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We calculated the minimal longitudinal conductivity in prefect single-layer and bilayer graphene by extend-
ing the two methods developed for Dirac fermion gas by A. W. W. Ludwig et al. in Phys. Rev. B 50, 7526
�1994�. Using the Kubo formula which was originally applied for spintronic systems we obtain �xx

min

= �J� /2�e2 /h while from the other formula used in the above-mentioned work we find �̄xx
min= �4J /��e2 /h,

where J=1 for single-layer and J=2 for bilayer graphene. The two universal values are different although they
are numerically close to each other. Our two results are in the same order of magnitude as that of experiments
and for the single-layer case one of our results agrees with many earlier theoretical predictions. However, for
bilayer graphene only two studies are known with predictions for the minimal conductivity different from our
calculated values. Similarly to the single-layer case, the physical origin of the minimal conductivity in bilayer
graphene is also rooted back to the intrinsic disorder induced by the Zitterbewegung which is related to the
trembling motion of the electron.
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Unusual and remarkable transport properties of graphene
�single or stacks of atomic layers of graphite� have been
proved by recent experiments.1,2 Besides the unconventional
quantum Hall effect, many new phenomena have been pre-
dicted and studied in graphene such as the Klein paradoxon,3

the specular Andreev reflection,4,5 the Josephson effect,6 a
new electric field effect,7 the photon-assisted electron
transport,8 composite Dirac fermions,9 quantum dots,10 the
n-p junction,11 the fractional quantum Hall effect,12 and the
spin-orbit gap.13

In this work we study the longitudinal conductivity of
graphenes which, according to experiments, takes the mini-
mum values of orders of e2 /h. This is an intrinsic property in
the sense that it persists even in perfect �impurity-free� car-
bon honeycomb lattice. Such a peculiar behavior can be re-
lated to the excitation spectrum of single-layer graphene de-
scribed well by a Dirac-like dispersion relation �Dirac cones�
of two-dimensional massless Dirac fermions.14

Much theoretical effort has been devoted to explain quan-
titatively the observed minimal longitudinal conductivity.
However, at the theoretical side different predictions exist for
the value of the minimal conductivity �xx

min even in prefect
single-layer graphene. Actually, long before experimental
evidence of minimal conductivity, it has already been con-
sidered theoretically15–17 and Ludwig et al. found different
values using two different approaches.18 Similarly, in many
recent works19–22 it has been found that �xx

min= �4/��e2 /h,
while Ziegler predicted23 �xx

min=�e2 /h, Falkovsky and
Varlamov24 obtained �xx

min= �� /2�e2 /h, and Nomura and
MacDonald obtain from numerical calculations of the Kubo
formula �xx

min= �4/��e2 /h for the short range scattering case
and �xx

min=4e2 /h for the Coulomb scattering case.25 Recently,
Gusynin and Sharapov have derived analytical results for the
ac and dc conductivity of Dirac fermions in graphene26

which could be used for studying the minimal conductivity.
For bilayer graphene first studied experimentally27 by No-

voselov et al. and theoretically28 by McCann and Fal’ko, the
situation is not better regarding the minimal conductivity.
Much less theoretical work considered the minimal conduc-

tivity in bilayer graphene. Recently, Koshino and Ando have
investigated the transport in bilayer graphene in the self-
consistent Born approximation29 and they found that in the
strong-disorder regime �xx

min= �8/��e2 /h, while in the weak-
disorder regime �xx

min= �24/��e2 /h which is six times larger
than in single-layer graphene. Similarly, Katsnelson has also
calculated the minimal conductivity in bilayers using the
Landauer approach29,30 and he obtained a different value
�xx

min=2e2 /h.
For massless Dirac fermion �corresponding to the single-

layer graphene� Ludwig et al. calculated the conductivity18

using two definitions: one is the Kubo formula ��xx
min� and the

other ��̄xx
min� is a definition often used in the sigma model

literature.31 The two definitions yield two different results
�although numerically they are close to each other� for the
longitudinal conductivity of perfect single-layer graphene,
namely, �xx

min=nvns�� /8�e2 /h and �̄xx
min=nvns�1/��e2 /h, re-

spectively. Here the factors nv=2 and ns=2 correspond to the
two valleys and the electron spin, respectively �for details see
references below�.

As can be seen from the above-reviewed literature, sev-
eral predictions of the exact value of the minimal conductiv-
ity even in perfect single-layer and bilayer graphene exist
although they are consistent at least in order of magnitude. In
this work we extend the Ludwig et al. approach to calculate
the longitudinal conductivity for bilayer graphene. We find
that, similarly to the case of single-layer graphene, the two
definitions of the conductivity used in Ref. 18 yield also
different results for perfect bilayer graphene. More interest-
ingly, we find that the conductivity obtained from both ap-
proaches is doubled compared to that for single-layer
graphene. Thus, our results show that obtaining the exact
value of the minimal conductivity is a rather subtle task and
needs further investigation.

