ti_—ifxm 0)/kT
Uy = ava— «T), exp{— [u(x) — u(0) J/kT}u(x)
—u(0)]x%dx, (31)

i5f= k]—T fo " exp{—[u(x) - M(O)]/kT}%[u(x)

5fb=_

dy
—u(0)]x%dx, (32)
U= Ri L 0 /kTRi
Upe =~ aRY T kT CXP{— [u(x) — u(0) VkT} aR[M(X)
—u(0)]x%dx. (33)

For the pair potential function &(s), the potential energy u(0)
can be expressed as

u(0) = X, z:e(8y), (34)
i#0

—u<o> S 86" (8y), (35)
i#0

where z; and &; are structural constants, and the values for fcc
structure have been given in Ref. 62. The potential energy
u(x) can be expressed as

u(x) = 2 z;e(s,), (36)
i#0

—u<r> Ez, s(s) (37)
i#0

Here (s;) is the average potential over the solid angle, for
multiple- Yukawa potential, we have

m

1 {e)\[l -y(8—x)] [l V(5+x)]}

e(s;)=—=
251'}’2351':1

(38)
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2

25 > 2 C; X {(8 - x)e"f[l -y(8-x)]

—(5+ x)e)‘j[]_’(‘sf”)]}. (39)

It should be pointed out that in the calculations, we should
replace all coefficients C; by C; in Rd[u(x)—u(0)]/JdR and
related Eqgs. (34), (36), and (38). And we also need the ex-
pressions for & and B,*?

) 342),

eGa == (2o -
Y

_[ H T]_l. (40)
o))

The derivatives (9Z/dT), and (dZ/dy)r should be calculated
numerically. In our program, we have take numerical steps
AT=0.00001XT and Ay=0.00001 X y.

From above equations, it can be seen that all thermody-
namic quantities are dependent to R(P), B(P), or a(P), in-
cluding F(R), P[R(P),B(P)] and U[R(P),B(P),a(P)]. Thus
we are disposing an iteration problem; all physical quantities
should be solved consistently. The solving procedure can be
realized through following two steps. As a first step, we give
initiative values for P, B, and «. At the second step, we can
calculate one set of values for all physical quantities. The
two steps should be done until the results are consistent
within desirable precision. We found the calculations are
stable and can converge rapidly. Just about 10 or 20 itera-
tions are needed to reach desirable precision at low and high
pressures for calculations presented in this work, respec-
tively.

IV. APPLICATION TO FCC Cg, SOLID

In this section, we present the numerical results for fcc
Cyo solid by using above formalism. We determine the pa-
rameters for the hard-core DY potential in Eq. (4) with in-
compressible radius R=R,, and by fitting following experi-
mental data, the cohesive energy 175 kJ/mol at 0 K,
lattice constant 1.417 nm at 300 K, as well as the compres-
sion data at 300 K.%3%* The determined values of parameters
are as follows:

A, =291, A, =833, ¢=0366nm, e,=732K, (42)

respectively, and Ry=0.355 nm. We compare the DY poten-
tial with Girifalco potential for Cg, molecules with radius
R=R, in Figure 1. The figure shows that the difference of
well depth and equilibrium distance between the two poten-
tials is small; the curve of the DY potential is flatter, and the
repulsion is softer than the Girifalco potential.

The calculated thermodynamic properties at zero pressure
and different temperatures by using the DY potential with
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FIG. 1. (Color online) Comparison of original Girifalco poten-
tial (line with circles) with the DY potential taking constant R=R,
(line with squares) proposed in this work.

