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We introduce a method for recovering the electronic density of states �DOS� from scanning tunneling
spectroscopy data. For this purpose, starting from one-dimensional WKB approximation, expressions are
derived allowing the reconstruction of the DOS from a measured tunneling current �I-V curve� and its deriva-
tive with respect to the tunneling voltage, V. In a first step, assuming a constant DOS for the tip, I-V curves are
calculated for various model DOS of the sample and the derived expressions are applied to recover the sample
DOS. It turns out that in this way the original DOS can be recovered to an accuracy of some percent in the
energy range ±2 eV. In a second step, we rewrite the differential conductivity of the tunnel junction to form a
Volterra integral equation of the second kind and, consequently, exploit the Neumann approximation scheme to
optimize the recovered DOS for a wide class of original DOS to an unprecedented accuracy. In a third step, an
energy-dependent DOS of the tip is included resulting in two Volterra integral equations, one for the sample
and one for the tip DOS, allowing alternately optimizing the DOS of either side. By analyzing the distance
dependence of spectroscopic data, i.e., the energy-resolved differential barrier height, we obtain additional
information on the DOS which enables a self-consistent solution of the two integral equations and, thus, to
deconvolute the sample and tip DOS.
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I. INTRODUCTION

Ever since the advent of scanning tunneling microscopy
�STM� considerable efforts have been made to extend its
power beyond taking topographic images with atomic reso-
lution by analyzing the magnitude of the currents involved in
the imaging process as well. In this way, additional informa-
tion on the sample was expected to become available with
the most basic of which being the electronic density of states
�DOS�. The theory of three-dimensional tunneling based on
the transfer-Hamiltonian formalism1 has been reexamined for
STM purposes by several groups.2–5 Selloni et al.6 and Lang7

performed a theoretical analysis with special emphasis on
scanning tunneling spectroscopy �STS�, the experimental
tool for revealing the DOS of a sample and/or tip. Now-a-
days software is freely available on the internet for calculat-
ing STM images and I-V curves.8 Partly by using ab initio
methods, sample and tip are modeled by a specific atomic
configuration and the tunneling current is calculated by ap-
plying a scattering theory. Data evaluation is then done by
comparing theoretical and experimental topographic images
as well as I-V or �I /�V-V curves. Surprisingly, work on the
recovery of the DOS from experimental data is rather scarce.

It was noticed early that �I /�V-V curves or the differential
conductivity – a widely used synonym for local density of
states �LDOS� – are a rather poor measure of the DOS. To
improve on this, experimentalists introduced normalizing
these curves to their static conductivity, i.e., calculating
� ln I /� ln V. In this way, �I /�V-V curves taken at different
tip-sample separations became more comparable and the
highly dynamic background frequently observed in �I /�V-V
curves, especially on semiconductors,9,10 could be taken into
account. Lang showed that the positions of peaks in
� ln I /� ln V-V curves correspond reasonably well to those in

the DOS shifting some ±100 meV depending on the peak
width of the DOS.7,11 Since the normalized conductivity
tends to develop singularities if there is a gap in the DOS
around the Fermi level, the normalization procedure had to
be refined by introducing filter functions.12,13 Ukraintsev dis-
cussed this in detail and, finally, commented that due to all
these empirical adjustments, it becomes increasingly difficult
to judge the intrinsic value of the normalization procedure.14

In the same work, Ukraintsev proposed a technique for DOS
deconvolution by normalizing the differential conductivity to
its fitted asymmetric tunneling probability function based on
the one-dimensional WKB approximation.14 Indeed, with the
recently increasing interest in a quantitative analysis of tun-
neling spectra, the proposed technique led to promising
results.15–20

Nevertheless, the deconvolution introduced by Ukraintsev
has its limitations. First, the DOS may also specifically con-
tribute to the background of a �I /�V-V curve which, how-
ever, the fit will attribute by principle to the tunneling prob-
ability function. Second, as will be shown in the present
contribution, the calculation rests on an approximation which
is not valid under typical tunneling conditions and the as-
sumption of an asymmetric tunneling probability function is
physically difficult to justify. Finally, the Ukraintsev ap-
proach leads to a deconvolution of the transmission probabil-
ity and the DOS while the DOS is still a convolution of the
DOS of the sample and the tip.

