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In this work, we investigate the Vignale-Kohn current functional when applied to the calculation of optical
spectra of semiconductors. We discuss our results for silicon. We found qualitatively similar results for other
semiconductors. These results show that there are serious limitations to the general applicability of the Vignale-
Kohn functional. We show that the constraints on the degree of nonuniformity of the ground-state density and
on the degree of the spatial variation of the external potential under which the Vignale-Kohn functional was
derived are almost all violated. We argue that the Vignale-Kohn functional is not suited to use in the calculation
of optical spectra of semiconductors since the functional was derived for a weakly inhomogeneous electron gas
in the region above the particle-hole continuum, whereas the systems we study are strongly inhomogeneous
and the absorption spectrum is closely related to the particle-hole continuum.
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I. INTRODUCTION

Time-dependent density functional theory �TDDFT� de-
veloped by Runge and Gross1 makes it possible to describe
the dynamic properties of interacting many-particle systems
in an exact manner.1–4 Dhara and Ghosh5 and Ghosh and
Dhara6 showed that the Runge-Gross theorem could be ex-
tended to systems that are subjected to general time-
dependent electromagnetic fields �see also Ref. 7�. The
method has proven to be an accurate tool in the study of
electronic response properties.3,8,9 In this paper, we study
infinite systems for which we use time-dependent current-
density-functional theory �TDCDFT�.7,10–12 In this approach,
the electron density of TDDFT is substituted by the electron
current density as the fundamental quantity. There are mainly
three reasons to use TDCDFT instead of ordinary TDDFT.
The first reason is related to the use of periodic boundary
conditions, which provide an efficient way to describe infi-
nite systems but that artificially remove the effects of density
changes at the surface.13 For example, when a system is per-
turbed by an electric field there will be a macroscopic re-
sponse of the system and a current will be flowing through
the interior with a nonzero average given by j�t�
= �1/V��Vj�r , t�dr, which is the spatial average of the current
density j�r , t� over an arbitrary volume V. This macroscopic
current is directly related through the continuity equation to a
density change at the outer surface of the system but does not
correspond to a density change in the bulk of the system. The
density change at the surface of the system leads to a mac-
roscopic screening field in the bulk of the system. When
using periodic boundary conditions, this phenomenon cannot
be described with a functional of the bulk density alone,13

but it can be described by a functional of the current density
in the bulk. Some of these difficulties can be circumvented
by use of an expression that relates the density-density re-
sponse function to the trace of the current-current response
function.9,14,15 However, for anisotropic materials, this rela-
tion only provides enough information to extract the trace of
the dielectric tensor and not its individual components. Sec-
ond, in TDDFT, only the response caused by longitudinal

vector potentials can be accounted for since only purely lon-
gitudinal vector potentials can be gauge transformed to sca-
lar potentials. The scalar potential is the natural conjugate
variable of the density in the meaning of a Legendre
transform.4 However, when we consider transverse vector
potentials, the natural Legendre conjugate is the current
density.16 Third, to describe nonlocal exchange-correlation
effects in large systems,15,17,18 it can be more convenient and
more efficient to use a local functional of the current density
instead of a nonlocal functional of the density.19–21 Within
TDDFT, one would need an exchange-correlation functional
that is completely nonlocal to be able to take into account the
charges that are induced at the surface of the system caused
by the external field and that produce a counteracting
field.13,22 Instead, by applying a local functional of the cur-
rent density, we can still take into account nonlocal effects
that are induced in the system by an external field.

TDDFT has mainly been used within the adiabatic local
density approximation �ALDA� in which the exchange-
correlation scalar potential vxc�r , t� is just a local functional
of the density. In this work, we investigate a method that
goes beyond the ALDA in which we employ an exchange-
correlation vector potential, Axc�r , t�, the longitudinal part of
which can be related to vxc�r , t� by a gauge transformation.
We approximate the exchange-correlation vector potential as
a local functional of the current density using the expression
derived by Vignale and Kohn.11,12 By studying a weakly in-
homogeneous electron gas, they found a dynamical
exchange-correlation vector potential as a functional of the
current density that is nonlocal in time but still local in
space. It was later shown by Vignale et al.23 that the
exchange-correlation vector potential obtained by Vignale
and Kohn11,12 could be recast in terms of a viscoelastic stress
tensor, making the formalism physically more transparent.
The Vignale-Kohn �VK� functional was derived under the
constraints k ,q�kF ,� /vF, where k is the length of the wave
vector of the external perturbation, q is the length of the
wave vector of the inhomogeneity of the ground-state den-
sity, and kF and vF are the local Fermi wave vector and
velocity, respectively. The constraint q�kF ,� /vF means

PHYSICAL REVIEW B 75, 035116 �2007�

1098-0121/2007/75�3�/035116�9� ©2007 The American Physical Society035116-1

http://dx.doi.org/10.1103/PhysRevB.75.035116


that, formally, the application of the VK functional is only
justified if the ground-state density is slowly varying, and the
constraint k�kF ,� /vF means we are formally allowed to use
the VK functional if the induced current density is slowly
varying. Furthermore, the constraint k�� /vF implies the re-
gion above the particle-hole continuum of the homogeneous
electron gas.

