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With a superhigh-efficiency numerical algorithm, we are able to self-consistently calculate Green’s function
in the renormalized-ring-diagram approximation for a two-dimensional electron system with long-range Cou-
lomb interactions. The obtained ground-state energy is found to be in excellent agreement with that of the
Monte Carlo simulation. The numerical results of the self-energy, the effective mass, the distribution function,
and the renormalization factor of Green’s function for the coupling constants in the range 0�rs�30 are also
presented.
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I. INTRODUCTION

Two-dimensional electron systems �2DESs� with long-
range Coulomb interactions, realized in the semiconductor
heterostructures and inversion layers,1 continuously attract a
lot of attention despite the fact that it has been studied for
more than three decades. Most of the theoretical calculations
so far were based on the random-phase approximation
�RPA�,2–5 which is expected to be accurate in the weak-
coupling or high-density regime. For taking into account the
strong-coupling effect beyond the RPA, the usual way is to
adopt the local-field correction �LFC� to the RPA.6–11 In all
these works, the Green’s functions that appeared in the dia-
grams of the standard RPA as well as the one with the LFC
are not renormalized. A crucial condition for a better ap-
proximation is that the renormalized Green’s function should
satisfy some microscopic conservation laws; otherwise, the
approximation may lead to unphysical consequences.12

Among various approximations, the renormalized-ring-
diagram approximation �RRDA�, in which Green’s function
needs to be self-consistently determined from the relevant
integral equations, is well known to satisfy this condition12

and thus should be a sound approach. Because tremendous
numerical efforts were needed to solve the integral equations
in RRDA, the physics in this approach had only been studied
for small coupling constants,13 and there existed no solutions
to RRDA from the intermediate- to strong-coupling regimes.
To develop a numerical scheme to solve RRDA equations for
the purpose of understanding 2DES in a wider range of cou-
plings is still a challenging problem in modern many-particle
physics.

In this paper, we use a superhigh-efficiency algorithm to
solve the RRDA equations. With the solutions, the ground-
state energy is obtained, and it is in excellent agreement with
the result of the fixed-node-diffusion Monte Carlo �MC�
simulation.14 In addition, the self-energy of Green’s function,
the effective mass, the single-particle distribution function,
as well as the renormalization factor of Green’s function are
also calculated.

II. FORMALISM

We consider a 2DES with density of n at temperature T
embedded in a uniform neutralizing background of positive

charge. Throughout this paper, we will use the units in which
�=kB=m=a=1 �with m the mass of the electron and a the
Wigner-Seitz radius of an electron in the 2DES�. The system
is characterized by two dimensionless parameters:

� = T/EF, �1�

rs = a/aB, �2�

where EF=�n �=1 in our units� is the Fermi energy and aB
the Bohr radius. The electronic Green’s function G is related
to the self-energy � via

G�k�,i�n� = �i�n − �k� − ��k�,i�n��−1, �3�

where �k=	k−
 with 	k=k2 /2 and 
 the chemical potential,
and �n is the fermionic Matsubara frequency. For brevity, we
hereafter will use k��k� , i�n� for the argument unless stated
otherwise. By the RRDA which is shown in Fig. 1,12 the
self-energy � is given by

��k� = −
1

V�
�

q

G�k + q�
V�q�

1 − V�q���q�
, �4�

where �=1/T, V�q�=2�rs /q is the Coulomb interaction, V
is the area of the system, and

��q� =
2

V�
�

k

G�k�G�k + q� �5�

is the electron polarizability, where q��q� , im� with m the
bosonic Matsubara frequency. The chemical potential 
 is
determined by the electron density,

FIG. 1. Renormalized-ring-diagram approximation for the self-
energy. The dashed line represents the Coulomb interaction. The
bubbles are the electron polarizability in which the solid lines are
the renormalized Green’s functions.
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n =
2

V�
�

k

G�k�exp�i�n0+� . �6�

By solving Eqs. �3�–�6�, the functions G and � and the
chemical potential 
 can be self-consistently obtained.