We approach the deconvolution of the transmission coef-
ficient and the DOS in a different way. Assuming a WKB
related transmission coefficient with parameters that can be
reasonably estimated or determined from supplementary ex-
periments such as the tunneling barrier height, which can be
extracted from I-z curves, the convoluted DOS can be ap-
proximated by normalization of a quantity involving both,
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the differential conductivity and the tunneling current, to the
transmission coefficient. Exploiting the properties of a Volt-
erra integral equation, this convoluted DOS can be further
optimized to accurately reflect the measured data. Due to the
symmetry of the tunneling junction, the sample DOS as well
as the tip DOS fulfill a Volterra equation establishing a pair
of coupled integral equations, which can be solved self-
consistently if additional information on the DOS is avail-
able. Measurement of the bias-dependent differential barrier
height is proposed to provide such independent information.
We believe that the new method provides the experimentalist
a reliable tool for accurately transposing the experimental
data into the electronic density of states and potentially de-
convolute the DOS of the tip and sample.

II. RECOVERING THE DOS: BASIC DERIVATION

The starting point of our calculation is the tunneling cur-
rent, I, as given by the one-dimensional WKB approximation
for a barrier characterized by an energy dependent transmis-
sion coefficient T�E�. Accordingly, applying a bias, V, be-
tween the right and left side of the barrier leads to a tunnel-
ing current, which reads4,14,21

I�V� = �
−�

�

�S�E��T�E − V�T�E,V�f12�E,V�dE , �1�

where �S and �T are the sample and tip density of states
�DOS�, respectively, f12 is a window function f12�E ,V�
= f�E−V�− f�E� with the Fermi-Dirac distribution f . Here,
atomic �Hartree� units are used with all constants set to unity
including the effective tip-surface contact area, and the prob-
lem is described in the reference frame of the sample with
the energy measured with respect to the Fermi level of the
sample. Note, that, in general, the DOS used in Eq. �1� is not
the total DOS as determined from band structure calculations
but a weighted DOS if a certain selectivity of tunneling in k
space is present. According to the one-dimensional WKB
approximation the transmission coefficient at zero bias is
given by T�E�=e−��−Ez with z being the tip-sample distance
and � the effective tunneling barrier height. A bias depen-
dence of the transmission coefficient is included by the trap-
ezoidal approximation leading to T�E ,V�=e−��+V/2−Ez. For
quick reference, the barrier together with the various ener-
gies is sketched in Fig. 1. To allow for a more general treat-
ment of the bias dependence of the barrier, the factor 1 /2 in
the square root argument of T�E ,V� is replaced in the fol-
lowing by 1/� with � being a number close to 2, which has
to be determined experimentally from bias dependent barrier
measurements. We calculate the derivative of the tunneling
current and obtain

�VI�V� = �
−�

�

�S�E��V��T�E − V�T�E,V�f12�E,V��dE

�2a�

��S�V��T�0�T�E = V� − �
−�

�

�S�E��T�E − V�

�T�E,V�f12�E,V�
z

2��� +
V

�
− E

dE

+ �
−�

�

�S�E�T�E,V�f12�E,V��V�T�E − V�dE ,

�2b�

where the � sign is due to the approximation �Vf12�E ,V�
���E−V�, which is widely used in solid state physics if the
involved Fermi-Dirac distributions are taken at room tem-
perature. Furthermore, another key relation was exploited
which apparently has been overlooked in related previous
works

�VT�E,V� =
− z

2��� +
V

�
− E

T�E,V� . �2c�

Due to the square-root appearing in the denominator, the
second term on the right side of �2b� becomes singular for
E=�+V /�. We ignore this problem since we can circum-
vent it by using the zero temperature approximation of �1�
with finite boundaries of the integral and choosing V suffi-
ciently small compared to � thereby avoiding the field-
emission regime. Note that �VT�E ,V�=− 1

��ET�E ,V� for the
specific transmission coefficient given above, which how-
ever, will not be used in the following analysis for the sake
of generality.

For now, we set the tip density of states to unity, �T=1,
and, hence, �V�T vanishes. Then, the third term on the right
of �2b� vanishes resulting in

�VI�V� � �S�V�T�E = V�

− �
−�

�

dE�S�E�T�E,V�f12�E,V�
z

2��� +
V

�
− E

.