The VK functional was first applied by Ullrich and Vig-
nale to study the line widths of collective modes in two
dimensional quantum strips and the line widths of intersub-
band plasmons in quantum wells.24–27 These phenomena oc-
cur in the region above the particle-hole regime. They ob-
tained a quantitative agreement with the experimentally
observed linewidths of the intersubband plasmons. We then
applied the VK functional in an approximated fashion as a
polarization functional and observed that the dielectric func-
tions of several semiconductors were much improved.28

However, to obtain results in good agreement with experi-
ment, an empirical prefactor had to be used. Later van Faas-
sen et al.19,20 showed that the inclusion of the VK functional
in TDDFT calculations yields greatly improved polarizabil-
ities for �-conjugated polymers, obtaining results that are
comparable to MP2 values. These results were indications
that the VK formalism is a very promising one, even when it
is applied to describe phenomena related to the particle-hole
regime in systems of which the ground-state density nor the
induced current density is slowly varying. However, more
recent results show that there are serious limitations to the
general applicability of the VK functional. It was observed
by van Faassen and de Boeij that the excitation energies of
n→�* transitions in �-conjugated polymers and a bench-
mark set of molecules are greatly overestimated.21,29 A simi-
lar overestimation was found by Ullrich and Burke for the
excitation energies of s→p transitions in atoms.30 A recent
review of the Vignale-Kohn functional applied to atoms and
molecules can be found in Ref. 31. Finally, in a recent
article,32 we showed that the peak that appears in the optical
spectra of one- and three-dimensional polyacetylene, which
is a �-conjugated polymer, shows a large shift to higher fre-
quency with respect to the peak that appears in the spectra
obtained within the ALDA. Furthermore, the height of this
peak is largely reduced. However, to obtain agreement with
optical spectra from BSE calculations on three-dimensional
polyacetylene33,34 the height of the peak should increase and
its width should decrease with respect to the peak in the
ALDA spectrum. These results raise the question whether or
not it is justified to apply the VK functional to inhomoge-
neous systems in the calculation of phenomena related to the
particle-hole regime, such as optical spectra and excitation
energies. In this work, we will try to answer this question. To
do so we will study some limiting behavior of the VK func-
tional and evaluate the VK functional when applied in the
calculation of the optical spectra of silicon. We also per-
formed calculations on several other semiconductors and in-
sulators, namely, GaAs, GaP, and diamond, and found quali-
tatively similar results. Silicon was mainly chosen because it
is a material for which the optical spectra obtained within the
ALDA clearly show deficiencies, most notably the absence
of the first peak in the absorption spectrum, and therefore, it
is a good test system for methods that, such as VK, go be-
yond the ALDA.

The outline of this paper is as follows. In Sec. II, we give
an overview of the theory we use; it consists of an account of
linear response theory within TDCDFT, an introduction to
the VK functional, an analysis of the limiting behavior of the
response kernels of the electron gas which enter the VK
functional, and a short summary of the parametrizations that
are available for these kernels. The computational details are
discussed in Sec. III. We present and discuss our results ob-
tained for the optical spectra of silicon in Sec. IV. Finally, we
draw conclusions from our findings in Sec. V.

II. THEORY

A. TDCDFT linear response equations

A frequency-dependent electric field Eext��� applied to a
solid will induce a macroscopic polarization Pmac���, which
can be obtained from the induced current density �j�r ,�� by
�we use atomic units �e= � =m=1� throughout this paper�

Pmac��� =
− i

�V
�

V

�j�r,��dr , �1�

where V is the volume of a unit cell. Within the linear re-
sponse regime, the macroscopic polarization will be propor-
tional to the macroscopic field Emac���, i.e., the applied field
plus the average induced field within the solid. The constant
of proportionality is the electric susceptibity �e���,

Pmac��� = �e��� · Emac��� . �2�

Unlike Pmac��� and Emac���, the susceptibility �e��� is in-
dependent of the size and shape and is therefore a bulk prop-
erty of the system. The induced current density can, in prin-
ciple, be calculated from the true current-current response
function �jj�r ,r� ,�� of the system according to

