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We discuss the finite temperature properties of the fermion correlation function near the fixed-point theory
of the charge nematic quantum critical point �QCP� of a metallic Fermi system. We show that though the
fixed-point theory is above its upper critical dimension, the equal-time fermion correlation function takes on a
universal scaling form in the vicinity of the QCP. We find that in the quantum critical regime, this equal-time
correlation function has an ultralocal behavior in space, while the low-frequency behavior of the equal-position
autocorrelation function is that of a Fermi liquid up to subdominant terms. This behavior should also apply to
other quantum phase transitions of metallic Fermi systems.
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A large number of metallic strongly correlated systems
exhibit the phenomenon of quantum criticality. Typically the
quantum critical regime is accessed either by continuously
tuning an external control parameter �e.g., magnetic field or
pressure�, or by chemical means �e.g., doping�. This phe-
nomenon has been observed, among others, in heavy fermion
systems, itinerant ferromagnets, ruthenates, in CDW sys-
tems, in high-Tc cuprate superconductors, and other complex
oxides.

The theory of quantum phase transitions in metallic sys-
tems goes back to Hertz’s seminal work1 and its subsequent
development by Millis.2 It yielded a classification of these
quantum critical points �QCPs� closely analogous to the
theory of equilibrium classical critical phenomena. It is an
order-parameter theory which focuses on the behavior of its
collective modes, with the added essential physical effects of
gapless fermionic excitations in the quantum dynamics and
as a mechanism for dissipation. A key assumption of this
theory is that the fermions, although gapless, contribute pri-
marily to dissipation mechanisms �e.g., Landau damping�
and determine the effective dynamic critical exponent z. Fol-
lowing this logic one expects that at a QCP the system
should be scale invariant and the behavior of all its observ-
ables be controlled by some fixed-point theory. Although this
is indeed correct, the actual behavior of the fermionic quasi-
particles �and their very existence� has remained a major
unsolved problem. Naively one would have expected that the
fermion correlators should obey scaling as well, perhaps with
a nontrivial anomalous dimension, as in one-dimensional
Luttinger liquids. We shall see that this is not the case for
dimension d�1.

Experiments in quantum critical metallic systems show
that these QCPs exhibit a phenomenon known as “local”
quantum criticality.3 There is strong experimental evidence
for scaling behavior in both frequency and momentum, with
a characteristic dynamic scaling exponent z, of the correla-
tion functions of the relevant order parameter and its associ-
ated susceptibilities, and of all other correlations in the
bosonic sector of these systems. Thus the spin-correlation
functions measured by neutron scattering and the current and
density correlation functions measured by light scattering do
exhibit scaling. In contrast, at these same QCPs, the fermi-
onic correlators �measured in angle-resolved photoemission
�ARPES�� typically exhibit scaling in frequency but show

essentially no scaling in momentum, thus the term “local
quantum criticality.” The explanation of these seemingly dis-
parate behaviors has been a long-standing puzzle.

In this paper we develop a fully solvable fixed-point
theory of the quantum phase transition between a Fermi liq-
uid �FL� and a charge nematic Fermi fluid �N�.4 A charge
nematic Fermi fluid is a translationally invariant state of a
metallic system which breaks spacial rotational invariance
�or the point-group symmetry of the lattice� spontaneously.5

A charge nematic state has been seen in experiments in quan-
tum Hall systems6–8 �a QCP has not yet been observed�.
There is also convincing evidence for a charge nematic phase
in the ruthenate Sr3Ru2O7 �including quantum phase
transitions�.9 It has also been suggested10 that the “hidden
order” phase of the heavy fermion compound URu2Si2 may
be due to a p-wave analog of the charge nematic state.11 We
will show here that the fixed-point theory of the nematic
QCP exhibits the hallmark of local quantum criticality: an-
isotropic scaling �with z=3� for the bosonic excitations,
while the fermions show scaling in frequency and no scaling
in momentum �up to the effects of irrelevant operators�. In
fact, at finite temperature, we find that the behavior of the
equal-time fermion correlator is strikingly similar to the re-
sults found in Ref. 12 for vortexlike operators in the �seem-
ingly unrelated� quantum Lifshitz model.13 The concept of
local quantum criticality has been the focus of recent work
using perturbative methods.14 We will attack this problem
using nonperturbative bosonization methods.15–19 Both ap-
proaches agree in the perturbative regime.