�3�

FIG. 1. Energy diagram of a tunneling junction including an
applied bias. The symbols are: the Fermi energy of the sample and
tip, EF1, EF2, respectively, the barrier height �, and the applied bias
V �here in eV�.
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At this point, one usually neglects the second term leading
to the well-known and simple result �VI�V���S�V�.14 How-
ever, it can easily be shown that the second term is compa-
rable to the first and should not be neglected at all. Compar-
ing the argument of the integral in Eq. �3� with the
corresponding argument in Eq. �1� shows its identity except
for an additional slowly varying factor z /2���+ V

� −E. Ap-
plying the generalized mean value theorem for integrals and
setting the mean value to z

2���
delivers

�VI�V� � �S�V�T�E = V� −
z

2���
I�V� . �4�

Since we are interested in the DOS of the sample, �S, we
solve �4� for �S and obtain

�Se�V� =
1

T�E = V���VI�V� +
z

2���
I�V�	 , �5a�

where we added the index “e” to indicate that, in a practical
application of tunneling, �Se is the DOS recovered from an
experimentally determined tunneling current and its deriva-
tive. In the above derivation, it was assumed that the singu-
larity at E=�+V /�, which might be met in the regime of
field emission, is definitely avoided in the corresponding ex-
periment as well as, of course, in the numerical treatments.

Relation �5a� is especially interesting since it manifests a
dependence of tunneling spectroscopy on the tip-sample
separation which has already been proposed earlier to yield
additional information.6,14 According to Eq. �5a�, the deriva-
tive, �VI, carries the full spectroscopic information at small
tip-sample separation only. With increasing separation, how-
ever, the spectroscopic information shifts to the tunneling
current due to the growing influence of the energy dispersiv-
ity of the tunneling barrier �cf. �2c��. Theoretically, this sepa-
ration dependence offers the opportunity to determine the
absolute tip-sample separation by comparing I-V spectra
measured at sufficiently different z values. A tip-sample in-
teraction or, in practice, a limited precision of the measure-
ment or a limited range of the separation could preclude that
possibility.

In a typical STM experiment, values of z and � are 7 Å
and 4 eV, respectively, leading to z

2���
�1. Thus, the tunnel-

ing current contributes equally to the recovered DOS of the
sample as the derivative of the tunneling current does. From
an experimental point of view, the important aspect of Eq.
�5a� is that we have exclusively known parameters on its
right side: The tunneling barrier height, �, and � can be
determined experimentally and, hence, the transmission co-
efficient is known from the WKB approximation. Similarly,
the tip-sample separation, z, can be derived from the experi-
ment due to the separation dependence of tunneling spectra
or by a gentle touch of the sample surface with the tunneling
tip.

The work of Ukraintsev14 is based on Eq. �5a� with z=0,
i.e., neglecting the term containing the tunneling current.
Consequently, a modification of the transmission coefficient,
T, is required to recover a meaningful DOS. Since predomi-

nantly occupied states at the Fermi level of the tip probe
empty states of the sample at positive bias, and occupied
states at the Fermi level of the sample probe empty states of
the tip at negative bias, replacement of a single transmission
coefficient by a sum of two, one for the tip and one for the
sample, could be justified. We will use this “symmetry argu-
ment” later.

We finally refine �5a� by calculating the mean value ana-
lytically for a constant DOS of the sample and apply a sec-
ond order approximation. In this way, one arrives at

�Se�V� =
1

T�E = V�

�
�VI�V� +
z

2���
�1 +

�2��z + 3�V2

96�2 	I�V�� .

�5�

To illustrate the effect of this approximation, we calculate
the tunneling current, I, its derivative, �VI, and the approxi-
mated DOS of the sample, �Se, for constant DOS of the
sample, �S=1. For comparison, we have also calculated the
normalized conductivity V

I
�I
�V . The results are shown in Fig.

2�a�. In the wide energy range of ±2 eV, the tunneling be-
havior exhibits the well known parabolic conductivity �dash-
dotted curve in Fig. 2�a��. The normalized conductivity
�dashed curve in Fig. 2�a�� reduces the parabolic component
by about 50% but still it is clearly present and, thus, is simi-
larly unsuitable for a satisfactory determination of the sam-
ple’s DOS as is the derivative of the tunneling current, �VI.
The approximated DOS of the sample, �Se, however, recov-
ers the constant input DOS to an accuracy of +0.5/−0.2% in
the energy range ±1 eV and +0.8/−10% in the energy range
±2 eV �solid curve in Fig. 2�a��. For positive bias, the devia-
tion of �Se is almost constant and almost independent of
the bias while, for negative bias, the error increases rapidly
with decreasing bias. This is due to the fact that the current,
I, is an odd function of the bias and its derivative, �VI,
is even. As consequence, the function in parenthesis on
the right of �5� is large for positive bias and becomes very
small for negative bias �approximately as T�E=V�
=e−��+V/�−Vz�. An error due to the parabolic approximation in
�5� has, hence, a more vigorous impact on the result for
negative bias than for positive bias. Note, that the result of
Ukraintsev’s approach would be unity to a very good accu-
racy in the given special case.

