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We have investigated, by fully-time-resolved degenerate four-wave mixing �FWM�, excitonic coherence
phenomena in single GaAs/AlGaAs quantum wells which are known to exhibit localization. A magnetic field
�0–12 T� was applied in Faraday geometry as a means of altering the nature of the excitonic transitions in a
controlled manner. When the system is excited by a sequence of pulses tuned in resonance with the heavy-hole
excitons, the predominant behavior observed at positive interpulse delays is beating in the FWM emission due
to polarization interference between uncoupled excitons localized by monolayer islands. For negative inter-
pulse delay the variation of beat phase with delay changes sign as the magnetic field is increased. In order to
understand this feature, we modeled a coupled three-level system and included local field effects as a simple
phenomenological approach to describing many-body terms. Comparison with experiments shows that with a
larger magnetic field, the contribution to the signal from the coupled system reduces while that from two
noninteracting two-level systems increases. We attribute this to the increased confinement of the excitons with
field, leading to reduced wavefunction overlap, and hence reduced coupling.
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I. INTRODUCTION

Heterodyne detection of four-wave mixing �FWM� has
allowed significant gain in sensitivity due to its dependence
on electric field amplitude rather than intensity.1–4 The tech-
nique is essentially interferometric, and since the signal is
obtained by mixing the four-wave-mixing output with part of
the original pulse, the method has the added advantage of
being intrinsically time-resolved. This improved sensitivity
and time resolution has opened the prospect of revisiting
various phenomena which have not previously been fully
explained. One such unresolved problem concerns the origin
and nature of the beats observed between different mono-
layer islands in a single quantum well.

Time-resolved FWM �TR-FWM� experiments on
GaAs/AlGaAs quantum wells performed in 1993 by Koch et
al.5 showed that the third-order polarization of the sample
produces a photon-echo-like signal, modulated both in its
real-time profile and as a function of delay, �, between the
exciting pulses. These oscillations arise from simultaneous
excitation of excitons localized by different monolayer is-
lands of the quantum well and were assigned to quantum
beating, indicating that different islands are coupled to each
other. Previous work6 had shown that quantum beats �QB�
and polarization interference �PI� �interferences at the detec-
tor between optical signals emitted from different and other-
wise uncoupled two-level systems� can be distinguished in
TR-FWM by observing the change in phase of the beats with
interpulse delay �. � corresponds to the interval between
pulse 1, arriving with wave vector k1, and pulse 2, with wave
vector k2. � is positive when we are considering the FWM
signal emitted in the 2k2−k1 direction, and pulse 1 arrives
before pulse 2. The FWM signal is resolved as a function of
t, the real time of evolution, where t=0 corresponds to the
arrival of pulse 2 at the sample. The phase of the QB in t
varies with the arrival of pulse 2 while that of PI varies with
interpulse delay in the same manner as a photon echo �PE�.

This approach provided in the work of Koch et al.5 a clear,
yet surprising, indication that different monolayer islands
were coupled in some way and could not be represented by
two independent two-level systems.

This picture was, however, challenged by Euteneuer et
al.7 who performed coherent excitation spectroscopy on
samples similar to those used by Koch et al., and they con-
cluded that there was no coherent coupling between different
monolayer islands. Finger et al.8 suggested that the explana-
tion for this apparent contradiction is that the beats observed
in the earlier work did not arise from monolayer fluctuations,
but from biexcitons beating with excitons.9 There have been
other attempts to clarify the nature of the coupling, or lack
thereof, between different monolayer islands,10–12 but no
consensus has emerged.

Modeling of the beating between light- and heavy-hole
excitons by Smirl et al.13 showed that within the phenom-
enological few-level approximation, the introduction of
terms describing excitation-induced dephasing14 �EID� gives
good qualitative agreement with experiment. EID is one
means of introducing behavior into the phenomenological
model which mimics some features expected in an underly-
ing microscopic description in terms of the many-body re-
sponse. Furthermore, in their work, Smirl et al. showed clear
experimental evidence of many-body correlations beyond
those of the semiconductor Bloch equations. Kwong et al.15

have explored the relationship between the terms in the few-
level models and the microscopic formulation, and have
shown that it is possible to make a conversion between the
parameters deduced from the few-level approach and those
of the more fundamental treatment, including those describ-
ing EID and local fields. Clearly there is scope for further
investigation of both the nature of the coupling in the system
based on excitons localized in islands, and of the fitting with
phenomenological models.