incompressible (hard-core) or compressible (soft-core) mo-
lecular radius R or R are listed in Table I. The table shows
that the compressibility of molecular radius has little influ-
ence to physical quantities at zero pressure. The spinodal
point T is the temperature satisfying the condition, B4(T)
=0.5>% The system is instable for temperature above 7. For
the Girifalco potential, molecular dynamics (MD) simula-
tions performed by Cheng et al® and Abramo and
Caccamo’? give T,=2320 K, our GFVT calculations give
T,=2605 K. Figures 2—6 present the GFVT results of ther-
modynamic properties of fcc Cg solid calculated by using
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FIG. 2. (Color online) Comparison of lattice constant L(= \Ea)
versus temperature relationship at zero pressure: Upper line: GFVT
results for original Girifalco potential; Lower line: GFVT results for
the soft-core DY potential; circles: experimental data from Ref. 65.

the DY potential with incompressible or compressible mo-
lecular radius R or R. For Figure 2, the available experimen-
tal data and the results from the Girifalco potential have been
presented for comparison.

Figure 2 shows that the agreement of calculated variation
of lattice constant versus temperature with experiment® is
fairly bad for the Girifalco potential, and satisfactory for the
soft-core DY potential. In the figure, the difference between
two sets of lattice constants for the hard and soft-core DY
potentials as listed in Table I is invisible, and just the lattice

TABLE 1. Properties of the fcc phase of Cg: the lattice constant L=(\s‘5a), a in nm, linear thermal expansion coefficient a in 107 K1,
the heat capacity Cy in kJ mol~! K~!, and the bulk modulus By in kbar. The values in the first and second lines have been calculated with
the FVT combining the hard-core and soft-core DY potentials, respectively.

T 200 300 400 500 600 800 1000 1200 1400 1600
L 1.4154 1.4170 1.4186 1.4203 1.4220 1.4257 1.4297 1.4341 1.4390 1.4446
1.4152 1.4168 1.4184 1.4201 1.4218 1.4255 1.4295 1.4339 1.4389 1.4444
a 1.0933 1.1280 1.1653 1.2056 1.2493 1.3487 1.4684 1.6158 1.8026 2.0485
1.0886 1.1232 1.1604 1.2005 1.2441 1.3431 1.4624 1.6092 1.7952 2.0401
By 89.603 85.795 82.019 78.274 74.558 67.211 59.968 52.822 45.761 38.769
89.351 85.583 81.844 78.132 74.447 67.154 59.955 52.843 45.807 38.833
Cy 24.628 24.476 24.321 24.163 24.001 23.670 23.324 22.958 22.568 22.146
24.636 24.487 24.334 24.179 24.021 23.695 23.353 22.991 22.604 22.185
T 1800 2000 2200 2400 T,
L 1.4510 1.4586 1.4683 1.4820 1.5230
1.4508 1.4584 1.4681 1.4818 1.5229
a 2.3899 2.9040 3.7930 5.8641 460.19
2.3800 2.8918 3.7763 5.8352 403.42
By 31.824 24.886 17.876 10.569 0.1029
31.897 24.961 17.943 10.621 0.1175
Cy 21.680 21.150 20.520 19.694 17.651
21.720 21.191 20.560 19.731 17.677
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FIG. 3. (Color online) Comparison of isothermals of solid Cg
calculated in this work by using original Girifalco potential (line 1),
the modified Girifalco potential in Ref. 32 (line 2), the hard-core
DY potential (line 3), and the soft-core DY potential (line 4) with
experiments at 300 K. The symbols refer to experimental data, by
Horikawa er al. in Ref. 63 (squares), and by Duclos et al. in Ref. 64
at 20 GPa (circles), 10 GPa (up triangles), and 4 GPa (down tri-
angles), respectively.

constants of the soft-core DY potential are plotted for clarity.
Figure 3 shows that the compression curve for the original
Girifalco potential is too hard as compared with
experiments;5*% as having been shown by Refs. 32 and 53,
the DY potential gives much softer and improved compres-
sion curve. In Ref. 32, we have proposed a modified Giri-
falco potential based on the LJ (7-6) potential, e(r)=A/r’
-B/r®, with parameters determined from the same input ex-
perimental dataset as the DY potential. In Figure 3, we also
plotted the compression curve calculated from the modified
Girifalco potential. It can be seen that the DY potential gives
better results than the modified Girifalco potential. The

6800

5100

3400

BT (kbar)

1700

0 50 100 150 200 250 300 350 400
P (kbar)

FIG. 4. (Color online) Variation of the bulk modulus (kbar)
versus pressure calculated in this work at 300 K, and by using the
original Girifalco potential (line with circles), the hard-core DY
potential (line with squares), and the soft-core DY potential (line
with triangles), respectively.