At this point, the physical meaning of Eq. �5� should be
emphasized again. In general, I-V curves determined by tun-
neling reflect the influence of both, structure in the DOS as
well as a voltage and energy dependent barrier
transmission.22 To separate these different contributions, for
the derivation of Eq. �5� the trapezoidal approximation for
the barriers has been explicitly assumed together with con-
stant DOS for tip and sample. As a consequence, starting
with a supposed constant sample DOS, Eq. �5� consistently
recovers this model DOS as opposed to �VI and � ln I /� ln V
when directly interpreted as DOS without considering the
effect of the barrier. In that case, the barrier effect shows up
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as DOS leading to obvious misinterpretations as pointed out
recently by Olsson et al.22 The question then arises whether
the barrier approximation included in Eq. �5� is sufficient
when assuming a more complicated model DOS for the
sample. This is tested for a sample DOS comprised of three
Gaussian peaks centered at −1/−0.15/ +1 eV �area 2/0.3/2
and width 1.0/0.15/1.0 eV�, respectively �Fig. 2�b��. This
model DOS varies by about one order of magnitude over the
bias range of ±2 eV �short dashed curve in Fig. 2�b��. The
calculated derivative �VI �dash-dotted curve in Fig. 2�b��, the
normalized conductivity � ln I /� ln V �dashed curve in Fig.
2�b�� as well as the result of Ukraintsev’s approach �UA,
dotted curve in Fig. 2�b�� produce a peak close to +1 eV,
shifted by +0.1 eV in �VI and UA, and −0.2 eV in
� ln I /� ln V. The conductivity and consequently the normal-
ized conductivity and UA become negative for V�1.8 eV

prohibiting a Gaussian fit at positive bias to either curve. All
three curves regenerate the thermally broadened peak close
to −0.15 eV with a shift of 30 meV to −0.12 eV in
� ln I /� ln V. All three curves, �VI, UA and � ln I /� ln V, de-
liver just a shoulder at −1 eV rather than the original peak
positioned there. It is obvious from these curves that a quan-
titative analysis of a sample’s DOS is impossible by just
analyzing �VI,� ln I /� ln V, or UA. At the very best, one may
obtain some qualitative hints as to the presence of structure
in the DOS. In contrast to the failure of �VI, � ln I /� ln V and
UA in this respect, the recovered DOS of the sample accord-
ing to Eq. �5�, �Se, regenerates the original DOS with a sur-
prising accuracy �solid curve in Fig. 2�b��. Fitting three
Gaussian functions to �Se recovers the peak positions to an
accuracy of ±6 meV corresponding to one bias step in the
calculation �5 meV�. The areas of the peaks are recovered to
an accuracy of better than 4% for negative bias and better
than 1% at positive bias. The model peak at −0.15 eV was
found significantly broadened by 33 meV due to thermal
smearing at T=300 K. Consistently, the peak appears re-
duced in height but with the total area conserved.

Though the calculation presented above has demonstrated
a significant improvement over earlier considerations, Eq. �5�
has been derived under the assumptions of the trapezoidal
approximation describing the barrier transmission suffi-
ciently well or, expressed alternatively, that the function in
front of the I-V contribution in Eq. �5� represents an adequate
choice of the mean value needed to approximate the integral
in the starting Eq. �3�. Additionally, a constant tip DOS was
assumed. If, however, the DOS of the sample varies too
strongly over the considered bias range, Eq. �5� may turn out
as only a rather rough estimate because the mean value may
then be a function of �S itself. As experienced above, this
primarily leads to errors at negative bias. The following con-
siderations show how to remedy this deficiency numerically.

III. RECOVERING THE DOS: NUMERICAL
IMPROVEMENTS

Equation �3� can be rewritten into the form of a Volterra
integral equation of the second kind to obtain

�S�V� =
�VI�V�

T�E = V�
+

z

2�
�

0

V T�E,V�

�� +
V

�
− ET�E = V�

�S�E�dE .