We hope to shed some light on the nature of the coupling
by using heterodyne detection to perform TR-FWM experi-
ments on a single 10.0 nm GaAs quantum well with AlGaAs
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barriers. The growth was interrupted to allow monolayer is-
lands to form, resulting in a sample similar to those studied
earlier. To explore further the nature of the states and the
effects of localization, we applied a magnetic field perpen-
dicular to the well, which should confine the exciton to a
progressively smaller area in the plane of the quantum well
as the field is increased.16 The experimental details and re-
sults are discussed in Sec. II.

In order to explain the unexpected and interesting effects
observed at negative �, we have simulated both a coupled
three-level system and two noninteracting two-level systems,
by simple optical Bloch equations. As an alternative to inclu-
sion of EID as a means of introducing phenomenologically
the many-body effects, we have chosen to include local fields
in the calculations;17,18 the most important effect of this is to
allow a qualitative approach to modeling the signal at nega-
tive delays. The model is presented in Sec. III and the results
of the simulations discussed and compared to the experimen-
tal results in Sec. IV. A summary and conclusion are given in
Sec. V.

II. EXPERIMENT AND RESULTS

A mode-locked titanium:sapphire laser is used as a source
of pulses of duration 200 fs. The laser output is split into
three beams labeled k1, k2, and ‘reference’ in the schematic
diagram of the experiment in Fig. 1. Beam 1 passes through
an acousto-optic modulator �AOM� resulting in a shift of all
the optical frequencies by −�k1

, the modulation frequency of
the AOM. The FWM is detected in the “reflection”
geometry,19 in order to avoid the need to thin the substrate;
this signal has frequencies �0+�k1

, where �0 is a frequency
in the pulse spectrum of the unmodulated laser. The refer-
ence beam passes through another AOM, which modulates it
at a slightly different frequency �R, leading to an increase in
the optical frequency by this amount. The FWM signal and
the reference beam are recombined via a cube beam splitter.
The two outputs of the beam splitter are coupled to a pair of
balanced photodiodes. The optical interferences detected by
each photodiode are modulated at the difference frequency of
the reference and signal beams, ��k1

−�R�. The amplitude of
these beats is proportional to the electric field of the FWM
signal, and is measured with about 6 decades of dynamic

range using a spectrum analyzer. The beams incident on the
sample are cocircularly polarized in order to ensure that no
biexcitons are created, and are of power such that the exci-
tation density is approximately 4�109 cm−2. In order to
maximize the optical interference used to resolve the time-
profile of the signal, the polarization of the signal is made
linear by a � /4 waveplate before the cube beam splitter. The
magnetic field is applied perpendicular to the plane of the
well by a superconducting magnet capable of fields up to
12 T. The temperature of the sample is maintained at 5 K in
order to minimize the effects of inhomogeneity. The results
presented here correspond to the creation of �+ excitons, but
the conclusions are similar for �− excitons. The sample was
grown by molecular beam epitaxy �MBE� on an undoped
�001� GaAs substrate and contains five GaAs wells of differ-
ent widths ranging from 2.8 to 20.0 nm separated by
25.0 nm Al0.37Ga0.63As barriers. At each interface the growth
was interrupted for just over two minutes to allow monolayer
islands to form. These islands are known to vary in size and
shape and can be up to tens of nm in diameter, in the range of
the exciton Bohr diameter.20 For the purpose of this paper we
will concentrate on the results from the 10.0 nm well only.
This width corresponds to �35 monolayers of GaAs. Photo-
luminescence excitation spectroscopy shows that the 1s
heavy-hole exciton transition is at �1.552 eV with a doublet
structure with a splitting �1.6 meV. The 1s light-hole exci-
ton transition lies 10 meV higher in energy. In the present
experiment, contributions from the light-hole exciton are al-
most out of resonance and therefore not expected to be ex-
cited significantly. The TR-FWM results with magnetic field
at 2, 4, and 10 T are shown in Figs. 2�a�–2�c�. In these fig-
ures log10�DFWM amplitude� is plotted for each value of
time interval between the input pulses �which can be read
from the labels on the right�. In each plot, the zero on the
real-time axis is determined by the arrival of pulse 2, in
contrast to the plots of Koch et al.,6 where the zero is deter-
mined by the arrival of pulse 1. The effect of this is that the
phase of the beats is unchanged with � for QB. For PI, it
evolves in these plots in the same sense as for the photon
echo, that is, with unit gradient. On this basis, it appears that
in all cases the beats are mainly due to PI and not QB.
However, closer examination shows that there is some modu-
lation of the peak height of the beats with a period equal to
the period of the real-time beats. This is represented in Fig. 3
for B=11 T. Here the TR-FWM has been integrated over the
real-time of evolution t and its logarithm plotted as a func-
tion of the interpulse delay �. This suggests there may also
be some QB present.6 The traces around �=0 appear noisy;
this is not in fact the case as most of the structure is repro-
ducible, and caused by beating among the various coherently
coupled levels of the system within the excitation envelope.
The higher-frequency components correspond to large en-
ergy splittings of upper levels, which rapidly decohere after
the excitation has passed. The character of the emission ap-
pears to undergo a transition from free polarization decay
�FPD� to photon echo �PE� behavior. In all the data, it ap-
pears that at short interpulse delay FPD dominates before the
bulk of the signal is transferred to the PE. It is possible that
there are two separate components contributing to these two
regimes.10,21 However, the most likely explanation is simply

