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In this paper, we build up a thermodynamical model of inhomogeneous superfluid turbulence to describe
vortex diffusion in inhomogeneous turbulent tangles, and a coupling between second sound and vortex-density
waves. The theory chooses as fundamental fields the density, the velocity, the energy density, the heat flux, and
the averaged vortex line length per unit volume. The restrictions on the constitutive quantities are deduced
from the entropy principle, using the Liu method of Lagrange multipliers. Field equations are written and the
wave propagation is studied with the aim to describe the mutual interactions between the second sound and the
vortex tangle.
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I. INTRODUCTION

Turbulence is almost the rule in the flow of classical flu-
ids. It is a complex nonlinear phenomenon for which the
development of a satisfactory theoretical framework is still
incomplete. Turbulence is often found in the flow of quan-
tum fluids, especially superfluid helium 4, known as liquid
helium II.1–5

The behavior of superfluid helium II is very different from
that of ordinary fluids. One example of nonclassical behavior
is the possibility to propagate the second sound, a wave mo-
tion in which temperature and entropy oscillate and density
and pressure remain essentially constant. Second sound is
important in turbulence because it is used to measure the
vortex line density L. A second example of nonclassical be-
havior is heat transfer in counterflow experiments. Consider
a channel with a heater at a closed end and open to the
helium bath at the other end. A heat flux q is present in the
channel. Using an ordinary fluid �such as helium I�, a tem-
perature gradient can be measured along the channel, which
indicates the existence of a finite thermal conductivity. If
helium II is used, and the heat flux inside the channel is not
too high, the temperature gradient is so small that it cannot
be measured, so indicating that the liquid has an extremely
high thermal conductivity �three million times larger than
that of helium I�. This is confirmed by the fact that helium II
is unable to boil.

The most well known hydrodynamical model of super-
fluid helium is the two-fluid model of Tisza6 and Landau,7

which regards helium II as a mixture of two fluid compo-
nents, the normal fluid and the superfluid, with densities �n
and �s, respectively, and velocities vn and vs, respectively,
with total mass density � and velocity v defined by �=�s
+�n and �v=�svs+�nvn. The first component consists of ther-
mally excited states that form a viscous fluid which carries
the entire entropy content of the liquid. The second compo-
nent is related to the quantum ground state and is an ideal
fluid, which does not experience dissipation nor carry
entropy.1,8 The two-fluid model explains the experimental
situation described above in the following way: In the ab-
sence of mass flux ��nvn+�svs=0�, the heat is carried toward

the bath by the normal fluid only, and q=�sTvn where s is
the entropy per unit mass and T is the temperature. With the
net mass flux being zero, there is superfluid motion toward
the heater �vs=−�nvn /�s�; hence there is a net internal coun-
terflow Vns=vn−vs=q / ��ssT� which is proportional to the
applied heat flux q.

In recent years there has been growing interest in super-
fluid turbulence, because a better understanding of it can
throw new light on problems in classical turbulence, but it is
also crucial to explain much observed superfluid behavior,
including that relevant for the application of superfluid he-
lium as a coolant for superconducting devices.

In counterflow experiments �the experimental situation
described above, characterized by no matter flow but only
heat transport, exceeding a critical heat flux qc� one observes
an extra attenuation of second sound, which grows with the
square of the heat flux. This damping force, known as mutual
friction, finds its origin in the interaction between the flow of
excitations and an array of quantized vortex filaments in he-
lium II.1,8 A first thermodynamic study of these interesting
phenomena was made in Ref. 9, where the presence of vor-
tices was modeled through a pressure tensor P� for which a
constitutive relation was written.

Quantum turbulence is described as a chaotic tangle of
quantized vortices of equal circulation:

�� = � vs · dl . �1.1�

�= ��� is called quantum of vorticity and results in �=h /m4,
with h the Planck constant and m4 the mass of 4He atom:
��9.97�10−4 cm2/s. The vortex tangle is assumed to be
isotropic and may be described by introducing a scalar quan-
tity L, the average vortex line length per unit volume �briefly
called vortex line density�.

The evolution equation for L in counterflow superfluid
turbulence has been formulated by Vinen. Neglecting the in-
fluence of the walls, such an equation is10

dL

dt
= �vVnsL

3/2 − �v�L2, �1.2�
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with Vns the averaged magnitude of the counterflow velocity
Vns and �v and �v dimensionless parameters. This equation
assumes homogeneous turbulence, i.e., that the value of L is
the same everywhere in the system. In fact, homogeneity
may be expected if the average distance between the vortex
filaments, of the order of L−1/2, is much smaller than the size
of the system, but it will not be so for dilute vortex tangles.