�6�

For simplicity we have employed here the zero tempera-
ture approximation for the tunneling current introducing fi-
nite limits of the integral. This, however, is no serious re-
striction, since in the numerical treatment of Eq. �6� the
window function f12�E ,V� as well as an extension of the
upper limit of the integral can be easily included if only this
limit stays well below the singularity at E=�+V /�. Within
these limits, the integral kernel in Eq. �6� is continuous and,
thus, the Volterra integral equation can be solved numerically
by Neumann’s approximation scheme delivering the series

FIG. 2. �Color online� Calculated derivative of the tunneling
current, �VI, normalized conductivity � ln I /� ln V, the result of
Ukraintsev’s approach �in �b� only� and the approximated DOS of
the sample, �Se, as a function of the applied bias, V, for constant tip
density of states, �T=1, at temperature T=300 K. Panel �a� presents
the calculation for constant sample density of states, �S=1; panel
�b� presents the calculation for a sample density of states being
composed of three Gaussian peaks: two peaks at ±1 eV of full
width at half maximum �FWHM� 1 eV and area A±2=2, and one
Gaussian peak at −0.15 eV of FWHM 0.15 eV and area A−0.15

=0.3. For comparison, the original DOS, �S, is also shown in panel
�b�. In panel �b�, the curves Ukraintsev, � ln I /� ln V and �VI have
been offset for clarity by 1, 2, 3, respectively. ��=4 eV,z
=7 Å,�=2�.
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�S,n�V� =
�VI�V�

T�E = V�
+

z

2�
�

0

V T�E,V�

�� +
V

�
− ET�E = V�

�S,n−1�E�dE =
1

T�E = V���VI�V� +
z

2�
�

0

V T�E,V�

�� +
V

�
− E

�S,n−1�E�dE
 .

�7�

As input function �S,1 one starts with �VI or �VI /T�E ,V�,
respectively. We use here the approximation, �Se, of �S which
leads to a much faster convergence of �S,n towards the nu-
merical solution, �Sr, obtained by iteratively applying Eq. �7�
to the DOS of the sample, �S,n.

To demonstrate this iterative procedure, in Fig. 3 its result
is presented for an assumed steplike DOS of the sample, �S,
represented by a Heavyside step function centered at
−0.5 eV. Such a DOS can be considered as being a model of
the Shockley-like surface state of Au�111�. Calculation of
�VI, UA, and � ln I /� ln V with a barrier height of �=4 eV
and T=300 K delivers the dash-dotted, dashed, and dotted
curves in Fig. 3. In all three cases, only a strongly reduced
step at V=−0.5 eV is recovered on a background with a step
height exhibiting roughly the same magnitude as this back-
ground. Thus, similar to the result presented in Fig. 2�b�, all
three types of tunneling data, �VI, UA and � ln I /� ln V,
which are most often interpreted as DOS, are not suitable to
quantitatively recover the given steplike �S. Next, the first
approximation, �S,1=�Se, of the above iterative approach is
calculated with z=0.7 nm according to Eq. �5�. The result is
added to Fig. 3 as solid curve. As an obvious improvement,
the recovered DOS, �Se, regenerates accurately the thermally
smeared step from zero left of the step to the constant value
of unity right of the step. For decreasing bias, however, �Se
increases to �0.33 instead of staying at zero. Apparently, the
approximation of the mean value is too rough for this choice
of the sample’s DOS. By applying, however, only 5 itera-

tions according to Eq. �6�, the DOS, �S,n, approaches closely
its final value with ��S,6 � 	0.007 for V	−0.5 eV. A residual
deviation from zero left of the step or from unity right of the
step comes from numerical errors performing the integration
and differentiation.

It is worth mentioning that the above procedure is equally
well suited for DOS recovery of a semiconductor. Modeling
the semiconductor DOS as unity outside and zero inside the
gap at ±1 eV and disregarding effects like band bending, the
approximated DOS, �Se, regenerates the conduction band
with an accuracy of better than 1% and the valence band
edge with an accuracy of 2% while the DOS is falling off to
0.75 at −2 eV. Yet, after 5 iterations, the recovered DOS,
�S,6, fits the original DOS to an accuracy of −0/ +0.7% �dis-
regarding the thermal broadening of the band edges�.