PHYSICAL REVIEW B 75, 035424 (2007)

280 T T T T . T

o
210} ;
. 140t |
X
£
3
- 7ot ;
of 16 |
14
_0 1 1 1 1 1 1
200 600 1000 1400 1800 2200 2600
T(K)

FIG. 5. (Color online) Excess free energy as function of tem-
perature calculated for several densities p calculated by using the
GFVT with the hard-core and soft-core DY potentials. The squares
represent results of the hard-core DY potential for p=2.0, 1.8, 1.6,
and 1.4 nm™® from up to down, respectively. The lines represent
results of the soft-core DY potential for the same densities,
respectively.

modified Girifalco potential tends to be too soft in the middle
pressure region, and yet too hard as compared with the latest
experimental data. Comprehensively, the hard-core DY po-
tential gives better results in low and middle high-pressure
regions than the modified Girifalco potential. The influence
of compressibility of molecular radius to the compression
curve is not evident at low pressure conditions, and enlight-
ened at high-pressure condition. The soft-core DY potential
gives the best results as compared with the latest experimen-
tal data in all of low-, middle-, and high-pressure regions.
Figure 4 gives the variation of bulk modulus B versus
pressure relationship. The figure shows that By is a linear
increasing function of pressure, but the slope is fairly large
and the increase is fast. The difference of By is small at low
density and increases at high density. The value of By for the

280 T T T T T T

210t

1401

U/NKT

70F

1400 1800 2200 2600

T(K)

200 600 1000

FIG. 6. (Color online) The same as for Figure 3, but for internal
energy.
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1.53
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T(K)

200 250 300
FIG. 7. (Color online) Lattice constant of Cg solid versus tem-
perature relationship. Upper and lower lines: results calculated by
using the GFVT and the soft-core DY potential with R
=0.40103 nm and 0.39915 nm, respectively; pluses and diamonds:
MD results of Ref. 59 by using the Girifalco potential with the
diameter D=0.7977 nm and 0.7949 nm, respectively; Circles and
squares: experimental data in Refs. 66 and 67, respectively.

DY potential at high pressure is far smaller than that for the
Girifalco potential. This means the model solid of fcc Cgy
with the DY potential is far softer than that with the Girifalco
potential. It also can be shown that the influence of com-
pressibility of molecular radius with bulk modulus is fairly
small.

In Figures 6 and 7, we plotted the reduced excess free
energy F../NkT and reduced internal energy U/NkT versus
temperature relationships at four densities. The reduced ex-
cess free energy is defined as follows:

F F 3
—X = —— 4+ — InQQmuo?kT/h?).
NkT ~NkT 2

(43)
The two figures show that both F. /NkT and U/NKT are
increasing functions of temperature at low densities, and are
decreasing functions of temperature at high densities. Both
quantities have the convergence tendency at high tempera-
tures. U/NkT tends to a constant 3/2, yet F.,/NkT does not
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tend to a constant but to a weakly density dependent value.
The influence of the compressibility of molecular radius to
F. /NKT is evident at high densities and not at low densities.
The hard-core DY potential gives larger values of F/NkT
and U/NkKT than the soft-core DY potential at high densities.
And the two potentials give almost the same values at low
densities. Considering that phase properties and physics-
chemical properties are sensitive to the potential form, evi-
dent difference would exist between the softer and harder
potentials. And we think that in order to describe physical
properties of materials with heavy molecular weight at high-
pressure conditions, the inclusion of compressibility of mol-
ecules is important.