�j�r,�� =
− i

�
� �jj�r,r�,��dr� · Emac��� . �3�

From Eqs. �1�–�3�, it follows that

�e��� =
− 1

�2

1

V
�

V

dr� dr��jj�r,r�,�� . �4�

The direct evaluation of the current-current response func-
tion is, however, unpractical. In our method, we therefore
adopt a Kohn-Sham formulation in which the response to an
external electric field of an interacting system is calculated as
the response of an auxiliary noninteracting system to an ef-
fective field described by the set of Kohn-Sham potentials
��vs�r ,�� ,�As�r ,���. We choose the field Emac��� to be
given and its relation to �Amac��� is given by �Amac���
=Emac��� / i�. We leave the relation between Emac��� and
Eext��� unspecified because this depends on the sample size
and shape and requires knowledge of �e���. The set of
Kohn-Sham potentials has the property that it produces the
exact induced current density in the Kohn-Sham system.
From the exact induced current density, we can calculate the
exact induced density ���r ,�� according to the continuity
equation,
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� · �j�r,�� = i����r,�� . �5�

The effective field is a functional of the induced current den-
sity and has to be solved in a self-consistent manner. To first
order, we have the following expressions within the Kohn-
Sham scheme for the induced density:

���r,�� =� ��s,�jp
�r,r�,�� · �As�r�,��

+ �s,���r,r�,���vs�r�,���dr� �6�

and the induced current density,

�j�r,�� =� ���s,jpjp
�r,r�,�� + �0�r���r − r��� · �As�r�,��

+ �s,jp��r,r�,���vs�r�,���dr�, �7�

where �0�r� is the ground-state density. Here, the �s,ab are the
Kohn-Sham response kernels, which are properties of the
ground state. They are given by

�s,ab�r,r�,�� = lim
	→0+

	
n,n�

�fn − fn��



��n

*�r�ã�n��r����n�
* �r��b̃�n�r���

� − ��n� − �n� + i	
, �8�

in which ã and b̃ can be either �̃=1 or j̃p=−i��−�†� /2,
where the dagger on the � operator indicates that the opera-
tor acts on terms to the left of it. We use a tilde instead of a
caret in the auxiliary operators �̃ and j̃p in order to differen-
tiate them from the density operator and paramagnetic
current-density operator. In Eq. �8�, fn and �n are the occu-
pation numbers and the eigenvalues, respectively, of the
Kohn-Sham orbitals �n�r� of the unperturbed system. The
positive infinitesimal 	 in Eq. �8� ensures the causality of the
response function. In principle, the scalar potential could
have been gauge transformed into a vector potential26,27 and
���r ,�� could have been expressed in terms of �j�r ,�� by
means of the continuity equation �Eq. �5��. For the imple-
mentation, it is, however, convenient to include both the in-
duced density and the scalar potential in our formalism. If we
neglect the small Landau diamagnetic part, which is only
important in the evaluation of magnetic properties, we can
use the approximate conductivity sum rule14

��s,jpjp
�r,r�,0��ij + �0�r��ij��r − r�� = 0. �9�

This sum rule can be used to relate the diamagnetic contri-
bution to the induced current density �jd=−�0�r��As�r ,�� to
the static Kohn-Sham response function �s,jpjp

�r ,r� ,0�. With
this approximation, we now obtain for the induced current
density

�j�r,�� =� ���s,jpjp
�r,r�,�� − �s,jpjp

�r,r�,0�� · �As�r�,��

+ �s,jp��r,r�,���vs�r�,���dr�. �10�

This provides an efficient way to deal with the incomplete-

ness of the basis set in the �→0 limit in actual applications.
In Eq. �10�, the Kohn-Sham potentials are, to first order,
given by

�As�r,�� = �Amac��� + �Axc�r,�� , �11�

�vs�r,�� = �vH,mic�r,�� + �vxc,mic�r,�� , �12�

where we chose the gauge such that all components that
represent a macroscopic field are included in the vector po-
tential since we choose the scalar potential to be lattice
periodic.35 In Eq. �12�, �vH,mic�r ,�� is the microscopic part
of the Hartree potential and �vxc,mic�r ,�� is the microscopic
part of the exchange-correlation scalar potential. The macro-
scopic vector potential �Amac��� consists of the external plus
the induced vector potential. The latter potential accounts for
the long-range contribution of the Hartree potential of the
surface charge and for the retarded contribution of the in-
duced transverse current density. We can safely neglect the
microscopic part of the induced vector potential because its
electric-field contribution is already a factor �2 /c2 smaller
than that of the microscopic Hartree potential.35 This is con-
sistent with the Breit approximation used in the ground-state
calculation.36,37 The gauge is chosen such that the external
field is incorporated into �Amac���. Finally, �Axc�r ,�� is the
exchange-correlation vector potential. In practice, an ap-
proximation is required for the set of exchange-correlation
potentials ��vxc�r ,�� ,�Axc�r ,���.

In Sec. II B, we will discuss the expression that Vignale
and Kohn derived for �Axc�r ,��. In this derivation, they
chose the gauge such that �vxc�r ,�� vanishes for all frequen-
cies �. It turns out that a part of their final expression for
�Axc�r ,�� is equal to the gradient of the ALDA exchange-
correlation scalar potential. This part can then be gauge
transformed into �vxc,mic�r ,��.