IV. INCLUSION OF THE TIP DOS

Though the above formalism appears promising, inclusion
of an energy dependent DOS of the tip would be highly
desirable. For this purpose, the above principal derivation is
reanalyzed first for an arbitrary tip DOS, �T�E�, followed by
an attempt to generalize the numerical procedure to optimize
�S,n as well as �T,n.

When keeping a tip DOS depending on the energy, Eq. �3�
reads

�VI�V� = �S�V��T�0�T�E = V� − �
−�

�

dE�S�E�T�E,V�f12�E,V�

�� z�T�E − V�

2��� +
V

�
− E

+ �E�T�E − V�
 , �8�

where we used −�V�T�E−V�=�E�T�E−V�. The correspond-
ing Volterra integral equation becomes

�S�V� =
1

�T�0�T�E = V���VI�V� + �
0

V

dET�E,V�

�� z�T�E − V�

2��� +
V

�
− E

+ �E�T�E − V�
�S�E�� . �9�

Equation �9� is the Volterra integral equation for the sam-
ple’s DOS. To obtain the analog for the tip DOS, we change
the reference frame from the sample to the tip. This leads to
an identical equation with, however, interchanged indices of
the DOS. Bearing in mind, that the current measured at the

FIG. 3. �Color online� Effect of applying Neumann’s approxi-
mation scheme to the approximated sample density of states for
�T=1. The original density of states, �S, is a step function �S�E�
=
�E+0.5 eV� as a model for the Shockley-like surface state of
Au�111�. The inset is a zoom-in to the area of interest. The curves
Ukraintsev, � ln I /� ln V and �I /�V have been offset for clarity by
0.5, 1.0, and 1.5, respectively. ��=4 eV,z=7 Å,�=2,T=300 K�.
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tip is the negative current measured at the sample, and that
the bias at the sample corresponds to a negative bias at the
tip, we find VT=−V, IT�VT�=−I�VT�=−I�−V�, �VTIT�VT�
=�VI�−V� with the index “T” indicating that the quantity is
measured with respect to the reference frame of the tip. The
Volterra integral equation for the DOS of the tip then reads

�T�VT� =
1

�S�VT = 0�T�E = VT���VI�− VT� + �
0

VT

dET�E,VT�

�� z�S�E − VT�

2��� +
VT

�
− E

+ �E�S�E − VT�
�T�E�� . �10�

Note, that this equation is identical to Eq. �9� in the re-
spective reference frame but �VI must be mirrored at V=0
because �VI has been measured in the reference frame of the
sample. This is very convenient for the numerical calcula-
tion, since the same routine can be used in both cases by just
interchanging the role of �S and �T and taking the mirror
image of �VI.

Two procedures of finding separately the DOS of the tip
and the sample from the tunneling current and its derivative
are conceivable. The first is determining the tip DOS for a
specific tip at a given DOS of a suitable calibration sample
and from that determine an unknown sample DOS. However,
this type of calibration would be successful only if the sta-
bility of the tip could be guaranteed over a sufficient period
of time. A second procedure is based on solving alternately
the integral equations for the sample and the tip. In general,
without further information the result is obviously not
unique. Improvement, however, can be accomplished if ad-
ditional information on the DOS is available which allows
checking the DOS for self-consistency in the course of itera-
tion. A first step towards this direction could be a compara-
tive tunneling spectroscopy study, i.e., comparison of tunnel-
ing spectra obtained at different sites of a sample, and
solving the set of pairs of integral equations under the con-
dition that the DOS of the tip is the same in all integral
equations. A more promising possibility, however, is based
on the separation dependence of tunneling spectroscopy and
will be described in the following section.

V. THE DIFFERENTIAL BARRIER HEIGHT

The set of coupled integral equations �9� and �10� could
be solved self-consistently if independent information on the
DOS was available. For that purpose one may harness the
separation dependence of �I /�V spectra. Figure 4�a� illus-
trates the separation dependence of tunneling spectra for a
specific combination of sample and tip DOS. The sample
DOS is unity plus two Gaussian peaks at ±1 eV �width
0.1 eV, area 0.2� and the tip DOS comprises three Gaussian
peaks at ±1.3 eV and 0 eV �width 1 eV, area 1.33� �compare
lower inset of Fig. 4�a��. Shown are calculated �I /�V-V
curves for tip-sample separations of 0.1, 0.3, 0.5, and
0.7 nm. The �I /�V-V curves have been normalized to their
zero-bias conductivity for better comparison. The two peaks