III. NUMERICAL ALGORITHM

In the numerical procedure, the most time-consuming
computations are calculations of � and � because of the
summation over the Matsubara frequency and the integration
over the momentum. We have developed an effective algo-
rithm for doing such a computation. In this method, the
summation is taken only over some selected Matsubara
frequencies distributed in L successively connected blocks,
each of them containing M frequencies, with each term un-
der the summation multiplied by a weighting factor. For de-
tails of this algorithm, the reader is referred to Ref. 15. In the
present calculation, we have used the parameters �h ,L ,M�
= �2,15,5� for selection of the Matsubara frequencies,
where h is the integer parameter that the stride in the �th
block is h��−1�. The total number of the selected frequencies
is L�M −1�+1=61, with the largest number N�2L�M −1�
=217 for the cutoff frequencies N=2N�T and
�N= �2N−1��T. We will see later that the 61 Matsubara fre-
quencies are sufficient to describe the self-energy and,
thereby, Green’s function. Instead of summing over N Mat-
subara frequencies by a usual method, we here take the sum-
mation only over the 61 ones. Therefore, the efficiency of the
algorithm for the present calculation is N /61�211! For the
lowest temperature considered here, �=0.03, we have
�N /EF�2.47�104. In our calculation, the largest 	k is
	M =kM

2 /2 with kM =50. Therefore, the cutoff �N /	M �20 is
sufficiently large.

On the other hand, the momentum-space convolution in-
tegrals in Eqs. �4� and �5� can be easily performed by Fourier
transforming into real space. For illustrating the two-
dimensional Fourier transform, we here discuss the transfor-
mation of Green’s function. In the real space, Green’s func-
tion is given by

G�r,i�n� = �
0

� dk

2�
kG�k�,i�n�J0�kr� , �7�

where J0 is the first kind Bessel function of order zero. How-
ever, Eq. �7� is not in a favorite form for the numerical com-
putation since kG�k� , i�n� behaves like O�1/k� at k→� and
j0�kr� is an oscillatory function; the integrand decreases so
slowly at large k that a precise numerical result is hardly
obtained. By observing the asymptotic behavior,

G�k�,i�n� → G0�k�,i�n� at k → � or n → � , �8�

with G0�k� , i�n�=1/ �i�n+
0−k2 /2� and 
0=EF

+T ln�1−exp�−1/���, respectively, Green’s function and the
chemical potential of the free electrons, we choose G0 as the
auxiliary function for G. The Fourier transform of G0�k� , i�n�
is given by

G0�r,i�n� = − K0�pr�/� , �9�

where K0 is the second kind modified Bessel function of
order zero and p= �−2
0− i2�n�1/2. Thus, Eq. �7� can be re-
written as

G�r,i�n� = �
0

� dk

2�
k�G�k�,i�n�J0�kr� − K0�pr�/� , �10�

with �G�k� , i�n�=G�k� , i�n�−G0�k� , i�n�. Now, the integrand
in Eq. �10� drops fastly with k�G�k� , i�n��O�k−3� at k→�.
Equation �10� can be further reformed for dealing with the
fast oscillatory behavior of J0�kr� at large r. In the Appendix,
our numerical method for such integration is detailed.

In the above example, the accuracy and efficiency of nu-
merical integration are improved by choosing the proper
auxiliary function. Analogously, we can choose the auxiliary
function for the summation over the Matsubara frequency as
well. For example, the auxiliary function for calculating ��q�
is chosen as G0�k�G0�k+q�, which is the asymptotic limit of
G�k�G�k+q� at �n→� or k→�. On the other hand, the
free-particle polarizability �0�q� can be easily obtained by

�0�q� ,im� =
�

4�
�

0

�

d	
Y�q,m� − 1

cosh2��	 − 
0�/2T�
, �11�

with Y�q ,m�= �	x2+y2+x�1/2, where x=1/2−m
2 /2	q

2

−2	 /	q and y=m /	q. Similarly, we can deal with the ex-
change self-energy that is represented by the first diagram in
Fig. 1. It can be written as

�x�k� = −
1

V�
�
k�

�G�k�� − G0�k���V�
k� − k��
� + �x
0�k� .