B. Vignale-Kohn functional

The general expression for the exchange-correlation vec-
tor potential to first order is

�Axc,i�r,�� = 	
j
� dr�fxc,ij�r,r�,���j j�r�,�� , �13�

which defines the tensor kernel fJxc�r ,r� ,��. Vignale and
Kohn derived an approximation for this exchange-correlation
kernel.11,12 For this, they studied a periodically modulated
electron gas with wave vector q, i.e.,

�0�r� = ��1 + 2 cos�q · r�� , �14�

where � is the density of the homogeneous electron gas and
�1, and performed an expansion of the exchange-
correlation kernel

fxc,ij�k + mq,k,��

=
1

�
� dr� dr�fxc,ij�r,r�,��e−i�k+mq�·reik·r�, �15�

to second order in k and q and to first order in . In Eq. �15�,
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� is the volume of the system and m is an integer for which
to first order in  only the values for 
m 
 �1 are needed. This
expansion was shown to be analytic for small k and q and to
be valid under the constraints k ,q�kF ,� /vF, where k= 
k

and q= 
q
 and where kF and vF are the local Fermi momen-
tum and the Fermi velocity, respectively. The coefficients in
this expansion are completely determined in terms of the
density � and the coefficients fxcL

h �� ,�� and fxcT
h �� ,�� of the

exchange-correlation kernel of the homogeneous electron
gas by the Onsager symmetry relation, the zero-force and
zero-torque theorems and a Ward identity.11,12 The VK ex-
pression for �Axc�r ,�� is then obtained from

�Axc,i�r,�� = 	
j

	
m=0,±1

� dk

�2��3 fxc,ij�k + mq,k,��


ei�k+mq�·r�j j�k,�� �16�

by inserting the expansion for fJxc in Eq. �16� and using Eq.
�14�. Since this expression contains first- and second-order
powers of k, we obtain first- and second-order derivatives of
the current density in real space. Similarly first- and second-
order powers of q lead to first- and second-order derivatives
of �0�r� in real space. From analysis of Eq. �16� and as a
consequence of a Ward identity � can be replaced by �0�r� in
the coefficients fxcL

h �� ,�� and fxcT
h �� ,��. This will only affect

terms of order 2, which were already neglected in the deri-
vation. By doing this, we obtain a functional we can apply to
general systems, although when applied to systems with
large density variations we may go outside the range of va-
lidity of the VK derivation. It was shown by Vignale et al.23

and Conti and Vignale38 that the VK expression for
�Axc�r ,�� could be written in the form of a viscoelastic field

i��Axc,i�r,�� = �i�vxc
ALDA�r,�� −

1

�0�r�	j

� j�xc,ij�r,�� ,

�17�

where �vxc
ALDA�r ,�� is the linearization of the ALDA

exchange-correlation scalar potential and �Jxc�r ,�� is a ten-
sor field, which has the structure of a symmetric viscoelastic
stress tensor,

�xc,ij = 	̃xc�� jui + �iuj −
2

3
�ij	

k

�kuk� + �̃�ij	
k

�kuk,

�18�

in which the velocity field u�r ,�� is given by

u�r,�� =
�j�r,��

�0�r�
. �19�

The coefficients 	̃xc�r ,�� and �̃xc�r ,�� are determined by
the longitudinal and transverse response coefficients
fxcL

h ��0�r� ,�� and fxcT
h ��0�r� ,�� of the homogeneous electron

gas evaluated at the density �0�r�,

	̃xc�r,�� =
i

�
�0

2�r�fxcT
h ��0�r�,�� , �20�

and

�̃xc�r,�� =
i

�
�0

2�r�� fxcL
h ��0�r�,�� −

4

3
fxcT

h ��0�r�,��

−
d2�xc

h

d�2 ��0�r��� , �21�

where �xc
h ��� is the exchange-correlation energy per unit vol-

ume of the homogeneous electron gas. The quantities

	̃xc�r ,�� and �̃xc�r ,�� can be interpreted as viscoelastic

coefficients.23,38 The parameter �̃xc�r ,�� contains a factor for
which one can prove the exact relation23,38

lim
�→0

� fxcL
h ��0�r�,�� −

4

3
fxcT

h ��0�r�,�� −
d2�xc

h

d�2 ��0�r��� = 0.