in the �I /�V-V curves at ±1 eV reflect the two peaks in the
sample DOS, which, however, were constructed with identi-
cal intensities. On the other hand, the calculated peaks ex-
hibit clearly different intensities with the one at +1 eV sig-
nificantly higher than the other at −1 eV. This difference can
be traced back to the behavior of the transmission coeffi-
cient, which is higher for sample states at higher energy.
Furthermore, the peak at +1 eV increases with increasing
tip-sample separation because the transmission coefficient
at V=E=0 eV �T�E=V=0�=e−��z�, at which the plotted
curves have been normalized, decreases faster with increas-
ing separation than at V=E=1 eV �T�E=V=1 eV�
=e−��+1 eV/�−1 eVz�. The analogous argument explains the de-
crease of the peak at −1 eV. For tip states, however, the

FIG. 4. �Color online� �a� Separation dependent �VI curves cal-
culated for a sample DOS composed of two Gaussian peaks cen-
tered at ±1 eV �width 0.1 eV, area 0.2� on top of a constant back-
ground of unity height and a tip DOS comprising 3 Gaussians
centered at ±1.3 eV and 0 eV �width 1 eV and area 1.33 each�
�lower left inset, T=0 K�. The upper left inset is a close-up of the
�VI curves at −1 eV emphasizing the separation behavior opposite
to that observed for the peak at +1 eV. For better comparison the
spectra have been normalized to their zero conductivity. ��
=4 eV,�=2�. �b� The differential barrier height ��z�VI /�VI�2 calcu-
lated by numerically differentiating �VI for the same DOS as in �a�
for z=0.3 nm. The dashed curve represents ��z�VI /�VI�2 for sample
and tip DOS set equal to unity and z=0.3 nm. The straight lines
correspond to the barrier height experienced by states of the sample
at energy E=V ��−V /2� and by states of the tip at energy E=−V
��+V /2�. ��=4 eV,�=2,T=0 K�.
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situation is exactly opposite: unoccupied states �E�0� ap-
pear at negative bias but experience a higher transmission
coefficient and, consequently, show stronger separation de-
pendence for V	0 than for V�0. This expectation is clearly
corroborated by the peaks at −1.3 eV and +1.3 eV, respec-
tively. Note that the apparent reversal of the peak height at
−1.0 eV for 0.7 nm �solid curve in the upper left inset of Fig.
4�a�� is due to the increasing peak at−1.3 eV.

The separation dependence can be analyzed further by
numerically calculating the derivative of �VI with respect to
separation z, �z�VI, normalized to �VI. The square of this
quantity, ��z�VI /�VI�2, is a measure of the barrier height and

will be called differential barrier height, �� . Note that �� is
similar to the commonly used definition of the barrier height
��zI / I�2 which, in general, exhibits no significant voltage de-
pendence and, hence, is approximately given by ��zI / I�2

=� independently of the tunneling bias. On the other hand,
�� selects especially the states at the Fermi levels as will be
shown below. In Fig. 4�b� we display the differential barrier
height, �� , calculated numerically from the data shown in
Fig. 4�a� at a tip-sample separation of 0.3 nm �solid curve�.
Added to this panel are the differential barrier height for
constant tip and sample DOS at the same separation �dashed
curve� as well as the barrier heights for states at the Fermi
levels of the tip and sample, respectively �solid straight
lines�.

It is obvious from Fig. 4�b� that �� for the peaked model
DOS deviates from the differential barrier height for constant
DOS. Additionally, closer inspection shows that these devia-
tions exhibit a clear trend: �� shifts towards the sample
barrier23 if the sample DOS outweighs the tip DOS with
respect to zero bias, and vice versa. This way, one obtains
additional information about how the DOS of tip and sample
are related to each other at a given energy with respect to
zero bias.

To corroborate the above idea, we calculate analytically
the derivative �z�VI for constant tip and sample DOS, �S
=�T=1, and normalize it with respect to the zero-bias trans-
mission coefficient. This gives

�z�VIn = −
1

2e−��z
��� −

V

2
e−��−V/2z +�� +

V

2
e−��+V/2z	 .