Recent experiments3,5 show the formation of another type
of superfluid turbulence, which has some analogies with a
classical one, as for instance using towed or oscillating grids,
or stirring liquid helium by means of propellers. In this situ-
ation, which has been called coflow, both components, nor-
mal and superfluid, flow along the same direction. To de-
scribe these experiments it is necessary to build up a
hydrodynamic model of quantum turbulence, in which the
interactions between both fields can be studied and the role
of inhomogeneities is explicitly taken into account.

In a hydrodynamic model of superfluid turbulence the line
density L acquires field properties: It depends on the coordi-
nates, it has a drift velocity vL, and it has associated a diffu-
sion flux. These features are becoming increasingly relevant,
as the local vortex density may be measured with higher
precision, and the relative motion of vortices is observed and
simulated. Thus it is important to describe situations going
beyond the usual description of the vortex line density aver-
aged over the volume. Our aim is to formulate a hydrody-
namical framework sufficiently general to encompass vortex
diffusion and to describe the interactions between the usual
waves and the vortices, instead of considering the latter as a
rigid framework where such waves are simply dissipated.
This is important because second sound provides the stan-
dard methods of measuring the vortex line density L, and the
mentioned dynamical mutual interplay between second
sound and vortex lines may modify the standard results.

In this paper, using extended thermodynamics �ET�,11,12

we want to build up a hydrodynamical model for turbulent
superfluids. We will choose as fundamental fields the density
�, the velocity v, the internal energy density E, the heat flux
q, and the averaged vortex line density L. The relations
which constrain the constitutive quantities are deduced from
the entropy principle, using the Liu method of Lagrange
multipliers.12,13 In Sec. II, a brief recall of the model formu-
lated in Ref. 9 is made. In Sec. III, the Liu procedure is
applied to elaborate the constitutive theory. In the following
sections, the constitutive relations are analyzed and field
equations are written, with special emphasis on vortex diffu-
sion and second-sound propagation and possible experiments
to measure the coefficients appearing in the formalism are
suggested. In the final section a comparison with previous
hydrodynamical models is presented.

II. BRIEF RECALL OF A PREVIOUS MODEL OF
SUPERFLUID HELIUM DEDUCED FROM EXTENDED

THERMODYNAMICS

A thermodynamic formalism, known as extended thermo-
dynamics �ET�,11,12 was developed, in order to describe rapid
phenomena or materials in which the relaxation times of
some fluxes are long. This theory, in fact, uses the dissipative

fluxes, besides the traditional variables, as independent
fields.

ET offers a natural framework for the macroscopic de-
scription of liquid helium II. In analogy with heat transport
problem, using ET, the relative motion of the excitations is
well described by the dynamics of the heat flux. For this
reason, in the one-fluid model of liquid helium II, it is rather
natural to select as fundamental fields the density �, the ve-
locity v, the absolute temperature T, and the heat flux q. In a
previous paper,14 ET was applied to formulate a nonstandard
one-fluid model of liquid helium II, for laminar flows. The
proposed model describes the propagation in bulk helium II
of two waves, namely a sound and a temperature wave, and
their attenuation, in agreement with experimental data. The
model explains also some thermomechanical peculiarities, as
the fountain effect, and the propagation of the fourth sound,
a wave which propagates in helium II, when it flows in very
thin capillaries or in porous media.15–18

In Ref. 9 a first thermodynamic study of turbulent flows
was made. In that work, we restricted our consideration to
stationary situations, in which the vortex filaments were sup-
posed fixed, and we focused our attention on their action on
the second sound propagation, through a vorticity tensor P�

which describes the vortex contribution to the internal fric-
tion in the system. Thus we did not assume that P� itself is
governed by an evolution equation, but that it was given by a
constitutive relation.

The linearized set of field equations, neglecting viscous
phenomena, written in an inertial frame, is9,14

�̇ + �� · v = 0, �2.1a�

�v̇ + �p* = 0, �2.1b�

�	̇ + � · q + p*� · v = 0, �2.1c�

q̇ + 
*�T = �q. �2.1d�

In these equations, the quantity 	 is the specific internal en-
ergy per unit mass, p* the thermostatic pressure, and 
*

=�1 / a coefficient linked to the second sound velocity14

� being the relaxation time of the heat flux and �1 the ther-
mal conductivity�. In the equation for the heat flux all the
nonlinear terms were neglected, with the exception of the
production term �q, for which the following constitutive re-
lation was chosen:

�q = − P� · q, where �2.2a�

P� =
1

2
�L�BHV�U − s�s�� + BHV� �W · s��	 , �2.2b�

which takes into account the interaction between vortex lines
and heat flux. In the tangle, the vortex line is described by a
vectorial function s�� , t�, � being the arc length measured
along the curve of vortex filament oriented in the direction of
the vorticity vector; a prime denotes differentiation with re-
spect to the arc length, so that s� is the unit vector tangent to
the vortex segment.
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In Eq. �2.2� U is the second-order unit tensor, s�s� is the
diadic product, and W is a completely antisymmetric third-
order tensor which makes the third matrix of Eq. �2.2� an
antisymmetric matrix, in such a way that, for example, it is
W ·s� ·V=−s��V; BHV and BHV� are the Hall-Vinen
coefficients.1 Tensor P� is linked to the tensor � introduced
in our work19 by the relation �1/3��LBHV�.