�22�

As mentioned before, the validity of the expression in Eqs.
�17�–�21� has been rigorously proven under the constraints
k ,q�kF ,� /vF.11,12 From Eq. �14�, we see that the constraint
q�kF ,� /vF implies in real space that


��0�r�

�0�r�

� 2q � kF,
�

vF
. �23�

To obtain an expression for the constraint k�kF ,� /vF in
real space, we start from the expression of the induced cur-
rent density for the homogeneous electron gas

�j�r,�� =� dr��jj�r − r�,�� · �A�r�,�� . �24�

It is convenient to do a Fourier transformation with respect
to �r−r��. We obtain

�j�r,�� =� dk

�2��3eik·r�jj�k,�� · �A�k,�� , �25�

where the Fourier transform and its inverse are given by

f�k� =� dre−ik·rf�r� �26�

f�r� =� dk

�2��3eik·rf�k� . �27�

We can define the longitudinal and transverse parts of
�jj�k ,�� denoted by �L�k ,�� and �T�k ,��, respectively, ac-
cording to

�jj,mn�k,�� = �L�k,��
kmkn

k2 + �T�k,����mn −
kmkn

k2 � .

�28�

It then follows that we have the following expressions:

� · �j�r,�� =� dk

�2��3 ieik·r�L�k,��k · �A�k,�� �29�
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� 
 �j�r,�� =� dk

�2��3 ieik·r�T�k,��k 
 �A�k,�� .

�30�

We now consider a vector potential that is consistent with the
slowly varying external perturbation considered in the
derivation of the VK functional, i.e., �A�k ,��=��k
−k0��AL�k ,��+AT�k ,��� with 
k0 
 �kF ,� /vF and
AL�T��k ,�� the longitudinal �transverse� part of the vector
potential for which we have k ·AT�k ,��=k
AL�k ,��=0.
We then obtain


� · �j�r,��
 = 
k0

�jL�r,��
 � 
k0

�j�r,��
 �31�


� 
 �j�r,��
 = 
k0

�jT�r,��
 � 
k0

�j�r,��
 , �32�

where the longitudinal �transverse� part of the induced cur-
rent density �jL�T��r ,�� is the inverse Fourier transform of
�jL�T��k ,��=�L�T��k ,���AL�T��k ,��. We thus see that the
condition k�kF ,� /vF implies that


� · �j�r,��


�j�r,��


� kF,
�

vF
. �33�


� 
 �j�r,��


�j�r,��


� kF,
�

vF
. �34�

Therefore, Eq. �33� is a measure for the degree in which the
longitudinal part of the current density satisfies the constraint
kL�kF ,� /vF and Eq. �34� is a measure for the degree in
which the transverse part of the current density satisfies the
constraint kT�kF ,� /vF, where kL�T� is the length of the lon-
gitudinal �transverse� part of k.

C. Limiting behavior of fxcL,T
h

In the VK functional enter the longitudinal and transverse
response kernels of the homogeneous electron gas fxcL,T

h ���.
These are obtained from fxcL,T

h �k ,�� in the limit k→0. Let
us now evaluate these kernels in the limit �→0. From a
viscoelastic analysis by Conti and Vignale,38 we know that
we obtain the following relations in that limit:

lim
�→0

lim
k→0

fxcL
h �k,�� =

1

�2�Kxc +
4

3
�xc� �35�

=
d2�xc

h ���
d�2 +

4

3

�xc

�2 �36�

lim
�→0

lim
k→0

fxcT
h �k,�� =

�xc

�2 , �37�

where Kxc and �xc are the exchange-correlation parts of the
bulk modulus and shear modulus, respectively. The order of
limits in Eqs. �35� and �37� guarantees that the evaluation of
fxcL,T

h �k ,�� in �k=0,�=0� is in the region above the
particle-hole continuum. We see that if the limit k→0 is
taken before the limit �→0 there remains a finite contribu-

tion from fxcL
h �k ,�� as well as fxcT

h �k ,��. The order in which
the limits are taken in Eqs. �35� and �37� is important be-
cause, taking the reverse order of limits leads to the follow-
ing expressions:

lim
k→0

lim
�→0

fxcL
h �k,�� =

d2�xc
h ���

d�2 �38�

lim
k→0

lim
�→0

fxcT
h �k,�� = lim

k→0
lim
�→0

�2

k2 � 1

�T,s�k,��
−

1

�T�k,��� = 0,

�39�

where �T,s�k ,�� is the transverse part of the Kohn-Sham
current-current response function. The first expression is ob-
tained from the compressibility sum rule.39 The second ex-
pression vanishes because in the limit �→0 both �T,s�k ,��
and �T�k ,�� have finite values. That �T,s�k ,�� has a finite
value in the limit �→0 follows from the evaluation of the
Lindhard function in that limit. Furthermore, we know from
Landau theory that14

lim
k→0

�T�k,� = 0� = − � , �40�

from which it is clear that �T�k ,�� is finite in the limit �
→0. The order of limits in Eqs. �38� and �39� guarantees that
the evaluation of fxcL,T

h �k ,�� in �k=0,�=0� is within the
particle-hole continuum. From a comparison of Eqs. �36� and
�37� and Eqs. �38� and �39�, we see that in the limit �k ,��
→ �0,0� the exchange-correlation kernels fxcL,T

