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Aharonov-Bohm oscillations in a mesoscopic ring with asymmetric arm-dependent injection
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Electron transport through mesoscopic, one-dimensional rings with asymmetric injection into the arms of the
ring is studied, in the presence of a Aharonov-Bohm flux, by means of an appropriate S matrix. This matrix is
expressed in terms of two parameters, one of which (\) accounts phenomenologically for this asymmetric
injection into the arms of the ring. In addition, the effect of a scatterer placed in one arm of the ring is
considered. Explicit expressions are obtained for the transmission as a function of the incident electron energy,
the magnetic field, the asymmetry parameter A, and the strength of the scatterer. Results of the literature for
symmetric rings are described by A=1 and readily recovered. We relate our results to rings of finite width.
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I. INTRODUCTION

The study of rings goes back to Aharonov and Bohm
(AB) who demonstrated the importance of vector potentials
in quantum mechanics.! This goes under the name AB effect
and one frequently uses the term AB oscillations for the os-
cillations in the resistance of a ring as a function of the flux
penetrating the interior of the ring. Another major study is
now referred to as the Aharonov-Casher? effect, which is
similar to the AB effect but it is due to the spin-orbit inter-
action (SOI). Other developments concern the Berry phase.’
With the development of new fabrication techniques and the
size reduction of samples, rings are now very intensely stud-
ied, especially in connection with the SOI (see Refs. 4 and 5
and references cited therein).

In a quantum ring of finite width the connection between
the current-carrying leads and the ring can be complicated
and may lead to reflection at the lead-ring junction and to
asymmetric injection in the two arms of the ring. This asym-
metry can be a consequence of the difference in length be-
tween the upper and lower arms or of fabrication defects but
it can also be induced by a magnetic field as a consequence
of the Lorentz force. Such an asymmetry was demonstrated
recently from a pure numerical treatment of the transmission
through a finite-width lead-ring system; it led to incomplete
AB oscillations due to partially destructive interferences.®

To our knowledge all previous works that study transmis-
sion through a ring employ an S matrix that is symmetric
with respect to both arms of the ring’-!%. Though this may
not be as restrictive as it sounds, it is more realistic to reex-
amine the problem using an S matrix that is not symmetric
with respect to both arms of the ring and possibly make a
connection with the asymmetry mentioned above.®

An asymmetry can be introduced by placing, e.g., one
scatterer in one arm of the ring or by locally applying a gate
that affects the properties of one arm. The scatterer may in-
troduce important phase shifts in the electron wave function
and change drastically the position and/or amplitude of the
AB oscillations. This has been thoroughly investigated
theoretically’ and experimentally.® Although we will con-
sider such a case, here we are mainly concerned with asym-
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metric current injection into the arms of the ring through one
of the leads, cf. Fig. 1.

In view of the above, we propose a one-dimensional (1D)
model in which asymmetries due to fabrication, scatterers,
and especially asymmetric current injection through one of
the leads are parametrized by a small number of parameters
but which leads to explicit analytical results. This has the
advantage of being more useful to experimentalists than the
pure numerical treatment of Ref. 6.

In the next section we formulate the problem and derive
analytic expressions for the transmission amplitude. We
present analytical results in Sec. III and numerical results in
Secs. IV and V. Concluding remarks follow in Sec. VI.

II. FORMULATION OF THE PROBLEM

At each junction of a lead with the ring, indicated by the
triangles in Fig. 1, we have three outgoing waves with am-
plitudes (a’,B',7’)=a’ and three incoming waves with am-
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FIG. 1. A ring of radius R connected to two leads, indicated by
triangular arrows, with two elastic scatterers indicated by the black
squares. The transmission and reflection amplitudes of the scatterers
are denoted by #; and r;, i=1,2 respectively. A flux ® pierces the
ring through its center.
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plitudes (a, B, y)=a. They are related by a 3 X3 S matrix in
the manner

a' =Sa. (1)