In relation �2.2� the tangent vector s� appears, but not the
curvature vector s�, although it is known that s� plays an
important role in the microscopic dynamics of the vortices
forming the tangle, as shown by numerical simulations of
Schwarz.20 Thus relation �2.2� is suitable when the vortices
are either rectilinear lines, as in cylinders under pure rota-
tion, or when the vortex tangle is assumed to be formed by
many short rectilinear segments, randomly oriented. How-
ever, the influence of s� should also be taken into account for
a more realistic description. In this work, we will modify
relation �2.2� to incorporate these effects �see relation �3.6�
and its microscopic derivation in the Appendix	.

In counterflow superfluid turbulence, the vorticity tensor
P� is frequently supposed isotropic and it is assumed equal
to P�=KLU, with K= �1/3��BHV. In this hypothesis, Eq.
�2.2� gets simply

�q = − KLq with K =
1

3
�BHV. �2.3�

Equations �2.1� describe the propagation of two longitu-
dinal waves. Their respective phase speeds, neglecting the
thermal expansion, are9,14

u1
2 = 
 �p

��
�

T

, u2
2 =


*

�cV
, �2.4�

where cV is the specific heat at constant volume. The first one
is the normal sound wave—a pressure or density wave—and
is referred to as the first sound; the second is a temperature
wave and is called the second sound.

In Refs. �9 and 14	 a comparison with the two-fluid model
was performed. It was shown that, both in the absence and in
the presence of a vortex tangle, denoting with s the specific
entropy, putting


* = �
�s

�n
Ts2 �2.5�

and making the change of variables

v =
�s

�
vs +

�n

�
vn, q = �sTsVns, �2.6�

system �2.1� can be identified with the equations of the two-
fluid model.

The conceptual advantage of the one-fluid model is that,
in fact, from the purely macroscopic point of view one sees
only a single fluid, rather than two physically different fluids.
The internal degree of freedom arising from the relative mo-
tion of the two fluids is here taken into account by the heat
flux, whose relaxation time is very long. However, the two-
fluid model provides a very appealing image of the micro-
scopic helium behavior, and therefore is the most widely
known.

III. CONSTITUTIVE THEORY AND FIELD EQUATIONS

In the model just described there is no field equation for
the evolution of L, including the influence of inhomogene-
ities or the coupling with the heat flux. This will be the aim
of the present section. Indeed, one cannot simply add an
evolution equation for L to the evolution equations �2.1�, but
the presence of L will also modify such equations, through
several coupling terms which must be studied in a coherent
framework.

A. Balance equations

We consider, as a starting point to build up a nonlinear
extended theory for a turbulent superfluid, the formulation of
ET which uses the method of Lagrange multipliers account-
ing for the restrictions set by the balance equations13

�see also Refs. �12 and 18	�. Since our aim is to obtain an
evolution equation for L taken as a field variable, we con-
sider for the fields �= �� ,�v ,�	+ �1/2��v2 ,q ,L	 general bal-
ance equations of the type

��

�t
+ � · J� = ��, �3.1�

with J� and �� the respective flux and production of the
quantity �. The balance equations for the fields �3.1� can be
written in terms of nonconvective quantities in the following
way:

d�

dt
+ �� · v = 0, �3.2a�

�
dv

dt
+ � · Jv = 0, �3.2b�

dE

dt
+ E� · v + � · q + Jv · �v = 0, �3.2c�

dq

dt
+ q� · v + � · Jq = �q, �3.2d�

dL

dt
+ L� · v + � · JL = �L, �3.2e�

where E=�	 is the specific energy per unit volume, Jv the
stress tensor, Jq the intrinsic part of the flux of the heat flux,
a quantity often used in the study of nonlocal effects in heat
transport,11,21 and JL the flux of vortex lines; �q and �L are
terms describing the net production of heat flux and vortices.
In this system d /dt denotes the material time derivative
�d /dt= �� /�t�+v ·�	. Observe that E is the internal energy
density of the whole system, which, if we neglect the inter-
action energy, can be considered as the sum of the energy E0
of the helium background �normal and superfluid compo-
nents� and of the energy of the vortex tangle EV=	VL, where
	V is the energy per unit length of the vortex, which is given
by1,22
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	V = �s��̃ with �̃ =
�

4�
ln
 c

a0L1/2� , �3.3�

where a0 is the radius of the vortex core, which is of the
order of the atomic radius, and c is a constant of the order of
unity.