�12�

Here, �x
0�k� is the exchange self-energy of the nonrenormal-

ized electrons,

�x
0�k� = −

2rs

�
�

0

�

dk�
k�

k + k�
F0�k��K��� , �13�

where F0 is the Fermi distribution function of the free elec-
trons and K��� is the complete elliptic integral of the first
kind with �=2	kk� / �k+k��. The function K��� has a loga-
rithmic singularity at �=1, which can be eliminated by
choosing the auxiliary function − 1

2F0�k�ln 
k�−k
 for the in-
tegrand within a finite range of k�.

IV. RESULTS

By iteration, we have solved Eqs. �3�–�6� for 0�rs�30
at finite temperatures. Firstly, in order to illustrate the valid-
ity of our selection for the Matsubara frequencies, we show
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in Fig. 2 the result for the self-energy ��k� , i�n� for k=kF,
�=0.03, and rs=10. The symbols represent the values of
��k� , i�n� calculated at the selected n’s. This is a typical re-
sult of ��k , i�n� in the strong-coupling regime. As seen in
Fig. 2, the selected frequencies are sufficient for describing
��k� , i�n�; though the selected �n’s are sparsely distributed at
large n, meanwhile, the function ��k� , i�n� varies slowly. At
�n→�, the imaginary part of ��k , i�n� vanishes, but the real
part remains finite. Actually, at �n→�, we get ��k� , i�n�→
the exchange part of the self-energy.

With the result for Green’s function, we calculate the
physical quantities of the system. The energy per electron is
defined by

	 =
1

N
�

k�
�2	k + �x�k��n�k� −

1

2�N
�

q

V2�q��2�q�
1 − V�q���q�

,

�14�

where N=nV is the total number of the electrons and n�k� is
the distribution function defined by

n�k� =
1

�
�

n

G�k�,i�n�exp�i�n0+� . �15�

In Fig. 3, the ground-state energy per electron in atomic unit
is shown as a function of rs. The results of the present cal-
culation are obtained by extrapolation of the finite-
temperature values. Our main result denoted by RRDA is
compared with the RPA, the high-density expansion3 by the
scheme of Gell-Mann and Brueckner �GB�,16 and the varia-
tional MC simulation.14 In the weak-coupling regime, both
the RRDA and RPA reproduce the GB result very well. How-
ever, for strong coupling, the RRDA is much closer to the
MC than the RPA. The MC data are believed to be the most
reliable result for the ground-state energy. Therefore, the
RRDA seems much better than the RPA.

We next consider the effective mass m* /m,

m*/m =

1 − � �

�E
Re �r�kF,E��

E=0

1 + � �

kF�k
Re �r�k,0��

k=kF

, �16�

where �r�k ,E� is the analytical continuation of ��k , i�n� un-
der i�n→E+ i0+. Our result for �r�k ,E� is obtained by the
Padé approximation.17 Shown in Fig. 4 is the effective mass
m* /m as a function of rs at �=0, 0.03, 0.05, and 0.1. The
values for �=0 are obtained by extrapolations from the
finite-temperature results. The results of Faleev and Stock-
man �FS� calculated with a different numerical scheme for
T=0 are also depicted for comparison. �We find that m* /m
very sensitively depends on d��k ,0� /dk
k=kF

. The discrep-
ancy between the present and FS results may be due to some
numerical errors in the latter.� The present results show that
m* /m is a monotonically decreasing function of rs in a wide
range of rs at low temperatures. This is different from the
RPA �not shown here�, by which the ground-state quantity
m* /m decreases at small rs�0.1, but then increases with rs.

5

FIG. 2. �Color online� Self-energy ��k , i�n� as function of n at
k=kF, �=0.03, and rs=10.

FIG. 3. �Color online� Ground-state energy as function of rs.
The present result �RRDA� is compared with that of the RPA, GB
�Ref. 3�, and MC �Ref. 14�.