Current conservation implies that S is unitary and time-
reversal invariance, when applicable, entails S*=S~!. This
means that the S matrix is symmetric.9 Further, we assume
that it is real. Then S is given by

a b c
S=|b d e]. (2)
c e f

If the S matrix is symmetric with respect to both arms,
one takes h=c and d=f [see Fig. 1 and, e.g., Egs. (Al) and
(A2)]. We introduce an asymmetry by taking b=N\c. Then, as
detailed in Appendix A, the unitarity of the S matrix leads to
the following form:

a \v v
S=|Av m—a —-\7y |, (3)
v —-\np l-7¢

where v=(1-a)"?/u, p=(a+1)/ x>, pu=\*+1)"2, and -1
<a<1. Equation (3) is also valid for A=1 and the determi-
nant of S is invariant under the change A — 1/\. This change
reflects the fact that the results should be the same when the
asymmetric injection favors equally the upper or lower arm.

The reflection probability at the left junction is a?. Perfect
reflection entails a=1 and perfect transmission a=0. These
two limits correspond to those of € in Ref. 9 being, respec-
tively, O and 1/2. It can be invoked that the probability of
perfect reflection at the left junction should be independent
of the asymmetry of the ring with respect to the two arms.
Therefore, one should have a?=1-2e. It will be shown later
in a different way that indeed one has a*>=1-2e.

II1. TRANSMISSION AMPLITUDE

Equation (1) relates the amplitudes of the incoming waves
to those of the outgoing ones. For the usual scattering from
the left we take a;=1 and a,=0. The corresponding trans-
mission is given by T=|aj|?>. We proceed along the lines of
Ref. 9. We write Eq. (1) as a;=Sa, for the right junction and
as a;=Se for the left junction. The connection between the
two junctions is made by writing

ﬁZ) =€_igl (ﬂi) 4
<Bé “\g, @

for the amplitudes in the upper arm, where t; is the matrix
describing the transfer through scatterer 1, (cf. Fig. 1), and 6,
a phase shift introduced by the flux ®==7R?B, B being the
magnetic field and R the ring’s radius. The matrix t; is given
by
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with r and ¢ the reflection and transmission amplitudes, re-
spectively. A similar expression transfers the amplitudes in
the lower arm and involves a phase shift #,. These shifts
satisfy the relation 0,+ 6,=27®/dD(, where ®y=h/e is the
flux quantum. Using these expressions and solving the sys-
tems of equations a;=Sa, and a|=Se,, as detailed in Ap-
pendix A, we obtain the expression for a;.

We will consider only two cases: (i) no scatterers are
present in the ring’s arms, and (ii) one scatterer is present in
one arm. The case with both scatterers present can be treated
in the same way (see Ref. 9 for N=1).

For case (i) we have t,=t,=¢'?, r|=r,=r|=r}=0, 6,=6,
=7® /D, and ¢ the phase change of the transmitted wave. It
is related to the energy E by'! ¢=(2m"E)">(wR/#). Then,
using Eq. (A16) of Appendix A, we obtain

—2i(a® = 1)Ae™(\* + €*%sin ¢
(a+1)’Ay— A [F(¢,a) +2a] ’

(6)

,_
Oy =

where A=N2+1, Ay=N*+2\%cos260+1, and F(¢,a)=(da’
+1)cos 2¢p+i(a*~1)sin 2¢. Then the transmission is given
by
e 4(a® = 1)2AA,sin’ ¢
“{a+ 1Ay A%a P + (@ = 1)*A*sin? 2¢°

()

where a,=(a’+1)cos 2¢+2a.