�11�

This can be interpreted as �z�VIn being just the weighed
average of the inverse decay length for states at the Fermi
level of the tip, probing states of the sample at energy E
=V �first term in �11��, and for states at the Fermi level of the
sample, probing states of the tip at energy E=−V �second
term in �11��. An example of ��z�VIn�2 is shown in Fig. 4�b�
�dashed curve�.

The weight of the states at the respective Fermi levels is
given by the relative transmission with respect to its zero-
bias value. We adopt this argument and generalize �11� to
include the DOS being variable in energy and obtain

�z�VIn = −
e��z

2�S�0��T�0�
��� −

V

2
e−��− V

2
z�S�V��T�0�

+�� +
V

2
e−��+V/2z�S�0��T�− V�	 . �12�

Equation �12� establishes a direct functional relation be-
tween the DOS of the sample and the DOS of the tip by
means of the experimentally determined relation �z�VI /�VI
which can be used to check the recovered DOS for self-
consistency. Note that the proposed procedure fails for large
tip-sample separation since in that case �z�VI /�VI approaches
the tip or sample barrier, whichever is smaller, and even a
considerable change of the DOS will lead to only a small
change of the differential barrier. Note also that the self-
consistency check could be hampered in practice by a limited
precision of measured data and the limited accessible range
in tip-sample separation concomitantly with effects not in-
cluded in our consideration like, e.g., a tip-sample interaction
or a separation dependent barrier height.

VI. EXTENSIONS

The above considerations rest on the assumption of an
explicit transmission coefficient, T. This led to Eqs. �4� and
�5� by taking the derivative of T allowing to apply the mean
value theorem with the remaining integral being the experi-
mentally accessible tunneling current, I. The only require-
ment to be met by a transmission coefficient is being invari-
ant under taking its derivative with respect to V. This is
particularly the case if T is an exponential. The only change
required when using an alternative transmission coefficient is
to adjust the mean value accordingly.

We exemplify this by extending the calculation for a sur-
face state like the one on Au�111� �Fig. 3� or Cu�111� to
three-dimensional tunneling. The three-dimensional trans-
mission coefficient, T3, depends only on the energy compo-
nent perpendicular to the tunneling barrier, E�=E−E�.
Due to the almost perfect parabolic dispersion of the surface
state, E� is simply E�=E0 with E0 being the band onset
�E0=−0.47 eV for gold�. The transmission coefficient is then
T3�V�=e−��+V/�−E0z which no longer depends on the indepen-
dent variable, E. The resulting �I /�V-V curve is very similar
to the �I /�V-V curve calculated for Cu�111� and a Ni tip in
Ref. 21. Equation �3� can be solved analytically and �5a�
becomes

�S�V� =
1

T3�V���VI�V� +
z

2��� +
V

�
− E0

I�V�
 , �13�

where we omitted the suffix “e” on the left side since this is
now an analytical expression with no approximations.

VII. CONCLUSION

On the basis of the one-dimensional WKB approximation,
we introduced a new method of analyzing spectroscopic data
in scanning tunneling spectroscopy. This analysis enables us
to principally recover the density of states of a sample semi-
quantitatively and it allows us to deconvolute the DOS of tip
and sample. The new method comprises three components:
�1� determination of an approximate DOS of the sample as-
suming a constant DOS of the tip. The approximated DOS is
superior to previous approximations because it includes con-
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tributions which have been improperly neglected before. �2�
Numerical improvement of the approximated DOS by treat-
ing the underlying equation as a Volterra integral equation
and applying Neumann’s approximation scheme. The ob-
tained solution recovers the input DOS to an accuracy of
better than 1% after only 5 iterations and allows a quantita-
tive comparison of features in the DOS all over the consid-
ered bias range. �3� We have included an energy-dependent
DOS of the tip and obtained a set of two coupled Volterra
integral equations for the DOS of the sample and the tip,
respectively. In order to support deconvolution of the two
densities of states we derived a relation for both DOS which
can be resolved experimentally by differential barrier mea-
surements. With this additional constraint on the DOS the
system of two coupled integro-differential equations could
be solved self-consistently.

Though we performed the calculations for a specific trans-
mission coefficient derived from the one-dimensional WKB
approximation, the presented formalism is more general. The
only pre-conditions for the formalism to work are a transmis-
sion coefficient being invariant under taking its derivative
with respect to the tunneling bias and the validity of the
WKB approximation. We showed this by extending the for-
malism to three-dimensional tunneling into Shockley-like
surface states as on Au�111�.
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