FIG. 1. A schematic diagram of the arrangement of the four-
wave-mixing interaction and the heterodyne detection scheme.
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that the inhomogeneous broadening is relatively weak, and
so at short delays, many of the excitons are still in phase,
allowing FPD to dominate, and it is not until later that the
majority have evolved to be out of phase and the PE
dominates.21,22

The effect of the magnetic field is most evident in the
dephasing times. It is measured to be 3.0±0.5 ps, 5±1 ps,
and 8±1 ps for Figs. 2�a�–2�c�, respectively. The effect of
the field is to increase transverse exciton confinement, which
reduces the exciton scattering cross-section and therefore in-
creases the dephasing time.

It is also evident that as the magnetic field increases, the
time for which FPD dominates increases, which suggests that
the exciton population is increasingly homogeneous. This
also is consistent with the reduction in size of the exciton
wave function due to the magnetic field, as magnetic con-
finement progressively dominates over the inhomogeneity
arising from the localization potential.10

The other effect of the magnetic field is observed in the
signal at negative �. At high fields, as shown in Fig. 2�c�, the
beats for ��0 evolve with � in the same sense as do the
beats for ��0, with gradient +1 with respect to �. In Fig.
2�b�, at intermediate fields, the phase of the beats at negative
delay appears to be independent of �, apart from a 	 phase
change at one point. At 2 T, because the signal is so short
lived, it is not clear how the phase varies with �. The inter-
pretation of this signal is not immediately clear. Previous
studies of the phase of beats5,6,12 have concentrated on posi-
tive delays and have lacked sensitivity to study properly ef-
fects at negative delays. Theoretical studies modeling quan-
tum beating in three-level systems11,12,23 have neglected
local-field effects and excitation-induced dephasing �which
phenomenologically model the signal at negative delays�,
and those including such effects16,17 have only done so for a
two-level system. Hence, in the following section we present

the details of our calculations for a three-level system includ-
ing local-field effects, in order to gain some further insight
into the origin of the behavior we observe in the experiment.

III. MODELING

Here we calculate perturbatively the FWM signal from a
three-level system, using the simple density matrix approach,
and including local-field effects. Terms are included to third
order in a manner similar to that used originally by Yajima
and Taira24 for a two-level system without the local field.
Inclusion of the local field allows the first-order polarization
induced by pulse 2 to contribute to the FWM signal provided
T2��. This is particularly relevant for negative interpulse
delay. The system under consideration consists of a ground
state �labeled 1� and two closely spaced excited states �la-
beled 2 and 3� corresponding to two different 1 s HH exciton
transitions in two different islands of the quantum well dis-
tinct by one monolayer. We need to solve numerically

i
�̇ = �H,�� , �1�

where � is the density matrix and H is the Hamiltonian:

H = H0 + ��E + LP� �2�

with the transition dipole �

� = � 0 �12 �13

�12
* 0 0

�13
* 0 0

	 . �3�

H0 is the unperturbed Hamiltonian with the eigenenergies on
the leading diagonal, E is the applied electric field, L is the
Lorentz local-field factor, and P is the polarization P
=Tr����. Note that we have explicitly suppressed the lower-