FIG. 4. �Color online� Effective mass m* /m as function of rs at
�=0, 0.03, 0.05, and 0.1. The present results are compared with that
of Ref. 13 �FS� at T=0 obtained with a different numerical method.
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The present results on m* /m seem to be contradictory to the
explanation to the experiments on the temperature depen-
dence of the Shubnikov–de Haas oscillations in a 2DES.18

The experiments were explained as m* /m increasing with rs.
To this point, there may be two possibilities: �1� the RRDA
may not be good enough or �2� the experimental results may
require a different interpretation; for example, the conductiv-
ity formula to fit the experiments was based on noninteract-
ing electrons except that the mass is assumed to be renormal-
ized. Further investigation is needed to get a clear
understanding of this problem.

The effective mass m* /m has been extensively investi-
gated by many calculations using the RPA. With the RPA
self-energy, m* /m is calculated by the on-shell scheme,2

which is not a self-consistent approximation for the quasipar-
ticle energy. Contrary to the RPA, the RRDA is a conserving
approximation for the single-particle Green’s function;12

Green’s function satisfies the Luttinger theorem,19,20 by
which the Fermi surface is unchanged for the 2DES. To see
this, we show in Fig. 5 the retarded self-energy �r�k ,E� as
function of E at k=kF for �=0.03 and rs=10. Re �r�kF ,E� is
essentially a linear function of E in the neighborhood of E
=0. It is clear that Re �r�kF ,0�+�kF

=0, which means that the
quasiparticle energy E vanishes at the Fermi surface, consis-
tent with the Luttinger theorem. The equality Re �r�kF ,0�
+�kF

=0 originates from the fact that Re �r�kF ,0� is compen-
sated by the shift of the renormalized 
 from 
0. The imagi-
nary part shown in Fig. 5�b� has a parabola form with a small
value at E=0. At T=0, Im �r�kF ,E��−E2 at small E.19 The
small negative value of Im �r�kF ,0� shown in Fig. 5�b� is a
finite-temperature effect. The squares in Fig. 5�b� are ob-
tained by extrapolations to �=0 from the finite-temperature
results. The dashed line is given by −0.18E2, which shows
that Im �r�kF ,E� is indeed a quadratic form at small E. For
the real part, the extrapolated results are indistinguishable
from the line in Fig. 5�a�. �All these facts indicate that our
numerical computation is very accurately performed.� On the
other hand, since the bare chemical potential 
0 is used in
the RPA calculation, Re �r�kF ,0� cannot be compensated

and, thereby, the quasiparticle energy does not vanish at kF.
It should be pointed out here that our result for

Im �r�kF ,E� is different from that of the RPA. By RPA, the
zero-temperature result is Im �r�kF ,E��E2 ln�
E 
 � at small
E.21,22 However, by RRDA, there is no additional logarith-
mic factor.

In Fig. 6, the zero-frequency self-energy �r�k ,0� at
�=0.03 and rs=10 is shown as a function of k. The real part
is a linear function of k around kF with a positive slope. The
magnitude of the imaginary part is very small. The largest
magnitude appears at kF, which corresponds to the small
negative value that appeared in Fig. 5�b� at E=0. The dashed
line in Fig. 5�b� is a plot of the function

��k� = − 0.03�̃k
2 ln�
�̃k
� − 0.0061, �17�

with �̃k= �k /kF�2−1.03. This function fits very well to
Im �r�k ,0� at wave number k close to kF.