Surprisingly, for #=0 we have Ay=A? and the depen-
dence on \ disappears. Then « takes the much simpler form
ay=2i(a*>~1)sin ¢/[F(¢,a)—(a*+1)]. This simplifies the
transmission considerably, as it takes the form

- 4(a®-1)%sin® ¢
{la+ 1) —agf? +(@* - 1)*sin’ 2¢

(8)

For case (i) we have 1=T"%% t,=¢'® r=r
=R;/2€_l(7ﬂ2_¢), r,=ry=0, and 6,=6,=7P/D,. T, is the
transmission amplitude of the scatterer and R,=1-T; is the

reflection amplitude. Then «; takes the form

—2i(a® = 1)Ae'T(\N2T2¢7%9 4 1)sin ¢p— R
(a+1)2A,9— AYF(p,a) + 2R*G(p,a)/A +2a]’
)

where A,y=N*+2\>T"? cos 20+1 and G(¢,a)=[(a*~2\a
+1)sin ¢p—i(a*~1)cos ¢]. For R,— 0 we have T,=1 and Eq.
(9) reduces to Eq. (6). In contrast though with Eq. (6), the
0=0 limit of Eq. (9) does depend on A. The corresponding
expressions though for a; and T are too lengthy and will not
be given here.

It is interesting to combine the asymmetric injection rep-
resented by A with an asymmetry in the ring’s arms due to
different average densities.'> Without any scatterer in the
arms this asymmetry can be modeled by taking r,=¢/(¢*9
and t,=€/ (" and the same other parameters as in case (i).
The resulting expression for @) can be written as

,_
a, =
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FIG. 2. Transmission vs ¢ (a) for two values of the flux and vs
flux (b) for two values of ¢. The solid and dashed curves are for
A=1 and the dotted and dash-dotted curves for A=3. The value of a
is zero, i.e., there is no reflection at the left lead-ring junction.

- 2i(a®> = 1)Ae " [\? sin(¢p — ) + €* sin(p + )]
(a+1)’Ay5— A’ [F(¢p,a) +2a cos 28] + G(a,d) °
(10)

where A y5=(\*+1)cos 26+2\% cos 26 and G(a, 8)=i(a*-1)
X (A\*=1)sin 2. For 6=0 Eq. (10) reduces to Eq. (6) while
for N=1 it gives Eq. (3) of Ref. 12 with which an experi-
mentally observed period halving of the AB oscillations was
explained. Notice further that, in contrast with Eq. (6), the
dependence on A does not disappear from Eq. (10) if we set
0=0.

,_
A, =

IV. RESULTS

We now present numerical results for the transmission 7'
given by T=|a}|%. We evaluate T using Eq. (6) and plot it vs
¢ in Fig. 2(a) for two different values of the flux. In Fig. 2(b)
we plot T as a function of the flux ®/®, for two different
values of ¢. In both panels we have a=0. This value of a
corresponds to €e=1/2 in Ref. 9 and the figure is intending to
show the effect of the asymmetric injection (A # 1) with re-
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FIG. 3. Transmission vs ¢ (a) and vs flux (b) when one scatterer
is present in one of the arms with strength 7,=0.25. The curves are
marked as in Fig. 2.

spect to both ring arms: A=1 pertains to solid and dashed
curves and A=3 to dotted and dash-dotted curves. For A=1
the results coincide with those of Ref. 9.

If a scatterer is present in one of the arms, we evaluate T
using Eq. (9) and plot it in Fig. 3 for T;=0.25. Panels and
curves are marked as in Fig. 2. As can be seen, a major
difference between the two cases is the phase shift intro-
duced by the scatterer in the T vs ®/®, panel and the asym-
metry between the left and right parts in the 7 vs ¢ panel.
The sinusoidal dependence of the transmission on ¢ or the
flux ®/®,, stems directly from that of the transmission [cf.
Eq. (7)], and especially from that of the numerator for A
>1.