FIG. 2. �a� Time-resolved FWM signals at a field of 2 T. Each curve depicts the log10�FWM amplitude� �scale at the left�, displaced
uniformly according to the interpulse delay �labeled on the right-hand side�. Details of the conditions are given in the text. �b� Log10 of the
time-resolved FWM signals at a field of 4 T. �c� Log10 of the time-resolved FWM signals at a field of 10 T.
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frequency transition between levels 2 and 3. Dephasing is
included phenomenologically so that the diagonal compo-
nents of the density matrix decay as 1/T1 and the off-
diagonal components as 1 /T2, corresponding to the longitu-
dinal and transverse relaxation rates, respectively, with T1 the
lifetime of the relevant state and T2 the coherent lifetime
between the states, namely the ground state and the excited
states T2�j� with j=2,3 or between the two excited states
T2�ij�. Note that these values may differ for the different
levels and are not assumed to be the same. These are
included as an extra term in the Hamiltonian such that:

�̇ j j
Relax = −

�� j j − � j j
0 �

T1�j�
�4�

and,

�̇ jk
Relax = −

� jk

T2�jk�
, �5�

where � j j
0 is the equilibrium value for � j j, with j ,k=1,2 ,3

and k� j.
The local-field term is initially set to the Lorentz value,

1 / �30�, as is generally used for cubic lattices. This term is
really here to model the many-body effects that appear in a
more complete treatment of the problem, and we will regard
it as a parameter which can be used to improve the fit to the
experimental results, rather than a given constant.

The excitation is described by two Gaussian pulses,
200 fs long, with frequency �0, separated in time by �, and
with different wave vectors, k1 and k2. In order to simplify
the equations, the frame of reference is changed to one ro-
tating at �0, and the rotating-wave approximation is made,
eliminating the terms varying rapidly at �2�0. This leads to
changes in the Hamiltonian: � j1=� j j −�11−�0.

By multiplying out the matrices and expanding perturba-
tively to the third order, the following equations are obtained
for the first three orders of the relevant density matrix
elements:

�̇1j
�1� =

− i



�1,j

* �E + LP�1�� − �1j
�1�
 1

T2�j�
− i�� j1�� �6�

�̇ j j
�2� =

i



��1j�1j

�1���E* + LP�1�*�

−
i



��1j

* �1j
�1�*��E + LP�1�� −

1

T1�j�
�� j j

�2�� �7�

�̇23
�2� =

i



��12�13

�1��E* + LP�1�*� − �13
* �12

�1�*�E + LP�1��

− �23
�2�
 1

T2�23�
− i�32� �8�

�̇1j
�3� =

i



�E + LP�1����1j

* �2� j j
�2� + �kk

�2�� + �1,k
* � j,k

�2�*�

−
i



LP�3��1j

*

− �1j
�3�
 1

T2�j�
− i� j1� , �9�

where j=2,3, k=2,3� j, T2�23� is the coherence lifetime be-
tween the two excited states, and the frequencies are defined
as � j1=� j −�1 and �32=�3−�2. It is assumed that both �
and � are Hermitian, so �kj =� jk

* and �kj =� jk
* , and all other

terms not included are zero. The assumptions have been
made that �11=1−�22−�33, and the initial values of all terms
are zero except �11

0 =1.
Rather than fully integrating these equations, the wave

vector components of the electric field are identified, and
only the terms which contribute to the third-order polariza-
tions in the 2k2−k1 direction are kept. This creates a set of
interdependent first-order linear differential equations which
are given for reference in the Appendix. These equations are
solved simultaneously using standard numerical methods,
and values found for third-order terms in �12 and �13 with
wave vector 2k2−k1. Inhomogeneous broadening is also
taken into account by integrating over the inhomogeneous
distribution. It is assumed that for the monolayer islands, the
broadening is Gaussian and totally correlated.11,23,25 This as-
sumption is based on minimal inhomogeneous broadening,
so any effects due to uncorrelated broadening should be
small.11

IV. RESULTS OF THE SIMULATION

The simulation was run for a wide range of all the vari-
able parameters: the results shown in Fig. 4 are for param-
eters similar to those determined from the experimental data
in Fig. 2�b�. The lifetimes and coherent lifetimes were as-
sumed to be the same for both transitions, with T1=50 ps and
T2=4 ps. The transition energies were set to be 1.5512 and
1.5528 eV, corresponding to the observed 1.6 meV beating.
For simplification, the laser excitation lies in the middle of
the two at 1.552 eV. The pulse length was chosen to be

FIG. 3. Log10 �time-integrated FWM signal� in �+ polarization
for magnetic fields from 0 T to 11 T in 1 T steps, as a function of
the interpulse delay, �. Note the modulation of the signals.
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200 fs, and the local-field term 1
30

. The inhomogeneous
broadening was set to 0.4 meV on the basis of the relative
contributions displaying PE and FPD behavior. The plot in
Fig. 4 shows the expected beats and predominant absence of
any variation of their phase with �. This is as expected from
previous experiments5 and reproduces the TR-FWM signal
from a three-level system calculated analytically by Zhu et
al.11 The calculated signal at negative delay indicates that the
beats continue to evolve with no dependence on �.