V. APPLICATION TO FCC C76 AND C84 SOLIDS

In terms of the derivation of DY potential in Eq. (4), it is
clear that the DY potential can be applied to other fullerenes
with the same four parameters in Eq. (42) and different N,
and R, for different fullerenes. Two different values of the
lattice constant of C,4 fullerite are available from x-ray
experiments,®®®7 and corresponding to them one can deter-
mine two different “effective” diameters. As far as the deter-
mination of an effective diameter of Cg4 is concerned, we
follow a similar procedure as for C,4, by making reference to
recent experimental determinations of the lattice
constant.%%% The final R, values and the experimental lattice
constants of C;4 and Cgy, used for the fit, are reported in
Table 1II.

Saito et al.”” assume that the radius of a fullerene mol-
ecule is proportional to the square root of the surface area of
a molecule (or the number of carbon atoms constituting the
fullerene), and they define the following expression as the
radius of the fullerene molecule:

L 70

Ry=0.355 X \N,/60. (44)

The table shows that the fitted R, values are in good agree-
ment with the theoretical values calculated from Eq. (44). In
the table, we also list the values of spinodal point 7 and the
sublimation heat AH at some reference temperatures. From
the table and results for C¢), we know that the values of T
have the following sequence: T (Cgy)>T, (Cyg) > T(Cgp).
This means that the fullerene solids can keep stable at higher

TABLE II. Fitted and theoretical values of the effective radius Ry of C76 and Cgy molecules for the soft DY potential; experimental data
(Refs. 66—-69) of lattice spacing L(=y2a) at a reference temperature T, used to determine the effective radius; the spinodal temperatures T
calculated by using the soft DY potential; and the calculated and experimental values (Refs. 69 and 71) of sublimation heat AH at a

temperature.
Matters Ref. Tret (K) Leyp (nm) Ry (nm) T, (K) AH (kJ/mol)

fitting Eq. (44) Calculated Experimental Ref.
Ceo 53 — — 0.355 0.355 2605.4 167.5 168.0 (300 K) 53
Cqe 66 297 1.5475 0.40103 0.39954 2959.2 193.5 2064 69
Cqe 67 297 1.5421 0.39915 2999.0 196.1 (298 K)
Cgs 68 230 1.5894 0.41617 0.420004 3252.9 214.1 214+6 71
Cgs 69 300 1.6000 0.41956 3178.7 209.2 (300 K)
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TABLE III. The same as for Table I, but for C;¢ with Ry=0.39915 nm (first lines) and 0.40103 nm (second lines), respectively.

T 200 300 400 500 600 800 1000 1200 1400 1600
L 1.5461 1.5475 1.5489 1.5504 1.5519 1.5550 1.5584 1.5621 1.5661 1.5705
1.5407 1.5421 1.5435 1.5449 1.5464 1.5495 1.5528 1.5564 1.5603 1.5646
a 0.8732 0.8972 0.9229 0.9504 0.9798 1.0454 1.1220 1.2129 1.3228 1.4588
0.8638 0.8873 0.9123 0.9390 0.9675 1.0312 1.1053 1.1930 1.2985 1.4283
By 93.406 89.978 86.572 83.188 79.825 73.160 66.572 60.055 53.602 47.205
95.093 91.651 88.232 84.834 81.458 74.766 68.150 61.604 55.123 48.698
Cy 24.669 24.539 24.405 24.269 24.131 23.847 23.552 23.244 22.920 22.575
24.673 24.544 24.413 24.279 24.142 23.863 23.573 23.270 22.952 22.614
T 1800 2000 2200 2400 2600 2800 T,
L 1.5753 1.5809 1.5873 1.5950 1.6049 1.6197 1.6544
1.5694 1.5747 1.5809 1.5883 1.5976 1.6109 1.6491
a 1.6321 1.8624 2.1867 2.6863 3.5896 5.9748 334.50
1.5928 1.8092 2.1098 2.5629 3.3489 5.2008 354.20
By 40.854 34.531 28.212 21.850 15.345 8.3930 0.1199
42.319 35971 29.631 23.258 16.766 9.9186 0.1139
Cy 22.204 21.799 21.348 20.830 20.201 19.342 17.642
22.251 21.857 21.419 20.920 20.322 19.534 17.641