B. Constitutive theory

Constitutive equations for the fluxes Jv, Jq, and JL and the
productions �q and �L are necessary to close the set of equa-
tions �3.2�. As a consequence of the material objectivity prin-
ciple these constitutive relations, to the first order in q, can
be expressed in the form

Jv = p0��,E,L�U , �3.4a�

Jq = �0��,E,L�U , �3.4b�

JL = �0��,E,L�q . �3.4c�

For the production term in the equation for the line density L
we will choose Vinen’s production and destruction terms
�1.2�, which here we rewrite, using the second part of Eq.
�2.6� to write the relative velocity Vns in terms of the heat
flux:

�L = − BL2 + AqL3/2, �3.5�

with A=�v /�sTs and B=�v�. For the production term in the
equation for the heat flux we will choose the expression

�q = − KLq ± HL3/2q̂ , �3.6�

which includes, compared with Eq. �2.3�, an additional term
in the force acting on a superfluid component. This term,
which has been found independently by various authors,23–26

does not depend on counterflow velocity and is called “dry
friction term” �see also the review by Nemirovskii and
Fiszdon,27 and Ref. 28�. In the steady state the fully turbulent
regime L is roughly proportional to q2, and therefore both
terms in Eq. �3.6� yield in this case a contribution propor-
tional to q3, the well-known Gorter-Mellink expression; but
Eq. �3.6� is more general because it is also valid in the un-
steady regime.

This term has different signs in papers by Nemirovskii et
al.23 and by Yamada et al.24 In papers by Guerst25,26 this term
is also present and its sign depends on the drift velocity of
the vortex tangle. In our work29 and in a recent paper of
Lipniacki,30 this term is also present, and it is linked to the
expression of mutual friction force, when the anisotropy of
the tangle is taken in consideration. In the Appendix, expres-
sion �3.6� for the production term �q will be determined on a
microscopic basis, using the vortex filament model.

Further restrictions on these constitutive relations are ob-
tained imposing the validity of the entropy principle, apply-
ing the Liu method of Lagrange multipliers.13 This method
requires the existence of a scalar function S and a vector
function JS of the fundamental fields, namely the entropy
density and the entropy flux density respectively, such that
the following inequality,

Ṡ + S� · v + � · JS − ����̇ + �� · v	 − �v · ��v̇ + � · Jv	

− �E�Ė + E� · v + � · q + Jv · �v	 − �q · �q̇ + q� · v

+ � · Jq − �q	 − �L�L̇ + L� · v + � · JL − �L	 � 0,

�3.7�

is satisfied for arbitrary fields �, v, E, q, and L. This inequal-
ity expresses the restrictions coming from the second law of
thermodynamics.

In this inequality, S=S�� ,E ,q2 ,L� and JS=��� ,E ,q2 ,L�
q are objective functions of the fundamental fields. In order
to make the theory internally consistent, we must consider
for S and JS approximate constitutive relations to second
order in q:

S = s0��,E,L� + s1��,E,L�q2, Js = �0��,E,L�q . �3.8�

The quantities ��, �v, �E, �q, and �L are Lagrange mul-
tipliers, which are also objective functions of � ,E ,q, and L.
To the first order in q, it results in ��=�0

��� ,E ,L�,
�v=�0

v�� ,E ,L�q, �E=�0
E�� ,E ,L�, �q=�0

q�� ,E ,L�q and
�L=�0

L�� ,E ,L�.
The constitutive theory is obtained substituting Eq. �3.4�

in Eq. �3.7� and imposing that the coefficients of all deriva-
tives must vanish.12,13 After some lengthy calculations, we
obtain

�v
0 = 0, �3.9a�

dS0 = �0
�d� + �0

EdE + �0
LdL , �3.9b�

S0 − ��0
� − �0

E�E + p0� − �0
LL = 0, �3.9c�

�0 = �0
E + �0

L�0, �3.9d�

d�0 = �0
qd�0 + �0

Ld�0, �3.9e�

S1 =
1

2
�0

q. �3.9f�

The following residual inequality for the entropy production
remains:

�S = �q · �q + �L�L � 0. �3.10�

In the following section the coefficients appearing in Eq.
�3.4� will be examined in depth, and related to specific
physical situations specially suitable to stress their physical
meaning.

IV. PHYSICAL INTERPRETATION OF THE
CONSTITUTIVE RELATIONS

In order to single out the physical meaning and relevance
of the constitutive quantities and of the Lagrange multipliers,
we analyze now in detail the relations obtained in the previ-
ous section. The reader interested in the concrete physical
applications may skip this section and go directly to Secs. V
and VI.
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A. Generalized temperature and chemical potentials

We first introduce a “generalized temperature” as the re-
ciprocal of the first-order part of the Lagrange multiplier of
the energy:

�0
E = � �S0

�E


�,L
=

1

T
. �4.1�

Observe that, in the laminar regime �when L=0�, �0
E reduces

to the absolute temperature of thermostatics. In the presence
of a vortex tangle the quantity �4.1� depends also on the line
density L �see relations �3.8� and �3.9�	.