We now consider only the asymmetric case, fix the value
of N (A\=3), and focus attention on the dependence of the
transmission on the parameter a. We show the results in Fig.
4 only for case (i), i.e., when no scatterer is present. When
one is present, a phase shift of @#/2 occurs in the 7 vs ¢
curves and maxima are converted into minima and vice
versa. The flux is set to ®/P;=0.4 in panel (a) and ¢ is set
to 7r/2 in panel (b). As expected from Egs. (7) and (9), the
transmission 7" decreases with increasing a when ¢ is fixed.
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FIG. 4. Transmission vs ¢ (a) for ®/®,=0.4 and vs flux (b) for
A=3 and ¢=/2 with a as indicated.

The results of Figs. 1-4 show that the parameter N, which
has to be real for the S matrix to be unitary, affects the
amplitude of the transmission but not its phase. We com-
pared the conductance G resulting from Eq. (10) with the
experimental results of the right panel of Fig. 3 of Ref. 12.
We used A=1, a=0 corresponding to e=1/2, and the rela-
tion of & with k given in this work. Though the agreement is
a bit better than that reported in Ref. 12, especially with
regard to the oscillation amplitude of G vs ¢, determined by
the Fermi level or G increase, it remains qualitatively the
same and changing A=1 to A # 1, with =0 or a# 0, brings
only a minor quantitative improvement.

V. COMPARISON WITH OTHER APPROACHES, RINGS
OF FINITE WIDTH

The results presented so far are valid for rings of zero
width or rings whose width is much smaller than their radii
and only the lowest (in the radial direction) energy level is
occupied. The question then arises: (i) how the results com-
pare to those of other approaches, and (ii) how relevant they
are to rings of finite width.

With regard to point (i) one frequently followed approach
is to consider the same 1D geometry but employ Griffith’s
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boundary conditions at the junctions between the leads and
the ring.’> Neither the S-matrix approach nor these conditions
apply to rings of finite width. One then has to resort to either
pure and often heavily involved numerical calculations that
pertain to point (ii) (Refs. 4 and 6) or an appropriate modi-
fication of Griffith’s conditions.'> We first address point (i)
and then point (ii).

Comparing the zero magnetic-field limit of Eq. (24) of
Ref. 9 for the transmission, T=|a;>=1/[(1-2¢€)sin> ¢/ €
+1], with the zero SOI limit of 7 in Ref. 5, T
=1/[9 sin? ¢/16+1], obtained by applying Griffith’s bound-
ary conditions, one finds that the results coincide when the
parameter € is equal to 4/9, which is close to the upper limit
€=1/2. If we compare any of these expressions with ours, as
obtained using Eq. (8), for any \ we obtain a=+(1-2¢€)'? in
the first case and a==+1/3 in the second.

Surprisingly, the same value of € is obtained for a nonzero
magnetic field if one disregards the fact that 6 in Eq. (24) of
Ref. 9 appears as 6/2 in Ref. 5 since the former is given by
T=4 sin? ¢ cos® 0/[(2a*/ €)sin® ¢+ (b*/ €)(cos 20—cos 2¢ 1%,
a*+b’=1-¢, and the latter by T
=4 sin? ¢ cos?(6/2)/[sin* ¢/2+(cos f—cos 2¢ ]>. Unfortu-
nately, attempting to make the same comparison between any
of these expressions for T and ours, using Eq. (7) with \
# +1, gives a very unwieldy result that involves transcen-
dental equations.

One way to proceed with case (ii), i.e., with rings of finite
width, is to slightly modify Griffith’s conditions so that the
width appears in them and in the expression for the transmis-
sion. This is done'? at the expense of an additional parameter
v, of order 1, whose value is obtained from a comparison of
the transmission with an exact calculation. We have done so
for the transmission through a ring of width W at zero mag-
netic field and give the result in Appendix B [cf. Eq. (B2)].
Equating this result to that of Ref. 9 gives e=4/(u+9) with
w=412/k*>W?, while equating it to ours leads to a value of a
determined from (a’+1)/(a’=1)==[(u+1)(u+9)+1]"2
Notice that this determination of € and @ makes them depend
on the energy, through the wave vector k, and the width W.
We assume that approximately the same values are obtained
for B#0.