h �k ,�� have a
discontinuity that is proportional to �xc. Although the precise
value of �xc is unknown, it is much smaller than Kxc. How-
ever, it turns out that it has a big influence on the optical
spectra of one- and three-dimensional polyacetylene calcu-
lated with the VK functional.32 In fact, surprisingly, the in-
fluence on the optical spectra of the terms in the VK func-
tional involving the transverse kernel fxcT

h ��� is much bigger
than the terms involving the longitudinal kernel fxcL���.
These terms are responsible for a large shift of the peak that
appears in the optical spectra of one- and three-dimensional
polyacetylene to higher frequency with respect to the peak in
the ALDA spectra. Furthermore, they cause a large reduction
of the height of this peak. However, if one makes the ap-
proximation �xc=0, which effectively is the same as using
Eqs. �38� and �39� instead of Eqs. �36� and �37�, we obtained
results that are close to the results obtained within the
ALDA. The reason is that within this approximation the VK
functional reduces to the ALDA in the limit �→0, as can be
seen from Eqs. �17�–�22�, and the fact that the values of
fxcL,T

h ��� do not change much from their values at �=0 for
���pl, where �pl is the plasmon frequency. This is typically
the frequency range in which we are interested. From the
above considerations, it seems that the VK functional gives
too much weight to the transverse kernel fxcT��� when it is
applied to the calculation of the optical spectra of systems
with inhomogeneous ground-state densities. Furthermore,
since the optical spectrum of a system is closely related to its
particle-hole continuum and, in view of the discontinuity of
fxcL,T�k ,�� in �0,0�, it might be more desirable to employ a
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functional in which the kernels fxcL,T
h �k ,�� are evaluated in

the particle-hole continuum instead of in the region above
the particle-hole continuum. However, one should consider a
finite k throughout the derivation of such a functional since
taking the limit k→0 at any stage in the derivation has the
consequence that fxcL,T

h �k ,�� have to be evaluated in the re-
gion above the particle-hole continuum. The exception to the
above statement is when the limit �→0 is taken before the
limit k→0, as is effectively done to obtain the ALDA, for
example.

D. Parametrizations for fxcL,T
h

In a previous paper, we discussed extensively the param-
etrizations that are available for fxcL,T

h ��0�r� ,��.32 Here, we
will give a brief summary. Gross and Kohn �GK� obtained
exact properties of fxcL

h �k=0,�� fxcL
h ��� in the low- and

high-frequency limits.40,41 Furthermore, they introduced an
interpolation formula for Im fxcL

h ��� that reduces to the exact
high-frequency limit for �→� obtained from second-order
perturbative expansions by Glick and Long42 and vanishes
linearly in the limit �→0. The real part of fxcL

h ���
can subsequently be obtained from the Kramers-Krönig
dispersion relations. However, in deriving this interpo-
lation formula they implicitly made the assump-
tion that lim�→0limk→0fxcL

h �k ,��=limk→0 lim�→0fxcL
h �k ,��

=d2�xc
h ��� /d�2 which from Sec. II C we know to be wrong. A

different approach to obtain fxcL
h ��� as well as fxcT

h ��� was
given by Conti, Nifosì, and Tosi �CNT�.43 They calculated
Im fxcL,T

h ��� by direct evaluation of the imaginary parts of the
longitudinal and transverse parts of the current-current re-
sponse functions, Im �L,T�k ,��. CNT used exact expressions
for Im �L,T�k ,�� in terms of four-point response functions
that were subsequently approximated by decoupling them
into products of two-point response functions. In order to
include the effect of plasmons, the two-point response func-
tions were then taken to be the response functions in the
random-phase approximation �RPA�. This decoupling
scheme only keeps direct contributions and neglects ex-
change processes. To account for the latter processes, CNT
introduced a phenomenological factor that reduces the total
two-pair spectral weight by a factor of 2 in the high-
frequency limit. In the low-frequency limit, the factor is
close to unity for metallic densities, thereby largely neglect-
ing exchange processes. A distinct feature of the CNT result
is a pronounced peak at �=2�pl in Im fxcL,T

h ���. The high-
frequency behavior of Im fxcL

h ��� obtained by CNT coincides
with the result of Glick and Long,42 and the high-frequency
behavior of Im fxcT

h ��� given by CNT is new. Furthermore,
CNT introduced parametrizations for Im fxcL,T

h ��� that repro-
duce their numerical results. The real parts can again be ob-
tained from the Kramers-Krönig dispersion relations, where
the high-frequency limits of fxcL,T

h ��� were obtained from
third-frequency-moment sum rules.38,39,41 Like GK, CNT ne-
glect the discontinuity of fxcL,T�k ,�� in �k ,��= �0,0� be-
cause they prefer to enforce continuity in the limit �k ,��
→ �0,0� since they expect the discontinuity in this limit to be
small and since the exact value of this discontinuity is un-

known. Neglecting this discontinuity effectively amounts to
the approximation �xc=0.