If we now write Eqs. �3.9b� and �3.9d� in the following
way,

dE = TdS0 − T�0
�d� − T�0

LdL , �4.2�

− T�0
� =

E

�
− T

S0

�
+

p0 + LT�0
L

�
, �4.3�

we can define the quantity −�0
� /�0

E=−T�0
� as the “mass

chemical potential” in the turbulent superfluid

− T�0
� = − T� �S0

��


E,L
= �0

�, �4.4�

while the quantity −�0
L /�0

E=−T�0
L can be identified with the

“chemical potential of vortex lines” �0
L:

− T�0
L = − T� �S0

�L


�,L
= �0

L. �4.5�

Indeed, in the absence of vortices �L=0� Eq. �4.2� is just
the Gibbs equation of thermostatics and the quantity �4.3� is
the equilibrium chemical potential. The presence of vortices
modifies the energy density E and the chemical potentials.
For the chemical potential of vortex lines we will take the
expression

�0
L = 	Vln
 L

L*� , �4.6�

where 	V is the energy per unit length of the vortex lines,
given by Eq. �3.3�. Usually one takes 	V as practically con-
stant, as its dependence on L is very mild.

In Eq. �4.6� L* is a reference vortex line density, defined
as the average length �l� of the vortex loops composing the
tangle, divided by the volume of the system, namely L*

��l� /V. Then ln�L /L*� vanishes when there is only one vor-
tex loop in the whole volume. Note that Eq. �4.6� will be
positive for �l� /V�L�1/a0

2. This will always be the case, as
LV, the total vortex length, will always be higher than the
average length of one vortex loop. On the other side, the
average distance between vortices is L−1/2; thus the last in-
equality will always be fulfilled because the average vortex
separation must certainly be higher than the radius of the
vortex core. Equation �4.6� has a similarity with the corre-
sponding expression for ideal gases, where �=kBT ln N
+�0�T�, kBT being related to the energy per particle. In the
following, we will consider 	V as depending only on
T—through �s�T�.

Our consideration of 	V as practically constant—
independent on L—is for the sake of simplicity. We will see
that, from a quantitative point of view, the main thermody-
namic consequences will follow from the sign of ��0

L /�L
�see Eqs. �4.18a� and �4.18b� and the comments below Eq.
�5.10�	. If it is assumed that the only dependence of �0

L on L
in Eq. �4.6� is through ln�L /L*�, one has

��0
L

�L
=

	V

L
� 0. �4.7�

If one takes the full dependence in ln�1/a0L1/2	ln�L /L*	, it is
found that

��0
L

�L
=

	V

L
−

�s�
2

8�L
ln
 L

L*� =
�s�

2

4�L
ln
 �L*�1/2

a0L
� , �4.8�

and the second factor is positive for L� �L* /a0
2�1/2

= ��l� /Va0
2�1/2. In practical terms, most of the experimental

situations satisfy this inequality. Indeed, a�10−8 cm and a
typical length of vortex loops is of the order of 10−3 or
10−4 cm.19 When these data are considered, we have that the
mentioned inequality for L will be satisfied for L up to
106 cm−2, which is a value higher than experimentally
known observations. Thus here, for simplicity, we will take
	V��s�

2 /4�.
In Eq. �4.6� �s is the density of the superfluid component

in helium II, which depends essentially on its temperature.
Therefore, the chemical potential of the vortex line depends
on T and on L, and it follows that

��0
L

��
= 0,

��0
L

�T
=

	V

�s

��s

�T
ln
 L

L*� =
�0

L

�s

��s

�T
� 0,

��0
L

�L
�

	V

L
.

�4.9�

B. Generalized Gibbs equation

We consider again Eqs. �4.3� and �4.2�, which we rewrite
as

��0
� + L�0

L = E − TS0 + p0, �4.10�

dS0 =
1

T
dE −

�0
�

T
d� −

�0
L

T
dL . �4.11�

In the absence of vortices �L=0� the latter equation is just the
Gibbs equation of thermostatics. Note that this equation is
analogous to the Gibbs equation for a mixture: This suggests
that the turbulent superfluid may be considered as a mixture
of laminar superfluid, described by �, and of vortex lines,
described by L.

Note that if we work with the specific quantities �per unit
mass� 	=E /� and s0=S0 /�, from Eqs. �4.3�–�4.6� and �4.11�,
we obtain the equation

ds0 =
1

T
�d	 −

p0 − L�0
L

�2 d� −
�0

L

�
dL . �4.12�

In Eq. �4.12� s0 and 	 are specific quantities per unit mass,
but L is the line density per unit volume. We introduce then
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the quantity L=Lv �where v=1/� is the specific volume�,
and express �4.12� using these quantities; we obtain

ds0 =
1

T
�d	 + p0dv − �0

LdL	 . �4.13�

From these two latter equations and from Eq. �4.10� we also
obtain the relation which will be useful in the following:

d�0
� + Ld�0

L = dp0 − s0dT . �4.14�

In the following we will stick to the use of L as a variable,
because it is often used in the literature and because in the
usual analysis of counterflow � is constant, in such a way
that dL=dL /� and it is indifferent to take L or L as a vari-
able.