The �Pomeranchuk� transition to a charge nematic Fermi
fluid is a quantum phase transition in which the shape of the
Fermi surface �FS� acquires a spontaneous quadrupolar dis-
tortion, and breaks rotational invariance spontaneously down
to � rotations. It is the simplest example of an electronic
liquid crystal phase.5 It has dynamic critical exponent z=3 so
that in two dimensions, the fixed-point theory is above its
upper critical dimension. A simple computation to one loop
in the random-phase approximation �RPA� interaction done
in Ref. 4 obtained a fermion self-energy Im��q=qF ,��
��2/3�� at low energies. By a scaling analysis, the inter-
actions are thus relevant by a power of 1 /3. Hence an un-
derstanding of the fermionic properties of this QCP requires
a nonperturbative treatment.
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We recently used19 the method of high dimensional
bosonization15–18,20,21 to develop a nonperturbative fixed-
point theory of the nematic order parameter and of the fer-
mion propagator. We demonstrated explicitly that this is a
non-Fermi liquid with a fermion residue Z which vanishes at
the QCP, while the single-particle density of states N��� re-
mains essentially unchanged from its FL value. We also
showed that the bosonization result for the fermion propaga-
tor reproduces the perturbative results of Refs. 4 and 22, and
showed that it treats all rainbow diagrams and vertex correc-
tions on an equal footing.

In this Brief Report letter, we discuss its finite temperature
behavior. We show that in the quantum critical regime and at
the level of the fixed-point theory, the equal-time fermion
correlations are ultralocal in space due to an infrared diver-
gence which wipes out all correlations in space to all dis-
tances. This divergence is controlled by dangerous irrelevant
operators which then set the correlation length of the fermi-
ons. In the nematic phase, symmetry protects the Goldstone
modes at finite temperatures leading to the conclusion that
the spacial correlation length of the fermions vanishes in the
thermodynamic limit. Despite this extreme behavior, the cor-
relations at equal positions and at long times remain well
behaved and the single-particle density of states N��� is es-
sentially unaffected. We also show that the equal-times func-
tion obeys a scaling form and utilize this behavior to de-
scribe the collapse of the FL as a critical phenomenon.

We take as our starting point, a low-energy effective Lan-
dau model of two-dimensional spinless fermions with a
quadrupole density interaction:

H = �
�q�−kF�	

d2q

�2��2 �
qn̂q� + f2�q�Q̂�q�� · Q̂�− q��� , �1�

where n̂q� = ĉq�
†ĉq� is the fermion occupation number operator,

N�0�f2�q�=F2 / �1+��F2�q2� is an interaction of range ��,

Q̂�q�� =
1

kF
2 � d2k

�2��2�kx
2 − ky

2 2kxky

2kxky ky
2 − kx

2 	ĉk�−q�
† ĉk� �2�

is the Fourier transform of the nematic order-parameter field,
the quadrupolar density, and 
q is the quasiparticle energy
which is kept up to cubic order in �q� �−kF. This model was
proposed in Ref. 4 to study a transition to a nematic Fermi
fluid which in mean field occurs for N�0�f2�0�=F2�−1. The
behavior that we discuss here should also apply to lattice
systems at their QCP,23,24 but not in the ordered phase. Al-
though models of this type do not account the effects of
orbital and spin degrees of freedom, important to the physics
of real metals, it captures the basic physics of a quantum
phase transition in a metallic Fermi system. As we shall see
below, it describes the phenomenon of “local quantum criti-
cality” observed in many experiments.

The bosonization of dense Fermi systems, relativistic or
not, in d�1 space dimensions requires the introduction of
local coordinate frames near the FS to describe the fluctua-
tions of this smooth curved quantum object. Much as in the
conventional Landau theory of the Fermi liquid,25 the fluc-
tuations of the FS describe the quantum diffusion of particle-

hole wave packets on the FS.17 We therefore introduce a set
of N patches of width =2�kF /N
�kF	 given by the cur-
vature of the surface and cutoff with N→� in the
renormalization-group �RG� limit of 	→0. Thus all correc-
tions of order 1 /N are uninteresting within this framework
provided they correspond to irrelevant operators. A key fea-
ture of the bosonization treatment is that the corrections to
the linear dispersion �locally normal to the FS� are described
by nonlinear operators �in the bosons� which are irrelevant in
the Landau phase and at the fixed-point theory. Processes
which involve large �larger� momentum transfers tangent to
the FS are described by both intrapatch and interpatch inter-
actions. Contrary to some claims,26,27 bosonization treats the
effects of the curvature of the FS exactly.