Qian and Vignale �QV�44 combined the methods of GK
and CNT. They obtained an analytic result for the slope of
Im fxcT

h ��� at �=0 by evaluating Im �L,T�k ,�� within pertur-
bation theory in a similar way as CNT. The direct contribu-
tions were treated the same, but QV also included their ex-
change counterparts in the evaluation. They adopted the
interpolation scheme of GK for Im fxcT

h ��� in which they
need one more parameter to satisfy the new constraint on the
slope of Im fxcL,T

h ��� at �=0. This extra parameter in their
scheme is the width of a Gaussian peak around �=2�pl that
accounts for the two-plasmon contributions found by CNT.
The coefficients in their interpolation formula are now deter-
mined by their analytic result for the slope at �=0 and the
correct low-frequency limits, Eqs. �36� and �37�, as well as
the correct high-frequency behavior. The values for �xc were
obtained from the Landau parameters calculated by Yasuhara
and Ousaka45 for some values of the Wigner-Seitz radius rs
�4�rs

3 /3=1/��. Their model shows a peak around �=2�pl

that is less pronounced than CNT’s.
Since the CNT parametrization for fxcL,T

h ��� is based on
the approximation �xc=0, the VK functional with this pa-
rametrization reduces to the ALDA in the limit �→0. The
static limit of the VK functional with the QV parametrization
for fxcL,T

h ��� is not equal to the ALDA since in this param-
etrization fxcT

h �0� is nonzero. The approximation �xc=0 can
easily be included in the QV interpolation formula and we
will denote this approximated form of the QV parametriza-
tion for fxcL,T

h ��� by QVA.

III. COMPUTATIONAL DETAILS

The implementation was done in the ADF-BAND
program,35,46–48 and we performed our calculations with this
modified version. We made use of Slater-type orbitals �STO�
in combination with frozen cores and a hybrid valence basis
set consisting of the numerical solutions of a free-atom
Herman-Skillman program49 that solves the radial Kohn-
Sham equations. The spatial resolution of this basis is
equivalent to a STO triple-� basis set augmented with two
polarization functions. This valence basis set was made or-
thogonal to the core states. The Herman-Skillman program
also provides us with the free-atom effective potential. The
Hartree potential was evaluated using an auxiliary basis set
of STO functions to fit the deformation density in the
ground-state calculation and the induced density in the re-
sponse calculation. We used the VK functional to calculate
the dielectric function of silicon. We used Eqs. �1� and �2� to
obtain �e��� from which the macroscopic dielectric function
can directly be obtained through ����=�1���+ i�2���=1
+4��e���. For the evaluation of the k-space integrals, we
used a numerical integration scheme with 369 symmetry-
unique sample points in the irreducible wedge of the Bril-
louin zone, which was constructed by adopting a Lehmann-
Taut tetrahedron scheme.50 We checked the convergence
with respect to the number of conduction bands used and
found that ten conduction bands are sufficient. This number
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was used in all our calculations. We made use of the Vosko-
Wilk-Nusair parametrization51 of the LDA exchange-
correlation potential, which was also used to construct the
ALDA exchange-correlation kernel. As mentioned above, the
values for fxcL,T

h �� ,�� were obtained from the parametriza-
tions given in Refs. 43 and 44 denoted by CNT and QV,
respectively. In the QV interpolation formula for
Im fxcT

h �� ,��, we need fxcT
h �� ,0�. This quantity is known only

at specific values of the Wigner-Seitz radius rs. We used a
cubic spline interpolation to obtain values for fxcT

h �� ,0� at
arbitrary rs in which the behavior for small rs was taken to be
quadratic similar to exchange-only behavior.

IV. RESULTS

As a typical example for the optical spectra obtained with
TDCDFT using the VK functional, we report the imaginary
part of dielectric function of silicon in Fig. 1. We also per-
formed calculations on several other semiconductors and in-
sulators, namely, GaAs, GaP, and diamond and found quali-
tatively similar results. The various results in Fig. 1
correspond to different approximations for fxcL,T

h �� ,�� that
enter the VK expression for �Axc�r ,��. We compare our
results obtained with the VK functional to our ALDA results
and with results obtained from experiment.52 In order to fa-
cilitate comparison, we have used a scissors operator in our
calculations to coincide the calculated optical gap with that
found in experiment. The scissors operator shifts upward the
energies of the unoccupied Kohn-Sham orbitals and changes
the matrix elements of the current operator. The spectrum
obtained with the QV interpolation formula for fxcL,T

h �� ,��
collapses. The spectra obtained with the CNT and QVA pa-
rametrizations, however, are close to the ALDA spectrum.
They even show some improvement over the ALDA spec-

trum because the height of the second peak is better repro-
duced. As mentioned before the CNT and QVA spectra are
close to the ALDA spectrum because the VK functional with
the CNT or QVA parametrization for fxcL,T

h �� ,�� reduces to
the ALDA in the limit �→0 and the fact that the values of
fxcL,T

h ��� in these parametrizations do not change much from
their values at �=0 for ���pl, which is typically the fre-
quency range that we are interested in. From a comparison
between the QV and QVA spectra, we can conclude that the
transverse kernel fxcT

h �� ,�� has a large unwanted effect on
the shape of the spectrum. Since fxcT

h �� ,�� is much smaller
than fxcL

h �� ,�� for ���pl but has a much larger effect on the
shape of the spectra, fxcT

h �� ,�� must couple with terms in the
VK functional that become large for systems with densities
and current densities that are not slowly varying.