Obviously, in this model p0 cannot be identified with the
equilibrium pressure p*, as p0 depends also on the line den-
sity L, with p0= p0�� ,T ,L�. To determine the dependence of
the pressure p0 on L, we use the integrability condition:

�p0

�L
= L

��0
L

�L
� 	V. �4.15�

As a consequence, we can write p0 in the following way:

p0��,T,L� � p*��,T� + 	VL , �4.16�

with p* being the thermostatic pressure. As we see, the
theory allows us to determine the dependence of the pressure
on the vortex line density. In particular, we observe that, in
the presence of vortex tangle, the total pressure is the pres-
sure of the liquid helium p* plus pressure of the vortex
tangle, given by 	VL. If the full dependence �4.8� of �0

L on L
is taken into account one would find �p0 /�L= ��s�

2 /4���	V

− �1/2�ln�L /L*�	 and the expression for the pressure would
be p0= p*�� ,T�+	VL− �1/2��ln�L /L*�−1	L.

C. Consequences for the fluxes

Consider now the consequences of Eqs. �3.9d� and �3.9e�
which concern the expressions of the fluxes. From Eqs.
�3.9d� and �3.9e�, using definitions �4.1� and �4.5�, we get

�0
qd�0 = d
 1

T
� − �0d
�0

L

T
� . �4.17�

From this equation, recalling that �0
L depends only on T and

L, we obtain ��0 /��=0 and we put

��0

�T
= −

1

T2�0
q�1 + �0T2 �

�T

�0

L

T
� = 
0, �4.18a�

��0

�L
= −

�0

T�0
q

��0
L

�L
= �0. �4.18b�

From Eq. �4.17�, we also obtain as integrability conditions

��0
q

��
= 0,

��0

��
= 0, �4.19�

�1 + T2�0
���0

L/T�
�T

 ��0
q

�L
− T2�0

���0
L/T�

�L

��0
q

�T

= �0
qT2� ��0

�L

���0
L/T�

�T
−

��0

�T

���0
L/T�

�L
 . �4.20�

Since �0
q�0 �as will be seen in Eq. �4.29�	, it follows that

�0 and �0 must have the same sign, which will be important
in Eq. �5.10�. Furthermore, with �0�0 �see discussion below
Eq. �5.5�	, and ��s /�T�0 and �0

q�0, we deduce that 
0
�0 and �0�0.

Using Eq. �4.18b� we can eliminate �0 from Eq. �4.18a�,
obtaining


0 = −
1

T2�0
q −

�0

T

1 −

T

�s

��s

�T
��0

L

	V
L , �4.21�

an expression which will be of interest for the expression of
the speed of second sound, as seen below in Eq. �6.11�. In
the absence of vortex tangle, we get


* = −
1

T*
2�*

q , �4.22�

with 
*, T*, and �*
q being the values of 
0, T, and �0

q for L
=0. This equation is identical to that found in �18	 in the
study of laminar flows of nonviscous fluids in the presence
of heat flux.

D. Approximate expressions for the entropy density
and the entropy flux

We consider finally approximate expressions of the en-
tropy density and entropy flux. Concerning the entropy den-
sity S, from Eqs. �4.6� and �4.1� we can immediately write

S � S0��,T,L� +
1

2
�0

q��,T,L�q2, �4.23�

where �0
q must satisfy Eq. �4.20�.

Using Eq. �3.8�, we obtain the following expression, to
the first order in q, for the entropy flux:

JS = �0q =
1

T
�1 − �0�0

L�q . �4.24�

This equation shows that the entropy flux is different from
the product of the reciprocal temperature and the heat flux,
but it contains, also to the lowest order, an additional term
depending on the energy per unit length of the vortex line.
This result recalls the usual expression Js=T−1q−�T−1J for
the entropy flux in the presence of a mass flux, because,
according to Eq. �3.4c�, the flux of vortices JL is equal to
�0q; when this relation is used to write the flux of vortices,
the second term in Eq. �4.24� may be interpreted as the vor-
tices contribution to the entropy flux.

E. Consequences of the entropy inequality

We now study the consequences of the entropy inequality
�3.10�. Using Eqs. �3.5� and �3.6�, we get for the entropy
production
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�S = − �0
q�KLq2 � HL3/2q� +

1

T
�0

L�BL2 − AqL3/2� � 0.

