
Stopping single photons in one-dimensional circuit quantum electrodynamics systems

Jung-Tsung Shen, M. L. Povinelli, Sunil Sandhu, and Shanhui Fan*
Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

�Received 9 June 2006; revised manuscript received 16 November 2006; published 12 January 2007�

We propose a mechanism to stop and time reverse single photons in one-dimensional circuit quantum
electrodynamics systems. As a concrete example, we exploit the large tunability of the superconducting charge
quantum bit �charge qubit� to predict one-photon transport properties in multiple-qubit systems with dynami-
cally controlled transition frequencies. In particular, two qubits coupled to a waveguide give rise to a single-
photon transmission line shape that is analogous to electromagnetically induced transparency in atomic sys-
tems. Furthermore, by cascading double-qubit structures to form an array and dynamically controlling the qubit
transition frequencies, a single photon can be stopped, stored, and time reversed. With a properly designed
array, two photons can be stopped and stored in the system at the same time. Moreover, the unit cell of the
array can be designed to be of deep subwavelength scale, miniaturizing the circuit.
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Single photon transport properties in circuit quantum
electrodynamics �circuit QED� systems are expected to play
a significant role in quantum information processing and
quantum computing. In contrast to cavity QED, where a
single photon is confined in a cavity with a discrete photonic
mode spectrum, in a circuit QED system, the single photon
propagates in a one-dimensional continuum. In a recent
solid-state experimental implementation of circuit QED, a
single photon on average is coupled to a superconducting
charge quantum bit �charge qubit�, or Cooper pair box, in a
one-dimensional coplanar waveguide geometry. Strong cou-
pling between the single photon and the qubit has been
demonstrated.1 Theoretically, it was also shown that the one-
dimensional propagating continuum of the single photon
leads to versatile transmission and reflection profiles, includ-
ing general Fano line shapes, and allows one-photon
switching.2,3 The proposed formalism in Refs. 2 and 3 is very
general and encompasses the experiment in Ref. 1 as a spe-
cial case.

The Cooper pair box is highly tunable, as compared to
other qubit implementations, such as hyperfine structure in
real atoms, quantum dots, or optical resonators. The transi-
tion energy of the Cooper pair box can easily be tuned by
threading the Josephson junction loop with a magnetic field
flux.1,4–8 In this paper, we exploit the large tunability of the
qubit to predict one-photon transport properties in multiple-
qubit systems with dynamically controlled transition fre-
quencies. In particular, two qubits coupled to a waveguide
give rise to a single-photon transmission line shape that is
analogous to electromagnetically induced transparency �EIT�
in atomic systems. The width of the transparency peak is
strongly tunable by adjusting the transition frequencies. Fur-
thermore, by cascading double-qubit structures to form an
array, the properties of photons inside the array are now de-
termined by a photonic band structure. By dynamically tun-
ing the transition frequency of the qubits while the photon is
in the array, the band structure and the spectrum of the single
photon can be molded almost arbitrarily, leading to highly
nontrivial information processing capabilities on chip, in-
cluding stopping, storing, and time reversal of a single-
photon pulse. Moreover, with a properly designed array, two
photons can be stopped and stored in the system at the same

time. Finally, the unit cell of the array can be designed to be
of deep subwavelength scale, miniaturizing the circuit. Pos-
sible applications of single-photon manipulation schemes
demonstrated here include logic gates, memory, buffers, and
repeaters in quantum information processing and quantum
communication.

To start with, consider the simplest case of one qubit
coupled to a waveguide. In Refs. 2 and 3, it was shown that
the transfer matrix Tq of a single photon9 passing through a
single qubit takes the following form:
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where � is the transition frequency of the qubit, �k=vgk is
the frequency of the photon, vg is the group velocity of the
fundamental waveguide mode, and V is the coupling constant
between the photons and the qubits. � accounts for loss
mechanisms. To highlight the intrinsic behavior of the sys-
tem, we set � equal to zero. Discussion of the effects of a
nonzero � is provided at the end of the paper. The transfer
matrix relates the incoming and outgoing wave amplitudes
a�b�� and b�a�� on either side of the qubit. Note the form of
the transfer matrix is the same as for a waveguide side
coupled to a single-mode optical cavity.10–12 The exact map-
ping implies that the one-photon system in discussion exhib-
its many features that have been well studied for cavity struc-
tures and classical light. The mapping is quite interesting
given that the microscopic theories that underlie these sys-
tems are very different.