Introducing local coordinates for patch S, located at Fermi
wave vector k�S, we find that this phase-space analysis allows

us to expand the fermion operator �̂�x�� in terms of a set of
fermion species derived from each patch:

�̂�x�� = �
S

�̂S�x��
eik�S·x�

�N
, �̂S�x�� = �

q��PS

d2q

�2��2 ĉqeiq� ·x� . �3�

In terms of the local Fermi velocity v�S at patch S, a vector
locally normal to the FS, the dispersion is


q = v�S · q� + ��v�S · q��2 + ��v�S · q��3, �4�

where �v�S�=vF and �q� ��kF. Due to this dispersion, our fluc-
tuating FS can be thought of as N�� fermion species each
with its own conserved charge due to the U�1�N�� symmetry
of the Landau theory and of Eq. �1�:

�̂S�xn,xt� → ei�S�xt��̂S�xn,xt� , �5�

where �xn ,xt� are local orthogonal patch coordinates with xn

parallel to v�S. Though we have presented this within the
language of our local coordinates, this charge conservation
for each point of the FS is a well-known property of the
Landau Hamiltonian, e.g., Eq. �1�, quite independent of the
choice of coordinates on the FS.

A basic consequence of Eq. �5� is a simplification of the
fermion correlation functions. If one creates a fermion of
type �S ,xt�=0� at �xn�=0, t�=0�, one must destroy another fer-
mion of the same type at �xn , t� to have any overlap with the
ground state. Hence only one species may contribute to the
single-particle fermion Green function. After defining a win-
dowing function W�xt� that vanishes for �xt ��1 and at-
tains the value of unity at xt=0, the correlator becomes

GF�x�,�� = �
S

W�xt�
N

eikFxn�G�T��S�xn,0,���S
†�0,0,0��G

�6�

where xn= k̂S ·x� and xt�xn. Following standard bosonization
techniques we compute GF�x� ,�� for T�0:

GF�x�,�� = �
S

W�xt�eikfxn

N
GF�S�

0 �xn,��ZS�xn,�� , �7�

where GF�S�
0 �xn ,�� is the “patch” free Green function and

BRIEF REPORTS PHYSICAL REVIEW B 75, 033304 �2007�

033304-2



ln ZS�xn,�� = − �
PS

d2q

�2��2 �
n�Z

1

�
�ei�knxn−�n�� − 1�

VS,S
RPA�q� ,i�n�

�i�n − v�S · q��2

�8�

with VS,S
RPA the effective RPA interaction.

The limit N→� can be obtained. Consider the case when
ZS is independent of the patch index S �true for a circular
FS� and decays or oscillates slower than eikFxn as xn→�.
Converting the sum over patches to an integral, and using
steepest descents, we find that since the integral is peaked
around ��cos−1�k�S ·x� /kFr�=0, we get the angular average
�eikFr cos �=J0�kFr�, and

GF�r,t� 
 GF
0�r,t�ZS=0�r,t� �9�

with GF
0�r , t�
cos�kFr� /r3/2; the weighting function W�xt�

and sum over patches have dropped out.
Near the nematic QCP of Eq. �1�, VS,S

RPA is directly related
to the propagator of the order-parameter field. Although for
angular momentum channels greater than s-wave, the order-
parameter theory contains a variety of collective modes, it
has been shown19 that ln ZS is always dominated by the soft-
est of these modes, a z=3 over damped mode very similar to
that occurring in Hertz’s original treatment of the ferromag-
netic problem.

Following Refs. 1, 2, and 4, and using standard results
of the well-known nematic-isotropic classical phase
transition,28 we construct the qualitative phase diagram for
the nematic quantum phase transition of a Fermi fluid. There
are clearly three regimes of interest. Two of them are disor-
dered and described by

VS,S
RPA�q� ,i�n� =

1/N�0�
��n�
qvF

− �q2 − �

, �10�

where �=��� ,T� with �=1+1/F2, the distance to the mean-
field position of nematic QCP at F2=−1. In the FL regime, �
is dominated by the scale � and we obtain ���−�C where
�C arises from finite corrections to the gaussian theory due to
irrelevant interactions. In the quantum critical regime, � is
dominated by temperature and we must resort to a careful
renormalization-group argument to understand its behavior.2

We find that the temperature dependence of � follows the
law �=−�T ln�T�, where � is the coupling to the dangerous
irrelevant quartic interactions of the order parameter theory,
which in the model of Eq. �1� is the cubic term in the dis-
persion relation,4,29 Eq. �4�. In the nematic phase, the Gold-
stone mode dictates that �=0,

VS,S
RPA�q� ,i�n� =

1/N�0�
��n�/qvF − ��/sin2 2�S�q2 . �11�

In contrast to Eq. �10�, it depends on the patch index S.
We now compute GF�x� ,�� as a function of T and �, near

the QCP. We are interested in the behavior of the amplitude
ZS, discussed at T=0 in Ref. 19. For a FL,

�ZS�xn,t = 0��xn→� � Z � 1, �ZS�0,t��t→� = const.

�12�

At the QCP, the leading behavior is

�ZS�xn,t = 0��xn→� 
 e−�xn/R�1/3
, �ZS�0,t��t→� = const.

�13�

There is a similar non-Fermi-liquid behavior in the nematic
phase, except that there are four special points at sin 2�S=0
where the leading behavior is that of a FL.