�4.25�

In a counterflow stationary situation, in which
L1/2= �A /B�q and �L=0, it is

�S = − �0
q�KLq2 � HL3/2q� = − �0

qA2

B2
K � H
A

B
�q4 � 0.

�4.26�

We study now the sign of the coefficient K�H�A /B�. We
can write

K � H
A

B
=

1

3
�BHV �

�Vns�
�q�

�v

�v�
�4.27�

recalling that �see the Appendix� it is �v=�c1I0 and �v

=��̃c2, and substituting in Eq. �4.27�, we obtain for the sign
of the quantity �4.27� the following results:

K � H
A

B
=

1

3
�BHV �

�Vns�
�q�

2c1I0

�̃c2

=
1

3
�BHV �

1

�sTs

2c1I0

�̃c2

.

�4.28�

As we see, if H�0 �I0�0� this coefficient is always posi-
tive, while if H�0 �I0�0� this coefficient is positive if I0

� �1/6c1���sTs�̃c2BHV, from which we deduce, if the results
are K�HA /B�0,

�0
q � 0, �4.29�

and, as a consequence of this latter equation and of Eq.
�4.17b�, we conclude that the two coefficients �0 and �0 have
the same sign. In the following we will make this assump-
tion.

In a nonstationary situation, under the hypothesis �4.29�,
to satisfy relation �4.23�, the coefficients K, B, and A must
satisfy, for all values of T, L, and q, the following relation:

�S =
1

T
B�0

LL2 − 
 1

T
�0

LA ± ��0
q�H�qL3/2 + ��0

q�KLq2 � 0.

�4.30�

This concludes the analysis of the thermodynamic restric-
tions on the coefficients of the constitutive relations. In the
next two sections, we will explore two simple but physically
relevant situations where the terms introduced here—namely,
those related to vortex density inhomogeneities—play an es-
pecially explicit role.

V. FIELD EQUATIONS. I: VORTEX DIFFUSION

Now we will apply the general set of equations derived up
to here to the analysis of two specific situations: here, we
will use it to describe vortex diffusion. A diffusion equation
for the vortex line density was proposed by van Beelen et
al.,31 in an analysis of vorticity in capillary flow of superfluid
helium, in situations with a step change in L arising when the

tube is divided in a region with laminar flow and another one
with turbulent flow.

First of all, we note that, substituting in �3.2� the consti-
tutive expressions obtained in Sec. IV, the following system
is obtained:

�̇ + �� · v = 0, �5.1a�

�v̇ + �p0 = 0, �5.1b�

�	̇ + � · q = 0, �5.1c�

q̇ + 
0�T + �0�L = �q, �5.1d�

L̇ + L� · v + � · ��0q� = �L, �5.1e�

with 
0 and �0 defined by Eq. �4.18� and satisfying

�0

�0
= −

T�0
qL

	V
. �5.2�

For the production terms �q and �L, we will simply take Eqs.
�3.5� and �3.6�, respectively.

In this approximation, the unknown coefficients, which
must be determined from experimental data, are the specific
energy 	, the pressure p0, and the three coefficients 
0, �0,
and �0, which are functions only of T and L. Here, we will
focus special attention on the coefficients �0 and �0, which
are the ones appearing in the present formulation, as com-
pared with the formulation presented in Eq. �2.1�.

A. The drift velocity of the tangle

As observed in the Introduction, in a hydrodynamical
model of turbulent superfluids, the line density L acquires
field properties and its rate of change must obey a balance
equation of the general form

�L

�t
+ � · �LvL� = �L, �5.3�

with vL the drift velocity of the tangle. If we now observe
that Eq. �5.1e� can be written

�L

�t
+ � · �Lv + �0q� = �L, �5.4�

we conclude that the drift velocity of the tangle, with respect
to the container, is given by

vL = v +
�0

L
q . �5.5�

Note that the velocity vL does not coincide with the micro-
scopic velocity of the vortex line element, but represents an
averaged macroscopic velocity of this quantity. It is to bring
attention to the fact that often in the literature the micro-
scopic velocity ṡ is denoted with vL.

Observing that in counterflow experiments �v=0� results
in vL=�0q /L, and recalling that measurements1 �in devel-
oped superfluid turbulence� show that the vortex tangle drifts
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as a whole toward the heater, we conclude that �0�0. The
measurement of the drift velocity vL of the vortex tangle,
together with the measurement of q and L, would allow one
to obtain quantitative values for the coefficient �0. In the
following section we will propose also a way to measure the
coefficient �0.

Another possibility is to interpret �0q=JL as the diffusion
flux of vortices, which since �0�0, would be opposite to the
direction of q. Note that, in this model, if q=0, JL also is
zero.

B. Vortex diffusion

An interesting physical consequence from the generalized
equations �5.1d� and �5.1e� is the description of vortex dif-
fusion. Assume, for the sake of simplicity, that T=const and
that q varies very slowly, in such a way that q̇ may be ne-
glected.