Regarding the technical details of our calculations we
note that when we used the Kubo formula, instead of follow-
ing the approach of Ludwig et al. we applied an equivalent
method developed by Bernevig32 for spintronic systems. In
this method the conductivity is calculated in “bubble” ap-
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proximation using the one-particle noninteracting Green’s
function for finite temperature. This approach results in the
same conductivity for single-layer graphene as that obtained
from the Ludwig et al. method and, as can be seen below, it
is more convenient to extend to bilayer graphene.

In order to treat the single-layer and bilayer graphene si-
multaneously we start from the Hamiltonian given in a uni-
fied form as1,28

HJ = g� 0 �px − ipy�J

�px + ipy�J 0
� , �1�

where J=1 for single-layer and J=2 for bilayer graphene,
and g is a constant depending on J. In what follows, it is
more convenient to use the following equivalent form of Eq.
�1�:

HJ = ��p�� , �2�

where �= ��x ,�y� are the Pauli matrices representing the
“pseudospin” acting on the spinor states with components
corresponding to the wave function’s amplitudes at the two
nonequivalent basis atoms in the unit cell of the honeycomb
lattice, ��p�=gpJ�cos J� , sin J�� and � is the polar angle of
p, i.e., p= p�cos � , sin �� with p= �p�. The eigenstates of the
Hamiltonian HJ with plane wave solutions eikr have eigen-
values

E±�k� = ± ���k� , �3�

where �=��2��k� is the magnitude of the vector ���k�.
The Green’s function of a Hamiltonian H is defined by

Ĝ�z�= �z− Ĥ�−1 and its position representation reads

G�r ,r� ,z�= �r�Ĝ�z��r��. Using the Hamiltonian �2� one finds

G�r,r�,z� = �r�G�z��r�� =	 d2k

�2��2eik�r−r��z + ��k��
z2 − �2�k�

,

�4�

where z is a complex number.
To calculate the conductivity from the Kubo formula we

apply the result derived first by Bernevig32 for spintronic
systems using the Green’s function �4�:

�ij��� = −
e2

�
lim
�→0

Im
�ij
ret����
�

, �5a�

where

�ij��� =
2

A
�
k

nF�E+� − nF�E−�
�2 − 4�2 �2

� �i�	
��Fi
Fj��̂� − 2�Fi
Fj
� , �5b�

Fi
 =
��̂


�ki
, �̂
 =

�


�
, �5c�

and �ij
ret��� is the retarded correlation function obtained by

analytic continuation �→�+ i of function �ij���, nF�E�
=1/ �e��E−��+1� is the Fermi function with Fermi energy �,
the indices take the values 1,2,3, and summation over re-

peated indices is assumed. Here A is the area of the two-
dimensional system, 	
�� is the Levi-Civita symbol, and the
two energy bands E±�k� are given by Eq. �3�. This result is
valid for ballistic systems �note that this result is slightly
rewritten to make it more transparent and useful for further
calculations�.

We now evaluate the conductivity for undoped single-
layer and bilayer graphene at zero temperature using Eq. �5�.
The Fermi energy for undoped graphene is �=0, i.e., the
negative energy band is fully occupied and the positive one
is empty at zero temperature. Thus, in Eq. �5b� nF�E+�
−nF�E−�=−1 for all occupied states with Fermi wave number
k. For dc conductivity we need to find ���� in the limit �
→0. Therefore, the integration over k can safely be extended
to infinity since the contribution comes from the integrand
close to k0 �see the denominator of �ij����. Using Eq.
�5b� and �k→A�d2k / �2��2 �no contribution comes from the
term containing the Levi-Civita symbol 	
��� we find

�xx
ret��� = lim

→0+
	

0

� dk

2�

2g3J2k3J−1

�� + i�2 − 4g2k2J . �6�

The imaginary part of the above integral can be evaluated
analytically and it yields

Im
�xx���� = −
J�

16
. �7�

Thus, from �5a� the longitudinal dc conductivity �per valley
per spin� for single-layer �J=1� and bilayer �J=2� graphene
becomes

�xx =
J�

8

e2

h
. �8�

Note that the conductivity obtained from the Kubo formula is
universal depending only on the type of graphene but not the
constant g.