At the minima in the beats as a function of �, the calcu-
lation shows beats almost 	 out of phase with the rest of the
signal; this is a result of one small term whose phase varies
in the same manner as a photon-echo. This term arises only
in the presence of the local field. By varying the available
parameters in the simulation, it rapidly becomes evident that
while it is possible to reproduce the experimental results at
negative delays for low and intermediate fields, it is not pos-
sible to do so for the data at positive delays and high fields
where the behavior is dominated by polarization interfer-
ence. In order to try and reproduce these results more fully,
the simulation was modified to model two noninteracting
two-level systems. This was achieved by eliminating all
terms containing any link to the third level, �i.e., the second
excited state� giving equations for a two-level system, and
solving these for the two different transition energies. Figure
5 shows logarithmically the data from the two noninteracting
two-level systems for the same parameters used for the three-
level system in the data shown in Fig. 4. The signal at posi-
tive delays shows beats whose phase varies as a function of
interpulse delay, �i.e., with gradient +1� corresponding to the
well-known behavior expected for PI. At negative delay, the
phase of the beats evolves in the same manner. This variation
in the phase of the beats is typical of the behavior expected
for two noninteracting two-level systems, where the beating
is polarization interference.6 The other observed difference

between this model and that for the three-level system, is the
absence of beating as a function of �.

Thus, this model is able to reproduce qualitatively the
phase variation of the beats from the experimental results at
positive delays for all magnetic fields, and the predominant
behavior at high fields for all times. However, it does not
predict the presence of beats as a function of �, nor does it
predict the observed variation of the phase of the beats at
negative delays, for low and intermediate fields. Both models
considered here predict the variation of the phase of the beats
to be the same at negative delays as it is at positive delays.
However, as can be seen in Figs. 2�a� and 2�b�, this was
clearly not the case for the experiments performed at low and
intermediate magnetic fields.

At high fields, the experimental results can be modeled
almost entirely by the two noninteracting two-level systems,
as shown in Fig. 6, with the values for the coherence times
increased to 5 ps, and inhomogeneous broadening reduced to
0.3 meV, consistent with the experimental observations.
However, the experimental data still show the presence of
beating as a function of �, which is not reproduced by this
model. In order to describe the experiments, one approach is
to take a combination of the two models, which would rep-
resent contributions to the signal from two populations of
exciton in the samples studied. The other major effect seen in
the experiment, but not yet explained by either model, is the
apparent 	 phase shift of the beats at negative delay. This
occurs as a function of �, at a frequency equal to the fre-
quency of the beats in the real-time evolution, and can be
reproduced by adding contributions from the two models. By
adding the two components in the right ratio, the behavior of
the beats can be reproduced well for all fields.

It is evident in the experimental data that as the magnetic
field is increased, the system varies gradually from the case
shown in Fig. 2�a� through to that shown in Fig. 2�b�, and
finally to the case shown in Fig. 2�c�. From the results of the

FIG. 4. Simulated log �TR-FWM� from a coupled three-level
system with equal dipole matrix elements for the two transitions.
Parameters are specified in the text.

FIG. 5. Results for modeling two, noninteracting two-level
systems, using the same parameters as for Fig. 4.
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simulation, the change in behavior at negative delays can be
attributed to an increase in the proportion of signal coming
from noninteracting systems and a corresponding decrease in
the amount from coupled systems. Meanwhile the increasing
lifetimes and homogeneity are explained by the increasing
confinement of the excitons generated by the magnetic field.
Thus, we conclude that as the confinement is increased, the
wave functions of excitons are reduced in size, and at some
point, monolayer islands which were coupled, cease to be
coupled. Due to the inhomogeneity in monolayer island size
and shape, this occurs at different fields for different islands,
and hence the transition is gradual as the field is increased.
This suggests that whatever the coupling mechanism, it de-
creases in efficiency as the spatial extent of the exciton wave
function is reduced.