In Fig. 7, we exhibit the result for the distribution function
n�k� at �=0.03 for various rs. It is well known that n�k� at
rs=0 is the Fermi-Dirac distribution function F0�k� for the
free electrons. At very small rs, n�k� is close to F0�k�. With
increasing rs, n�k� becomes very different from F0�k�; it is
gradually suppressed at k�kF, while it increases at k�kF. At
the Fermi momentum, n�k� decreases dramatically, but seems
continuous. At zero temperature, n�k� should have a discon-
tinuity at k=kF. For rs=10, the extrapolated results at T=0
are shown in Fig. 7. As seen, the ground-state values are very
close to the curve at �=0.03. The continuous behavior that
appeared in Fig. 7 is attributed to the finite-temperature ef-
fect by which the discontinuity is rounded. At zero tempera-
ture, the magnitude of the abrupt drop in n�k� at kF is asso-
ciated with the renormalization factor Z of Green’s function.
This factor is defined by

Z = �1 −
�

�E
Re �r
�kF,E�
E=0−1

. �18�

FIG. 5. �Color online� Self-energy �r�k ,E� as function of E at
k=kF for �=0.03 and rs=10. �a� Re �r�kF ,E�+�kF

and �b� the
imaginary part. The squares in �b� are obtained by extrapolations to
�=0. The dashed line is a plot of −0.18E2. For the real part, the
extrapolated results are indistinguishable from the line in �a�.

FIG. 6. �Color online� Self-energy �r�k ,0� as function of k at
�=0.03 and rs=10. �a� Re �r�k ,0�+�k and �b� imaginary part. The
dashed line represents the function given by Eq. �17�.
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Shown in the inset of Fig. 7 is the renormalization factor Z.
Within the range of rs studied here, the magnitude of Z is
consistent with the sharp drop in n�k� at kF. For comparison,
the result by FS is also shown in the inset. By their method,13

they could solve the RRDA equations only within rs�2.62.
Clearly, their result is reproduced by the present calculation.

V. SUMMARY

In summary, we have solved the RRDA equations for
2DES at rs�30 with our superhigh-efficiency numerical al-
gorithm. The obtained ground-state energy is in excellent
agreement with the Monte Carlo result. For the effective
mass m* /m, the RRDA result shows that m* /m is a decreas-
ing function of rs, which is considerably different from the
RPA. The distribution function n�k� and the renormalization
factor Z of Green’s function are calculated for a wide range
of rs. The renormalization factor Z obtained by the present
calculation is consistent with the discontinuity in the distri-
bution function at the Fermi momentum at zero temperature.
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APPENDIX

In this appendix, we deal with the integral

g�r� = �
0

�

dkf�k�J0�kr� , �A1�

which appeared in the Fourier transform of a two-
dimensional function. At large r, since J0�kr� is a fast oscil-
latory function, the integral cannot be precisely computed by
simple numerical integration. By observing the asymptotic
behavior of J0�z� at z→�,

J0�z� �
1

	�z
�sin z + cos z +

1

8z
�sin z − cos z� ,

we choose the auxiliary function as

A�kr� =	 c

kr + c
�sin�kr� + cos�kr�

+
kr

8�kr + c�2 �sin�kr� − cos�kr��� ,

with c=1/�. A�kr� has the same asymptotic behavior as
J0�kr� at k→� or r→�. In addition, A�0�=J0�0�=1. With
this auxiliary function, Eq. �A1� can be rewritten as

g�r� = �
0

�

dkf�k��J0�kr� − A�kr��

+ 	c�
0

�

dk
f�k�

	kr + c
�1 −

kr

8�kr + c�2cos�kr�

+ 	c�
0

�

dk
f�k�

	kr + c
�1 +

kr

8�kr + c�2sin�kr� .

Now, the first integral in the above equation can be inte-
grated by the simple numerical method since the fast oscil-
latory behavior of J0 is considerably canceled by A�kr�. On
the other hand, the second and third Fourier integrals can be
numerically integrated using Filon’s method. In our numeri-
cal calculation, the momentum integration is over the range
0�k�50. Because the electron distribution function varies
drastically around the Fermi momentum, we divide the k
range into three segments: �0,kF−k0�, �kF−k0 ,kF+k0�, and
�kF+k0 ,50�, where kF=	2 and k0=	8� / �1+	32��. The k in-
tegrals are calculated with 200 meshes in each segment. In
the real space, r is confined to 0�r�80, which is divided
into three segments: �0,5�, �5,30�, and �30,80�, with 300
meshes in each segment.
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