The transfer matrix Tq �Eq. �1�	 allows the complete de-
termination of photon transport properties. The response
function of any configuration of mutiple qubits can be calcu-
lated by cascading the transfer matrices of each individual
element in the system. For example, the total transfer matrix
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for a system consisting of two qubits with transition frequen-
cies �1 and �2, respectively, separated by a distance d is13

T � Tq��1��ei��d� 0

0 e−i��d� �Tq��2� � Tq��1�Tp�d�Tq��2� ,

�2�

where Tp�d� is the propagation matrix, and ��d�=�k /vgd is
the phase accumulation as the photon travels through the
distance d.

In general, the transmission spectrum of a two-qubit sys-
tem strongly depends on the ratio of coupling strength to the
difference between qubit frequencies, as well as the separa-
tion distance. Since in practice it is of interest to miniaturize
the circuits, we focus upon the regime where the separation
distance d is much less than the wavelength � in the wave-
guide, d��. When �1��2, a transparency peak with 100%
transmission emerges in the transmission spectrum. In the
small detuning regime �
�1−�2
�V2 /vg�, the transparency
peak is very narrow, as shown in Fig. 1�a�. The two minima
in the transmission spectrum are at �1 and �2, respectively,
and each of which reflects the minimum of the transmission
spectrum for the case of the single photons interacting with a
single qubit.2,3 Moreover, the peak width is easily adjustable
via tuning of the qubit transition frequencies. The appearance
of the peak is analogous to the EIT phenomenon in atomic
vapor systems.14–17 We note that EIT-like interference has
previously been investigated in a flux �current-biased� qubit
system.18 Our work, however, explicitly calculates single-
photon transport properties. Furthermore, in the conventional
EIT phenomena based on three-level systems, both the “con-
trol” laser as well as the “probe” laser are present to correlate
the three levels. In contrast, in the above two-qubit system,
the condition of the single photon imposes a constraint that

correlates the two qubits, and there is no control beam. Both
systems give the same transmission line shape. In the large
detuning regime �V2 /vg� 
�1−�2
�, the transmission spec-
trum features a very broad plateau, as shown in
Fig. 1�b�, with a full width approximately equal to

�1−�2
 / �V2 /vg�. In this large detuning regime, the two qu-
bits are essentially decoupled. The transmission spectrum is
thus a simple combination of that of each qubit.2,3 By tuning
the transition frequencies of the qubits, one can switch the
system between these two regimes.

Unit cells of two qubits can be arranged in a periodic
array, as shown in Fig. 2. The transparency peaks corre-
sponding to single unit cell couple to form a band. The pho-
tonic band structure can be designed by choosing the appro-
priate distances between the qubits, and can be further
dynamically tuned by adjusting the qubit resonant frequen-
cies. Dynamic tuning of photonic band structures has previ-
ously been studied in classical optical resonator systems.19–23

By choosing an initial photonic band structure that has a
large bandwidth to allow a photon to enter the system, and
by compressing the width of the photonic band adiabatically
while maintaining translational symmetry, a classical pulse
can be slowed down, or even stopped and stored in the
system.19–23 Moreover, when the conditions are satisfied such
that the sign of the slope of the band is flipped, the wave
packet of the pulse can be time reversed. Here, we show that
circuit QED provides the capability for single-photon stop-
ping, storing, and time reversal. Distinct from implementa-
tions in classical optical resonator systems, in the supercon-
ducting qubit systems, the size of the individual qubits as
well as the unit cell can be far smaller than the wavelength.
Also, the resonant frequencies of the qubits are several order
of magnitudes more tunable compared with other systems.
These properties provide potential for stopping-light experi-
ments. As a concrete example, we apply these principles to a
one-dimensional circuit QED systems consisting of a peri-
odic array of superconducting charge qubits to stop and time
reverse single photons in the microwave frequency range.

Below, we highlight some of the consequences of these
properties by focusing on two schemes characterized by how
the qubit frequencies vary during the dynamic process: �ii�
Detuning 	 is varying. In this scheme, a light pulse is
stopped by reducing 	, similar to Ref. 20. The interesting
feature is that the size of the unit cell can be designed to be

FIG. 1. Transmission spectrum of two closely spaced �d���
qubits coupled to a waveguide. A schematic of the two qubits in the
waveguide is shown. The qubits have transition frequencies �1 and
�2, respectively. �0���1+�2� /2. The normalized detuning 	
�
�1−�2 
 / �V2 /vg�. �a� Small detuning regime. Solid curve: 	
=0.2; dashed curve: 	=0.6. �b� Large detuning regime. 	=100.
The transmission spectrum is obtained from Eq. �1�. ��d� is taken
as 10−2 in both figures. The two minima in each transmission spec-
trum are at �1 and �2, respectively.