Previous studies have suggested the dipole-dipole interac-
tion as the source of coupling.5 However, if this were the
case here, increasing the magnetic field would be expected to
increase the dipole moment, which would lead to increased
coupling. The opposite of this was observed, and so dipole-
dipole interactions appear unlikely to explain the coupling
mechanism in the sample studied here.

V. CONCLUSIONS

We have performed TR-FWM experiments on a
GaAs/AlGaAs single quantum well and observed different
behavior of the beats between excitons localized in mono-
layer islands as the applied magnetic field is changed. The
sensitivity of our detection system allowed us to study the
effects at negative pulse delays more closely than previously
possible, with unexpected results. The four-wave-mixing
emission shows evolution from free-polarization decay to
photon echo as the time delay between the excitation pulses
is increased. The evolution of the beat phase at positive delay
indicates a predominant contribution from polarization inter-

ference, with a small contribution from genuine quantum
beating manifesting itself as a modulation of the signals with
delay. The gradient of the evolution of the beat phase with
interpulse delay changes sign as the magnetic field is in-
creased. Simulations of a coupled three-level system and two
noninteracting two-level systems, with the inclusion of local
field effects, were able to reproduce qualitatively all the ma-
jor features of these results. The three-level system models
the general case of coherently coupled excitons, and it was
shown that as the magnetic field and thus the confinement
increased, the contribution to the overall signal from this part
of the model reduced. The possibility of the coherently
coupled part of the signal being due to biexcitons as sug-
gested by Finger et al.8 is ruled out as the excitation beams
were cocircularly polarized. Thus we conclude that the cou-
pling between monolayers is highly dependent on the extent
of confinement and wave function overlap, and could be ex-
pected to vary significantly between different samples.
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APPENDIX

By following the different wave vector components that
will give rise to the FWM signal in the 2k2−k1 direction
through Eqs. �6�–�9�, one obtains the following system of
simultaneous first-order equations. Here we use the follow-
ing notation: the wave vector component of each term is
noted in the superscript as either �a� for k1 or �b� for k2, so
the electric field,

E = E1ei�k1·r−�t� + E1e−i�k1·r−�t� + E2ei�k2·r−�t� + E2e−i�k2·r−�t�

�A1�

which in the rotating-wave approximation becomes

E = E1ei�k1·r� + E2ei�k2·r� �A2�

is represented as

E = E�a� + E�b� �A3�

The order of each of the density matrix and polarization
terms is indicated by the corresponding number in the super-
script. The zero-order terms correspond to no interaction and
are thus the equilibrium values of the given terms. The terms
of the form � j, where j=2,3 are equivalent to � j1=� j j
−�11−�0. The first-order polarization terms are

P�1��a� = �12
* �12

�1��a� + �13
* �13

�1��a� + �12�12
�1��−a�* + �13�13

�1��−a�*,

P�1��−a� = �12
* �12

�1��−a� + �13
* �13

�1��−a� + �12�12
�1��a�* + �13�13

�1��a�*,

P�1��b� = �12
* �12

�1��b� + �13
* �13

�1��b� + �12�12
�1��−b�* + �13�13

�1��−b�*,

FIG. 6. Results plotted logarithmically for modeling two, non-
interacting two-level systems, but with T2 increased to 5 ps and
inhomogeneous broadening reduced to 0.3 meV.
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P�1��−b� = �12
* �12

�1��−b� + �13
* �13

�1��−b� + �12�12
�1��b�* + �13�13

�1��b�*.

�A4�

The relaxation terms are included as indicated in Eqs. �4� and
�5�

So, the terms which contribute to the third-order polariza-
tion can be specified at each order as follows.