temperature for fullerene with heavier molecules. The table
also shows that the calculated values of AH are in good
agreement with the experimental data%®”! for all fullerenes
considered in this work.

We firstly calculate the thermodynamic properties of C¢
and Cgy at zero pressure and from 200 K to 7 by using the
soft-core DY potential and two different effective fullerene

diameters in Table II. The results are listed in Tables III and
IV. The fcc lattice constants for C;4 and Cgy in the tempera-
ture ranges 180-500 K and 150-350 K are shown in Fig-
ures 7 and 8, respectively. In the two figures, we also plotted
the MD results by using the Girifalco potential from Micali
et al>® It is shown that the results from the soft-core DY and
Girifalco potentials are almost identical, and both are quali-

TABLE IV. The same as for Table I, but for Cg4 with Ry=0.41617 nm (first lines) and 0.41956 nm (second lines), respectively.

T 200 300 400 500 600 800 1000 1200 1400 1600
L 1.5890 1.5902 1.5915 1.5928 1.5942 1.5970 1.6000 1.6032 1.6066 1.6104
1.5987 1.5999 1.6013 1.6026 1.6040 1.6069 1.6100 1.6133 1.6169 1.6207
@ 0.7694 0.7886 0.8088 0.8304 0.8533 0.9037 0.9616 1.0287 1.1077 1.2023
0.7838 0.8038 0.8250 0.8475 0.8716 0.9247 0.9859 1.0572 1.1417 1.2435
By 100.39 97.068 93.758 90.468 87.196 80.706 74.285 67.927 61.628 55.383
97.354 94.046 90.758 87.490 84.240 77.796 71.421 65.110 58.859 52.661
Cy 24.692 24.575 24.454 24.331 24.206 23.951 23.687 23.413 23.127 22.826
24.687 24.566 24.442 24316 24.188 23.926 23.655 23.373 23.078 22.766
T 1800 2000 2200 2400 2600 2800 3000 T,
L 1.6145 1.6190 1.6240 1.6298 1.6367 1.6452 1.6567 1.6982
1.6250 1.6297 1.6351 1.6413 1.6487 1.6581 1.6717 1.7074
a 1.3178 1.4628 1.6512 1.9083 2.2857 2.9094 42179 836.51
1.3690 1.5285 1.7392 2.0336 2.4819 3.2745 5.2427 349.80
By 49.183 43.019 36.878 30.738 24.564 18.284 11.723 0.0454
46.507 40.388 34.288 28.181 22.024 15.723 9.0066 0.1076
Cy 22.507 22.166 21.795 21.386 20.924 20.379 19.685 17.610
22.436 22.080 21.692 21.260 20.766 20.171 19.373 17.627
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FIG. 8. (Color online) Lattice constant of solid versus tempera-
ture relationship. Line: results calculated by using the GFVT and
the soft-core DY potential with Ry=0.41617 nm; pluses: MD re-
sults of Ref. 59 by using the Girifalco potential the diameter D
=0.83075 nm; circles: experimental data in Ref. 68.

tatively in agreement with the experimental data.