FIG. 2. �Color online� Schematic of a tunable one-dimensional
qubit-waveguide system used to stop and store a single photon. The
system consists of a periodic array of unit cells of length D. Each
unit cell consists of two qubits, A and B, separated by a distance d1.
The three horizontal bars represent the one-dimensional transmis-
sion line waveguide.
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of deep subwavelength, while in previous optical resonator
implementations, the unit cell sizes are necessarily compa-
rable to the wavelength. �ii� 	 is fixed. In this scheme, a light
pulse is stopped as well as time reversed by changing the
resonant frequencies of all qubits simultaneously, all with a
unit cell size that is approximately half the wavelength.

We first examine the dispersion relation as a function of
the qubit frequencies. The dispersion relation between the
eigenstate frequency � and the Bloch wave vector K of the
periodic system can be obtained from the transfer matrix of
the unit cell Tcell�Tq��1�Tp�d1�Tq��2�Tp�d2� by20

cos�K��1,�2,d1,�k�D	

=
1

2
Trace�Tcell�

= cos���k/vg�D	 +
C+

�k − �1
+

C−

�k − �2
, �3�

where24

C± = sin���k/vg�D	�V2/vg� ± 2 sin���k/vg�d1	sin���k/vg�d2	


 �V2/vg�2 1

�1 − �2
, �4�

where D is the length of the unit cell, d1 is the distance
between the two qubits in the unit cell, and d2�D−d1. Us-
ing these equations, we now discuss the two schemes indi-
cated earlier.

Scheme (i): Detuning 	 is dynamically reduced. The band
diagram of the periodic system strongly depends on 	. Fig-
ure 3�a� shows the band diagram in the large detuning regime
�	=100, corresponding to Fig. 1�b�	, where the middle band
has a very large bandwidth. The bandwidth is proportional to
the detuning 	. Figure 3�b� shows the band diagram in the
small detuning regime �	=0.6, corresponding to Fig. 1�a�	.
The width of the middle band is compressed to essentially
zero; the group velocity is thereby vanishingly small. The

value of 	 at which the slope of the middle band is exactly
zero can be obtained from Eqs. �3� and �4�.20 Tuning 	 to
change the band structure from Figs. 3�a� and 3�b�, while a
pulse is in the system, allows the stopping of a pulse.20 For
Fig. 3�a�, the middle band is centered at frequency �c
�0.1�2�vg /D�=1/2��A+�B�, which corresponds to a unit
cell size D=� /10, i.e., the unit cell is of deep subwave-
length. In this scheme, provided that there is no direct cou-
plings between qubits in different unit cells, one can further
miniaturize the size of the unit cell.

To achieve time reversal, it is necessary to have a unit cell
size comparable to half the wavelength. Time reversal re-
quires reversing the slope of a band. A simple criterion for
the existence of negative slope can be obtained by taking the
derivative of the dispersion relation �Eq. �3�	:

d�̄

dK̄
� 4

	2 + 1�2� sin�2��̄�

= 2� sin�2�K̄� +
4

	22��1 − 2d̄1�sin�2��̄�1 − 2d̄1�	 ,

�5�

where the barred symbols are normalized dimensionless

quantities defined as �̄��k /�0=D /�, K̄�K /k0, and d1
�d1 /D; where �0�2�vg /D, and k0�2� /D are the fre-
quency and wave vector unit, respectively. By symmetry we

only need to investigate the range d1�1/2. In addition, K̄

1/2 in the restricted first Brillouin zone. In the large de-

tuning regime �	�1�, by requiring d�̄ /dK̄�0, we obtain a
simple relation

1

2
� �̄ = D/� . �6�

With a large unit cell, one can achieve both stopping and
time reversal by varying the detuning alone.19–23

Scheme (ii): 	 is kept fixed, and �c is modulated. When
�c is larger than 0.5�2�vg /D�, the middle band shows a
negative slope centered at �c and Bloch vector kc �Fig. 4�a�	.
As �c is gradually reduced, the bandwidth is dynamically
compressed to zero �Fig. 4�b�	. As �c is further reduced, the
slope is flipped and becomes positive hereafter, accomplish-
ing a time reversal process �Figs. 4�c� and 4�d�	.