A second way to proceed is to compare directly our result
for W=0 with an exact numerical one and try to fit the latter
by varying the parameter \. We have done so with A=c/[1
+(P/Dy)*] in order to mimick the asymmetry reported in
Ref. 6 and attributed to the effect of the Lorentz force in a
quantum wire of finite width. In the top panel of Fig. 5 we
show the transmission as a function of the flux. The values of
¢ used in producing the solid, dashed, and dotted curve cor-
respond to the wave vectors k=0.091/nm, k=0.06/nm, and
k=0.053/nm in Fig. 8 of Ref. 6. The values of a, s, and ¢
used are a=0.25, s=1.25, and c=1. The qualitative agree-
ment between the two results is very good with regard to the
period of the oscillations and the height of the transmission
peaks which in our case are more rounded than in Ref. 6.
Notice, in particular, the reduction of the transmission
minima with increasing ®/®,, which is attributed to the in-
fluence of the Lorentz force and is well reproduced. Of
course our simple model cannot reproduce all the details of
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FIG. 5. Top panel: Transmission vs flux with ¢ such that the
solid, dashed, and dotted curve correspond to the wave vectors k
=0.091/nm, k=0.006/nm, and k=0.053/nm, in Fig. 8 of Ref. 6.
The values of a, s, and ¢ used are a=0.25, s=1.25, and ¢c=1. No
scatterer is present in the ring’s arms. Bottom panel: As in top panel
with one scatterer present in one of the arms. The dashed-dotted,
dotted, dashed, and solid curves are for 7,=0.25, 0.5, 0.75, and 1,
respectively. The other parameters are ¢=6.957, a=0.4, s=1.5, and
c=1.

Ref. 6 but its analytical simplicity is an advantage over the
approach of Ref. 6.

The asymmetry reported in Ref. 6 is also exhibited in the
bottom panel of Fig. 5 where we plot T vs ®/®,, for case (ii),
i.e., when one scatterer is present in one arm. We plot T for
different 7, using ¢=6.95m. The dashed-dotted, dotted,
dashed, and solid curves correspond to 7,=0.25, 0.5, 0.75,
and 1, respectively. We also used a=0.4, s=1.25, and c=1.
The results are similar to those shown in the top panel, where
different wave vectors were used from one curve to another.
As can be seen, the overall trend is similar to that of Fig. 12
of Ref. 6. A detailed comparison cannot be made though
because here we consider transmission through a barrier
whereas Ref. 6 considered it over a well. Furthermore, in
Ref. 6 the transmission of a Gaussian wave packet, with a
spread in energy, was investigated, which can be deconvo-
luted into a series of plane waves around an average wave
number, while here the transmission of a plane wave with a
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well-defined energy or wave vector was studied. In principle,
we could take the injected, reflected, and transmitted wave
packages of Ref. 6, Fourier transform them, and obtain the
transmission and reflection coefficients for each wave vector,
i.e., for each energy, and add this difference to the manu-
script. However, the aim here is not to present an exact com-
parison between these two approaches, which is unrealistic
because of the different models used, but to show that we can
simulate the Lorentz-force-induced asymmetric injection of
electrons into the arms of the rings with a simple analytical
calculation. We expect though that such a calculation will
lead to some minor quantitative discrepancies in the trans-
mission even if the approach of Ref. 6 is applied to a barrier,
as in our case, due to the spread in the energy of the incident
electrons.

VI. CONCLUDING REMARKS

We evaluated the transmission through a mesoscopic ring,
in the presence of an AB flux, using an S matrix that is not
symmetric with respect to the two arms of the ring. All ele-
ments were expressed in terms of two parameters, a and A,
the latter expressing the asymmetry through A=b/c, with b,
¢ the pertinent elements of the S matrix. The determinant of
the S matrix and the transmission are invariant under the
change N — 1/\. Previous results of the literature pertaining
to a symmetric S matrix were readily recovered for A=1. The
dependence on the parameter A disappears from the trans-
mission [see Egs. (6) and (7)], but not from the more general
result given by Eq. (10) when the flux is zero. It is important
mostly for a nonzero flux and, depending on the parameters,
it modifies the results considerably as shown in Figs. 2 and 3,
where results for A=1 and A=3 are contrasted.