Finally, to give an impression of the degree that the con-
straints �23�, �33�, and �34� are violated when the Vignale-
Kohn functional is applied to the calculation of optical ab-
sorption spectra of real systems, we show in Fig. 2 the results
we obtain for silicon at �=3 eV using the QV parametriza-
tion. Note the logarithmic scale that is used. All the quanti-
ties were calculated on the spatial grid that was used in the
calculations. We have tested the dependence of the results on

FIG. 1. The calculated and measured imaginary part of the di-
electric function ��2���� of silicon. The calculated spectra were ob-
tained using the ALDA as well as the VK functional with the QV,
QVA, and CNT parametrizations for the exchange-correlation ker-
nels of the homogeneous electron gas. The experimental result is
taken from Ref. 52. Dashed curve: ALDA; dotted dashed curve: VK
with CNT; double dotted dashed curve: VK with QV; continuous
curve: VK with QVA; dotted curve: experiment.

FIG. 2. Test of the constraints �23�, �33�, and �34� at �=3 eV
for silicon. The results were obtained using the VK functional with
the QV parametrization for the longitudinal and transverse
exchange-correlation kernels of the homogeneous electron gas. In
the graph, rs�r� is the local Wigner-Seitz radius �4�rs

3�r� /3
=1/�0�r��. All quantities were calculated on the spatial grid that
was used in the calculations. The top line in each panel: kF; bottom
line in each panel: � /vF; crosses: 
��0�r� 
 /�0�r�; circles:

� ·�j�r ,�� 
 / 
�j�r ,��
; triangles: 
�
�j�r ,�� 
 / 
�j�r ,��
.
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the frequency and found that this dependence is small for the
frequency range in which we are interested. The results also
do not depend much on the parametrization that is used. We
can roughly make the following conclusions based on Fig. 2,


��0�r�

�0�r�

�

� 
 �j�r,��



�j�r,��

� kF �

�

vF
�41�

kF �

� · �j�r,��



�j�r,��

�

�

vF
. �42�

We observe that all the constraints except one are violated,
and in particular, the constraints k ,q�� /vF. From these
considerations, it is therefore not surprising that the results
we obtain for the optical spectra of silicon and other materi-
als are not in agreement with experiment.

V. CONCLUSIONS

In this work, we applied the Vignale-Kohn current func-
tional to the calculation of the optical spectra of semiconduc-
tors. We discussed our results for silicon. Qualitatively simi-
lar results were obtained for other semiconductors. We
showed that the optical spectrum collapses when we use the
QV parametrization for the longitudinal and transverse
exchange-correlation kernels fxcL,T

h ���=limk→0fxcL,T
h �k ,��.

We discussed possible reasons for this failure. We showed
that the constraints on the degree of nonuniformity of the

ground-state density, i.e., q�kF ,� /vF, and on the degree of
the spatial variation of the external potential, i.e., k
�kF ,� /vF, under which the Vignale-Kohn functional was
derived are almost all violated. Furthermore, since the
Vignale-Kohn functional was derived for a weakly inhomo-
geneous electron gas in the region above the particle-hole
continuum, we argue that it might not be suited to use in the
calculation of optical spectra which are closely related to the
particle-hole continuum, especially because the longitudinal
and transverse exchange-correlation kernels fxcL,T

h �k ,�� have
a discontinuity in �k=0,�=0�. We showed that when we use
the CNT or QVA parametrizations for fxcL,T

h ���, in which the
approximation is used that fxcL,T

h �k ,�� is continuous in �k
=0,�=0�, which is equivalent to the approximation �xc=0,
the optical spectrum is close to that obtained within the
ALDA. This is a consequence of the fact that in this approxi-
mation the Vignale-Kohn functional reduces to the ALDA in
the limit �→0 and the fact that the values of the coefficients
fxcL,T

h ��� are close to the values of fxcL,T
h �0� for ���pl and

should not be explained as if the CNT and QVA parametri-
zations are more accurate than the QV parametrization. The
constraints k ,q�kF ,� /vF are as much violated for the CNT
and QVA parametrizations as for the QV parametrization.
The results might improve if one or both of these constraints
in the VK theory can be relieved to some extent, for ex-
ample, by avoiding the approximation that the ground-state
density is slowly varying.53
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