Interestingly, in this scheme we can stop two single pho-
tons of different frequencies in the quantum circuit at the
same time, since there are actually two flat bands in the
system �Fig. 4�b�	. Assume that the system has gone through
the dynamic process from Fig. 4�a� to Fig. 4�c� and a photon
is stopped in the phase space indicated by the open circle.
Notice that at this stage, an additional band is available at a
lower frequency with a finite slope to accommodate the sec-
ond incident photon, as indicated by the solid circle. After
the second photon enters the system, the system is brought
back to the stage denoted by Fig. 4�b�, where both bands are
flat, and thereby two photons are being held indefinitely in
the system in two separate bands. To release either photon,
one can bring the system to the stage of either Figs. 4�a� and
4�d�, where either photon can be released. These two photons

FIG. 3. The photonic bands of the system related to tuning
scheme �i�. The qubits frequencies are given by �A,B

=�c± �1/2�	�V2 /vg�. V2 /vg=2
10−4�0. �0�2�vg /D. d1=0.3D
in all cases. �a� Large detuning regime. 	=100. �c�0.1�0. �b�
Small detuning regime. 	=0.6. �c�0.1�0.
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might need to be spatially separated to avoid interferences at
the qubits so the stopping scheme would work, since the
picture of band structure relies on the single-photon transfer
matrix Tq �Eq. �1�	.

To measure single-photon transmission spectra like those
shown in Fig. 1, one would ideally use an input source of
single photons generated on demand. In practice, experi-
ments have shown1 that single-photon transport can also be
probed in constant-frequency, steady-state classical hetero-
dyne measurements by attenuating the power of a multipho-
ton source to subphoton levels. To further observe the slow-
ing and stopping of single photons, time-resolved
measurements can be made. In the dynamical light-stopping
scheme, the delay is controlled largely by the tuning time. By
recording the delay in arrival time at a detector relative to a
reference pulse that does not interact with the qubit system,

slowing effects can be probed directly. Recently, a quantum
scheme that allows for deterministic generation and homo-
dyne detection of microwave photons in Fock states has been
proposed.25

To implement the scheme discussed here, ideally one
would like the qubit-waveguide coupling rate V2 /vg to domi-
nate the intrinsic loss rate of the qubit �, which results from
the qubit coupling to the environment external to the wave-
guide. At present, in the experiment reported in Ref. 1, V2 /vg
is inferred to be of the order of 2�
10−2 MHz, and � is
about 2�
0.7 MHz. However, one could enhance V2 /vg by
reducing the group velocity in the waveguide, which could
be accomplished, for example, with the use of coupled reso-
nator waveguide structures;26 or by increasing the dipole mo-
ment by using a larger qubit. Also, it has been emphasized
that the current experimental value of � of the state-of-the-art
charge qubits is probably due to dielectric loss in the junc-
tions or the substrate.27 An improvement in the fabrication
process and in the materials used could significantly improve
them. The storage time is limited to 1/�. As an example, we
consider stopping a single-photon pulse with a bandwidth of
1 GHz and a center frequency of 6 GHz. The superconduct-
ing qubits have a large tunable frequency range from ap-
proximately 0 to 8 GHz,1 which is far more than enough to
compress a 1 GHz bandwidth to zero. The minimum size of
the circuit L is approximately vg0 / f + l0, where vg0 is the
initial group velocity of the photon, f is the modulation rate
of the qubit frequency, and l0�vg0�pulse is the size of the
pulse in the waveguide.22 vg0�pulse is roughly a constant in-
dependent of the pulse bandwidth 	�, and can be estimated
as 10D for the dispersion relation.22 The length of the wave-
guide is thus approximately L��	� / f +10�D. To accom-
plish the entire process of stopping and recovering a 1 ns
pulse �i.e., bandwidth 1 GHz�, a waveguide with length less
than 17 unit cells modulated at a speed of 1 GHz is suffi-
cient. This amounts to 1.7 carrier wavelength when the size
of the unit cell is one-tenth of the wavelength. To modulate
the magnetic field, one of the possible implementations is to
use planar micron-scale metal coils. This technique has been
adopted in atom manipulation, as well as electron spin reso-
nance experiments,28,29 and has been demonstrated to operate
at GHz frequency range.29
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FIG. 4. The photonic bands of the system related to tuning
scheme �ii�. The circles denote the photon states in phase space. kc

for the open circle is chosen as 0.4�KD / �2��	 and is indicated by
the vertical line. 	�
�1−�2 
 / �V2 /vg�=100. �0�2�vg /D. d1

=0.3D. V2 /vg=2
10−4�0. �a� �c=0.6�0. �b� �c=0.51�0. �c� �c

=0.42�0. �d� �c=0.38�0.
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