We also evaluated the transmission when an asymmetry
was introduced externally, i.e., when one scatterer was
placed in one of the ring’s arms. Of course this applies to
both cases A\=1 and N\ # 1. The transmission shows a rich
structure as a function of the parameter a, ¢ (or wave vec-
tor), ®/®d, and the strength T, (cf Figs. 1-5). The results for
different a shown in Figs. 4 and 5 correspond to those for €
in Ref. 9 in which no results as a function of the flux or the
strength 7 were shown.

Importantly, results on rings of finite width could be mim-
icked in two ways. In one way we simply fitted the results of
a heavy numerical treatment® by using A=c/[1+(®/®D)*],
with s between 1 and 2. The two results are in good qualita-
tive agreement, especially in the case when no scatterer was
present in the arms, cf. Fig. 5. When a scatterer was present
a real comparison could not be made due to the different
nature of the scatterers involved, a barrier in our case, a
Gaussian well in that of Ref. 6. Since the stronger the mag-
netic field, the stronger the asymmetry obtained in Ref. 6, it
is natural to expect that it should be reflected in A even if our
treatment applies only to rings whose width is much smaller
than their radii and only the lowest (in the radial direction)
energy level is occupied. As we saw the overall trend in 7 vs
®/®P, was reproduced quite well though not all the details.
We emphasize that this agreement cannot be obtained with
an S matrix that is symmetric with respect to both arms, i.e.,
for A=1.
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Despite the agreement just mentioned above, the model
has its limitations as was pointed out at the end of Sec. IV,
regarding a further comparison between its results and those
of Ref. 6, and at the end of Sec. III regarding a possible
improvement of the agreement, upon using Eq. (10) with A
# 1, between the reported experimental'? and theoretical re-
sults. Also, if the potentials in the two arms are different,
complex interference patterns may result and the asymmetric
injection, affecting only the amplitude of the transmission, is
unlikely to completely describe the systems discussed in this
paper.

In another way we used results of the literature that incor-
porate the width of the ring in the boundary conditions,
though not rigorously, to determine the parameters a and €
by comparing results for the transmission between different
approaches. This made a and € depend on the energy and the
width of the ring. In addition, through this comparison we
demonstrated the equality a*=1-e.

Another externally imposed asymmetry that could be con-
sidered is to have the lengths of the two arms unequal. This
has been treated in Ref. 7 using a symmetric S matrix and, as
expected, lead to a certain dephasing of the AB oscillations.
A similar study, involving arms of unequal length and a 4
X4 S matrix in the presence of SOI but without scatterers in
the arms, appeared recently.'*

A possible extension of the theory presented here would
be to consider in detail the real nature of the scatterers, bar-
riers or wells, placed in one arm and have an explicit energy
dependence in the transmission (7) and reflection (R,) prob-
abilities instead of taking them as parameters as we did. An-
other extension would be to consider a chain of rings with
periodic modulations in the magnetic field or ring radius in
analogy with a recent work on rings in the presence of SOI!>
A last extension concerns the determination A. Since \, like €
or a, is a parameter constrained only by the unitarity of the S
matrix (it has to be real), it cannot be evaluated. The only
way it could be determined is to compare two transmission
results obtained by two different methods as we have done in
Sec. V for the parameters € and a. Presently, such results are
not available. All these extensions are left for future work.
We expect that our results, though incomplete in some re-
spects, will be tested by appropriate experiments.
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APPENDIX A