We now apply the other definition used by Ludwig et al.
for calculating the conductivity �see Eq. �55� in Ref. 18�
which reads as

�̄xx =
e2

h
lim

→0+
2	 d2rr2Tr�G�0,r,i�G�r,0,− i�� , �9�

where the Green’s function is given by Eq. �4�. The conduc-
tivity �̄xx can be rewritten as18,31

�̄xx = −
8e2

h
lim

→0+
2� �

�q2�
q=0

K�q,� , �10a�

K�q,� =
1

2
	 d2reiqrTr�G�0,r,i�G�r,0,− i�� ,

�10b�

and the trace is taken over the “pseudospin space.”
Using the Green’s function given by Eq. �4� and perform-

ing the trace over the “pseudospin space” in �10b� we find

K�q,� =	 d2k

�2��2

�+�− + 2

��+
2 + 2���−

2 + 2�
, �11a�
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�± = ��k ± q/2� . �11b�

After simple algebra the integrand I in Eq. �11a� can be
calculated explicitly:

I =
g2��k2 + q2/4�2 − �kq�2�J/2 cos�J�� + 2

�+�−
, �12a�

�± = g2�k2 +
q2

4
± kq�J

+ 2, �12b�

cos � =
k2 − q2/4

��k2 + q2/4�2 − �kq�2
. �12c�

Here � is the angle between vector k+q /2 and k−q /2.
Expanding I for small q we obtain

I 
1

g2k2J + 2 − q2g2Jk2J−2J�g2k2J + 32� − �g2�J + 1�k2J − �J − 1�2�cos�2� − 2��
4�g2k2J + 2�3 , �13�

where � and � are the polar angle of k and q, i.e., k
=k�cos � , sin �� and q=q�cos � , sin ��. As can be seen be-
low � will be dropped out in the final result.

Integrating the integrand I in �13� over k and taking the
derivation with respect to q2 we have the following simple
result:

� �

�q2�
q=0

K�q,� = −
J

8�2 , �14�

where � has been dropped out after the integration over �.
Similarly, the first term disappears in I since it is independent
of q. Now using Eq. �10a� the conductivity �per valley per
spin� becomes

�̄xx =
J

�

e2

h
. �15�

Discussion. We calculated the minimal conductivity for
perfect single-layer �J=1� and bilayer �J=2� graphene using
the Kubo formula and the definition �9�. Taking into account
the two valleys �nv=2� and the electron spin �ns=2� we find
from Eqs. �8� and �15� that the minimal conductivities take
the universal values:

�xx
min =

J�

2

e2

h
, �16a�

�̄xx
min =

4J

�

e2

h
. �16b�

Note that these results are independent of the constant g in
the Hamiltonian �1�. Just like in the case of single-layer
graphene we also find different values for the conductivity
when the two methods in Ref. 18 are extended to bilayer
graphene. Moreover, the minimal conductivity in perfect bi-
layer graphene calculated from Eqs. �5� and �9� is doubled
compared to that in single-layer graphene. One can also see
that for perfect single-layer graphene our result �16b� agrees
with that obtained in Refs. 19–22.

As pointed out by Katsnelson,21,30 the reason for the dif-
ferent results �16a� and �16b� is related to the “trembling” or
oscillatory motion of the center of a free wave packet called
Zitterbewegung which has recently been reconsidered in Ref.
33. The Zitterbewegung induces an intrinsic disorder in per-
fect graphenes which has indirectly been confirmed by
Tworzydlo et al.22 by calculating the Fano factor of the shot
noise in single-layer graphene, and they found that it has the
same value �1/3� as in disordered metals.

In our calculation the energy dispersion of bilayer
graphenes was assumed to be purely parabolic in k �see Eq.
�1��. Koshino and Ando studied the conductivity when the
energy dispersion includes both k-linear and k-square terms29

which results in a trigonally warped Fermi surface.28 To
clarify the role of the k-linear term it would be interesting to
extend our work along this line.

Similarly, extending the theoretical efforts to study
multilayer graphenes would be desirable in order to have a
better understanding of the unusual transport in graphenes.
Recently, the electronic states in stacks of graphene layers
have been studied.34 However, it is not clear whether in the
case of trilayers the Hamiltonian can be described simply by
Eq. �1� with J=3.

The single-layer and bilayer graphene are zero-gap semi-
conductors but this gap can open up due to impurities or the
presence of interaction. Then, graphenes mapped to the
massless Dirac fermion gas transform to random mass Dirac
fermion systems. In this case, to calculate the conductivity it
is useful to start from the definition �9� as it was demon-
strated by Ludwig et al.18 Recently, Gusynin et al. proposed
theoretically that microwaves could be an experimental tool
to understand the role of the impurities and the presence of
interaction in graphene systems.35

In summary, our work shows that the physical explanation
of the existence of the minimal conductivity in graphene
systems still remains a theoretical challenge in the future.
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Beenakker, E. McCann, V. Fal’ko, B. Györffy, B. Nikolić,
and A. Piróth. This work is supported by European Commis-
sion Contract No. MRTN-CT-2003-504574.
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