For T�0, the �n=0 contribution to ZS in Eq. �8� domi-
nates for T��T�TF, T�=vF /kB�, and

�ln ZS�static =
kBT

N�0���PS

d2q

2�2

cos�qnxn� − 1

vF
2qn

2�q2 + �/��
�14�

��−
kBT

N�0�vF
2�

xn
2 ln�
/xn� 0 � xn � 


−
kBT

N�0�vF
2�

�xn�
 xn � 
 , � �15�

where 
=�� /�. On the FL side, 
 is quite small and we
obtain exponentially decaying spacial correlations. In the
quantum critical regime, 
 is very large, set only by the ir-
relevant interactions and temperature. Finally, in the nematic
phase 
=� for T�0, and ZS→0, kept finite only in a finite-
sized system �except once again at the four special points�.
At equal positions �xn=0�, the �n=0 contribution vanishes,
and the equal position autocorrelation function is well be-
haved in the infrared.

Near the QCP, ln ZS�xn ,0� obeys the scaling law

ln ZS�xn,0,�,T� = b−1/3 ln ZS�bxn,0,�/b2/3,T/b� , �16�

where all length scales are measured in units of the interac-
tion range ��. Upon the change of variables qn�=qn /b, qt�
=qt /b1/3, as b→0, q→q�b1/3,

VS,S
RPA�qn�b,qt�b

1/3,i�n�/b� → b−2/3VS,S
RPA�qn = 0,qt�,i�n�� .

�17�

For T=�=0 we find

ln ZS�xn,0,0,0� = �xn�1/3 ln ZS„sgn�xn�,0,0,0… �18�

by letting b= �xn�−1. Since ln ZS�±1,0 ,0 ,0��0, we find

ZS�xn ,0 ,0 ,0�
e−a�x�1/3
as expected. From

Z = lim
xn→�

ZS�xn,0,�,T� = lim
q→0

�nkF−q − nkF+q� �19�

and Eq. �18�, we find Z=0 at the QCP. As �→0 at T=0, by
letting b=�3/2 we get

Z = exp�ln ZS��,0,1,0�/��� . �20�

Thus since ln ZS�� ,0 ,1 ,0��0, Z vanishes with an essential
singularity as �→0. Thus this scaling form, ZS�xn ,0� clearly
exhibits the breakdown of the FL as the QCP is approached.

Let us complete our discussion of scaling by going to
T�0. Letting �=
−2 and b=T in Eq. �16�, we obtain

BRIEF REPORTS PHYSICAL REVIEW B 75, 033304 �2007�

033304-3



ln ZS�xn,0,
−2,T� = T−1/3 ln ZS�xnT,0,
−2T−2/3,1� . �21�

Since we only need ZS for T�0, we may evaluate it again
using the �n=0 mode �now in the scaling limit�:

ln ZS�xn,0,
−2,T� = − A�xnT�
/kF �22�

so that holding xnT fixed, this diverges like �−T ln T�−1/2 as
T→0 and therefore it is not a scaling function of xnT. Since
the free fermion Green function in Eq. �7� asymptotically
behaves as e−��xnT�, we see that the above form dominates
over the free fermion value for 


kF
��, or for T�Tg

�T� / �gkF
2��, where we have reintroduced � with T�

=vF /��kB. Hence for T�Tg, the free fermion result domi-
nates and scaling occurs in xnT. For T�Tg, scaling in xnT
breaks down.

In this Brief Report, we demonstrated nonperturbatively
the phenomenon of local quantum criticality near the metal-
lic charge nematic quantum phase transition. It appears to be
a robust behavior of many quantum critical systems, as, in
addition to the nematic quantum critical point, it also applies
to the critical behavior of quantum dimer models,12 metalic
antiferromagnets, and ferromagnets.14 While the order-
parameter correlations 
 are large in the quantum critical
regime, kept finite only by the dangerous irrelevant quartic

interactions, the fermionic correlations in this regime are cor-
respondingly short ranged, kept nonzero by the same danger-
ous irrelevant quartic interactions. Indeed, in the nematic
phase, which has an infinite correlation length, we have
shown that the corresponding fermionic correlations vanish
in the thermodynamic limit except at four special points on
the FS. An extension of this analysis to other quantum phase
transitions in metallic systems results in the same basic con-
clusion, that the “local quantum criticality” of the fermions is
independent of z and it is due to the �n=0 static contribution
to the correlation function. We found that while the single-
particle density of states N��� remains finite throughout the
entire phase diagram, the quasiparticle residue Z �the jump in
the fermion occupation number� vanishes for T�Tg both in
the quantum critical regime and in the nematic phase, which
suggests that a FS may not be seen in a de Haas–van Alphen
experiment.
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