In Figure 9, we plotted the variation of bulk modulus By
of Cy4 and Cg, versus pressure relationship calculated from
the soft-core DY and hard-core Girifalco potentials. The
comparison of Figure 9 with Figure 4 shows that the situa-
tion is almost the same. It is shown that the difference of
values of B is small between C;4 and Cgy as the same po-

7200

54001

3600}

B.r (kbar)

1800}

0 100 200 300 400
P (kbar)

7200

5400}

3600

B.r (kbar)

1800}

0 100 200 300 400
P (kbar)

FIG. 9. (Color online) Variation of the bulk modulus (kbar) for
Cy¢ (a) and Cgy (b) solids at 300 K versus pressure calculated in this
work by using the original Girifalco potential (upper lines and
circles) and the soft-core DY potential (lower lines and circles),
respectively; circles: results with large values of diameter in Ref. 59
or radius in Table II; lines: results with small values of diameter in
Ref. 59 or radius in Table II.
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FIG. 10. (Color online) Comparison of isothermals of solid Cg,
at 300 K calculated in this work by using original Girifalco poten-
tial (circles and squares with the diameter D=0.83075 nm and
0.83591 nm, respectively), and the soft-core DY potential (upper
and lower lines with R;=0.41617 nm and 0.41956 nm, respec-
tively) with experiments in Ref. 69 by Brunetti er al. (pluses).

tential is used, but is large between the different Girifalco
and DY potentials for the same fullerenes.

In Figure 10, the results for compression curves of Cgy
solid from the soft-core DY potential by us and from Giri-
falco potential by Micali et al>® are compared with
experiment.%’ The figure shows that the results deduced from
the Girifalco potential by Micali et al.>® is satisfactorily in
agreement with the experimental data, yet the results from
the soft-core DY potential evidently deviate from the experi-
mental data. Although the compression curve of the Cg, solid
obtained from the Girifalco potential is in accordance with
experiment, we do not think the Girifalco potential is supe-
rior to the DY potential because the former is too hard for
Cyo solid, as shown in Figure 3. This implies that some dis-
crepancy exists between the theory and experiment. Noting
that the experimental data for Cg solid®>%* measured in the
narrow pressure ranges tends to be too hard, the data mea-
sured in the wide pressure ranges is much softer (as shown in
Figure 3), and the compression data of Cg, has been mea-
sured in the narrow pressure range.®® We think that most
probably the experimental compression curve of Cg, solid
shown in Figure 10 also is too hard. In order to solve the
discrepancy, we need more work both from theoretical and
experimental aspects.

VI. CONCLUSION

In summary, the equation of state and the internal energy
for the soft-core multiple-Yukawa solid have been derived by
using the GFVT.?? The formalism for the hard-core multiple-
Yukawa solid can be included in this paper as special cases.
The formalism developed is applied to the Cgj, C76, and Cgy
solids. With the effective diameter of Cg, molecule taken as
the experimental value, the parameters of the DY potential
for carbon-carbon atoms are determined through fitting the
experimental data of cohesive energy, lattice constant, and
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compression curve of Cg solid at ambient temperature. The
effective diameter of C;4 and Cg, molecules are determined
through fitting the experimental lattice constants at ambient
temperature. The difference of equilibrium distance and well
depth for C4y molecules between the DY potential and the
Girifalco potential is small, but the repulsion of the DY po-
tential is softer than the Girifalco potential. The calculated
variation of lattice constant versus temperature relationship
and compression curve for Cg solid are in good agreement
with experimental data available. However, the calculated
variations of lattice constant versus temperature relationship
for Cy4 and Cg, solids are almost identical between the DY
and Girifalco potentials, and are merely qualitatively in
agreement with experimental data available. The agreement
of compression curve of Cg solid calculated from the soft-
core DY potential with the latest experimental data is the

PHYSICAL REVIEW B 75, 035424 (2007)

best one as compared with the hard-core DY potential and
Girifalco potentials, whereas the compression curve of Cgy
solid calculated from the DY potential evidently deviates
from the experimental data available in the low-pressure
range. Some discrepancy exists between theory and experi-
ment. It is proposed that more theoretical and experimental
researches are needed to solve the discrepancy.
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