In the first order we have

�̇12
�1��a� =

i



�12

* �E�a� + LP�1��a����22
�0� − �11

�0��

− �12
�1��a�
 1

T2�2�
− i�21� �A5�

�̇12
�1��b� =

i



�12

* �E�b� + LP�1��b����22
�0� − �11

�0��

− �12
�1��b�
 1

T2�2�
− i�21� �A6�

�̇12
�1��−a� =

i



�12

* LP�1��−a���22
�0� − �11

�0�� − �12
�1��−a�
 1

T2�2�
− i�21�

�A7�

�̇12
�1��−b� =

i



�12

* LP�1��−b���22
�0� − �11

�0�� − �12
�1��−b�
 1

T2�2�
− i�21�

�A8�

�̇13
�1��a� =

i



�13

* �E�a� + LP�1��a����33
�0� − �11

�0��

− �13
�1��a�
 1

T2�3�
− i�31� �A9�

�̇13
�1��b� =

i



�13

* �E�b� + LP�1��b����33
�0� − �11

�0��

− �13
�1��b�
 1

T2�3�
− i�31� �A10�

�̇13
�1��−a� =

i



�13

* LP�1��−a���33
�0� − �11

�0�� − �13
�1��−a�
 1

T2�3�
− i�31�

�A11�

�̇13
�1��−b� = +

i



�13

* LP�1��−b���33
�0� − �11

�0�� − �13
�1��−b�
 1

T2�3�
− i�31� .

�A12�

In the second order

i
�̇22
�2��b,b� = + �12

* �12
�1��−b�*�E�b� + LP�1��b�� − �12�12

�1��b�

��LP�1��−b�*� −
i


T1�2�
��22

�2��b,b� − �22
�2eq��b,b��

�A13�

i
�̇33
�2��b,b� = + �13

* �13
�1��−b�*�E�b� + LP�1��b�� − �13�13

�1��b�

��LP�1��−b�*� −
i


T1�3�
��33

�2��b,b� − �33
�2eq��b,b��

�A14�

i
�̇22
�2��−a,b� = − �12�12

�1��b��E�a�* + LP�a�*� + �12
* �12

�1��−b�*LP�−a�

+ �12
* �12

�1��a�*�E�b� + LP�b�� − �12�12
�1��−a�LP�−b�*

−
i


T1�2�
��22

�2��−a,b� − �22
�2eq��−a,b�� �A15�

i
�̇33
�2��−a,b� = − �13�13

�1��b��E�a�* + LP�a�*� + �13
* �13

�1��−b�*LP�−a�

+ �13
* �13

�1��a�*�E�b� + LP�b�� − �13�13
�1��−a�LP�−b�*

−
i


T1�3�
��33

�2��−a,b� − �33
�2eq��−a,b�� �A16�

i
�̇23
�2��b,b� = + �13

* �12
�1��−b�*�E�b� + L�P�1��b���

− �12�13
�1��b�LP�1��−b�* − i
�23

�2��b,b�
 1

T2�23�
− i�32�

�A17�

i
�̇23
�2��−b,−b� = + �13

* �12
�1��b�*LP�1��−b� − �12�13

�1��−b��E�1��b�*

+ LP�1��b�*� − i
�23
�2��−b,−b�
 1

T2�23�
− i�32�

�A18�

i
�̇23
�2��a,−b� = + �13

* �12
�1��b�*�E�a� + LP�1��a��

+ �13
* �12

�1��−a�*LP�1��−b�

− �12�13
�1��a��E�b�* + LP�1��b�*�

− �12�13
�1��−b�LP�1��−a�*

− i
�23
�2��a,−b�
 1

T2�23�
− i�32� �A19�

i
�̇23
�2��−a,b� = + �13

* �12
�1��a�*�E�b� + LP�1��b��

+ �13
* �12

�1��−b�*LP�1��−a�

− �12�13
�1��b��E�a�* + LP�1��a�*�

− �12�13
�1��−a�LP�1��−b�*

− i
�23
�2��b,−a�
 1

T2�23�
− i�32� . �A20�
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In the third order we have

i
�̇12
�3��b,b,−a� = �E�b� + LP�1��b�� � �− �12

* �2�22
�2��−a,b� + �33

�2��−a,b�� − �13
* �23

�2��a,−b�*� + �LP�1��−a�� � �− �12
* �2�22

�2��b,b� + �33
�2��b,b��

− �13
* �23

�2��−b,−b�*� + LP�3��b,b,−a��12
* − i
�12

�3��b,b,−a�
 1

T2�2�
− i�21� �A21�

i
�̇13
�3��b,b,−a� = �E�b� + LP�1��b�� � �− �13

* �2�33
�2��−a,b� + �22

�2��−a,b�� − �12
* �23

�2��−a,b�� + �LP�1��−a�� � �− �13
* �2�33

�2��b,b� + �22
�2��b,b��

− �12
* �23

�2��b,b�� + LP�3��b,b,−a��13
* − i
�13

�3��b,b,−a�
 1

T2�3�
− i�31� . �A22�
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