In part (i) below we determine the elements of the S ma-
trix and in part (ii) we solve the systems of equations a}
=Sa, and a;=Sa,.
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(i) The unitarity of the S matrix [cf. Eq. (2)], leads to the
following relations between its elements a,b,c,d,e,f:

A+ + = +d+f =+l + =1, (Al

ab+bd+ce=ac+be+cf=bc+de+ef=0. (A2)

To reduce the number of parameters and make the two arms
not equivalent to each other, we take b=\c. Then Egs. (A2)
give e=—N(a+d) and f=—a-d=+1. With b=\c, Egs. (Al)
give b=+\(1-a?)"?/p, where w=(\>+1)"2. Obviously, 1
—-a’=0, i.e., [a|<1. Then Egs. (Al) and e=—\(a+d) deter-
mine d as d=(N?a—1)/u?. Thus, all elements can be ex-
pressed in terms of ¢ and A and the result is given by Eq. (3).
Reference 9 took A=1 and instead of a, used the parameter e,
0=<e=<1/2. The value e=1/2 corresponds to a=0 and €=0
to a=1.
(ii) For the right junction we obtain

as=bB,+cy, (A3)
ﬁé = dBZ teyr, (A4)
Vr=eBr+ [y (AS)
Using Eqgs. (A4) and (A5) we can write
(72) =t12<18%)’ (A6)
V2 B,
where t;, is the matrix
1({e*-fd f)
=— . A7
i) e( —d 1 (A7)
Notice that det (t;;)=1.
For the left junction we obtain
aj=a+bB;+cy, (A8)
Bi=b+dB, +ey, (A9)
Yi=c+eB+fy. (A10)
Using Egs. (A9) and (A10), we can write
! b(be—dc
()= eulz)
Bi e\ —¢ Y1

where t;; is given by t,, with d and f interchanged.
The connection between the two junctions is made by

writing
(B?) =e‘”'t1<ﬂ1 ) (A12)
B Bi
for the amplitudes in the upper arm, and
(71>=e_502t£(72>’ (A13)
"1 "2

for the amplitudes in the lower arm, where t; and t, are the
matrices associated with the first and second scatterer given

035304-6



AHARONOV-BOHM OSCILLATIONS IN A MESOSCOPIC...

by Eq. (A7). Combining Eq. (A6) and Egs. (A11)-(A13) we

can write
. b(be—-cd
()27,
BI e —C

P= t“e_mztétlze_mltl - 1,

(A14)

with
(A15)

where 1 is the unit matrix. The transmitted amplitude a; is
obtained from Egs. (A3) and (A4) (A=\%+1),

as=[(1-a>)A]"*(B, - B5)IN(a+ 1),

and the coefficients B, and B; from Eq. (A9) after solving
Eq. (Al1) for B, and B;. Inserting these values of 3, and S,
in Eq. (A16) gives Eq. (6) of Sec. III.

(A16)

APPENDIX B

Griffith’s boundary conditions applied at a junction be-
tween the leads and the ring, e.g., at the black triangles in

PHYSICAL REVIEW B 75, 035304 (2007)

Fig. 1, are (i) the continuity of the wave function and (ii) the
continuity of the flux. For a ring of finite width one modifies
condition (ii) by adding a term 2w/ W to the left side' so
that it reads

N

> WL, (B1)
-1 0x; W

where N is the number of the legs at a junction (N=3 here)

and v a parameter of order 1 to be determined from a com-

parison with an exact numerical result.

We have applied these conditions to a ring of finite width
connected to two leads of the same width. On each line seg-
ment the wave function is given by =A,;exp(ikx;)
+ B, exp(—ikx;). The inner and outer radii of such a ring are
R—-W/2 and R+ W/2, respectively. Assuming nothing is in-
cident from the right of the right junction, and setting u
=412/k*W? we obtain the transmission, not given in Ref. 13,
as

T=16/(+ 1)(w + 9)sin’(7kR) + 16]. (B2)
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