We find from Eqs. �5.1d� and �2.3� that

�0�L = �q = − KLq ± HL3/2q̂ . �5.6�

To separate the dynamics of T and of L is not easy in
general. However, one may devise some situations in which
this may be done, at least as an illustrative approximation to
understand the approximation which has lead to Eq. �5.6�.
Indeed, the heat perturbations propagate in the superfluid
with the characteristic velocity V2 of the second sound; in-
stead, vortex density propagation is a diffusion process, char-
acterized by a diffusion coefficient � �the quantum of vortic-
ity�. Then, we could consider a thin cylinder of length l, and
to heat suddenly and for a short time one of its ends; the
temperature propagation will arrive at the other end in a time
t1= l /V2; instead, the vortex density perturbation will arrive
in a characteristic time t2= l2 /�. Thus, if the cylinder is long
enough, the inhomogeneity in the temperature will disappear
faster than that in L, and one may make the approximation of
homogeneous T but inhomogeneous L. In general, however,
both the inhomogeneities in T and L should be taken into
consideration.

We suppose here, in accord with experiments, that the first
term in the right-hand side of Eq. �5.6� is prevalent with
respect to the second one, so that �L is always collinear but
opposite to the heat flux. Then, we may write
q̂=−�L / ��L� and

q = − 
 �0

KL
�

H

K

L1/2

��L���L . �5.7�

Introducing this expression in Eq. �5.1e�, we find

dL

dt
+ L� · v −

�0�0

K
� · 
�L

L
� ±

�0H

K
� · 
L1/2 �L

��L��
= �L = − BL2 + AqL3/2, �5.8�

where q denotes the modulus of q. Equation �5.8� can be
written �if �L�0�

dL

dt
+ L� · v −

�0�0

KL
�L + 
�0�0

KL2 ±
�0HL−1/2

2K��L� ���L�2 = �L.

�5.9�

Then, we have for L a reaction-diffusion equation, which
generalizes the usual Vinen’s equation �1.2� to inhomoge-
neous situations. The diffusivity coefficient is found to be

D =
�0�0

KL
. �5.10�

Since �0
q�0 and K�0, it turns out that D�0, as is expected.

Thus the vortices will diffuse from regions of higher L to
those of lower L. Note that D must have dimensions
�length�2 / time, the same dimensions as �. Then, a dimen-
sional ansatz could be D� �. Indeed, Tsubota et al.32 have
studied numerically the spatial vortex diffusion in a localized
initial tangle allowed to diffuse freely, and they found for D
at very low temperatures �when there is practically no nor-
mal fluid� a value D��0.1±0.05��. Note that KL in Eq.
�5.7� plays the role of a friction coefficient. Then it is natural
that it appears in the denominator of D. This has some anal-
ogy with Einstein relation D=kBT /
, 
 being the friction
coefficient.

If v vanishes, or if its divergence vanishes, Eq. �5.8�,
neglecting also the term in ��L�2, yields

L̇ = − BL2 + AqL3/2 + D�L . �5.11�

Equation �5.11� indicates two temporal scales for the evolu-
tion of L: One of them is due to the production-destruction
term �decay� and another one to the diffusion:

decay � �BL − AqL1/2	−1, diff �
X2

D
, �5.12�

where X is the size of the system. For large values of L, decay
will be much shorter and the production-destruction dynam-
ics will dominate over diffusion; for small L, instead, diffu-
sion processes may be dominant. This may also be under-
stood from a microscopic perspective because the mean free
path of vortex motion is of the order of intervortex spacing,
of the order of L−1/2, and therefore it increases for low values
of L.

A more general situation for the vortex diffusion flux is to
keep the temperature gradient in Eq. �5.1d�. In this more
general case, q is not more parallel to �L but results in


q �
H

K
L1/2�q̂ = −

�0

KL
�L −


0

KL
�T , �5.13�

in which case, it would become

JL = �0q = − D�L − D

0

�0
�T �

�0H

K
L1/2 �0�L + 
0�T

��0�L + 
0�T�
.

�5.14�

Thus, if �L=0, Eq. �5.14� will yield

q = − �eff�T , �5.15�

with an effective thermal conductivity �eff
=D
0 /�0�0± �H /K��L1/2 / ��T � ��0. As in the case of the dif-
fusion coefficient D, �eff is expected to be positive, in the
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usual circumstances; a negative sign would imply a thermal
instability in the system, which cannot be dismissed a priori
but that we will not study here because we do not have
enough precise information.

The second term in Eq. �5.14� plays a role analogous to
thermal diffusion—or Soret effect—in the usual diffusion of
particles. In this case, Eq. �5.8� modifies as

dL

dt
+ L� · v −

�0�0

KL
�L

−
�0
0

KL
�T � � · 
�0H

K
L1/2 �0�L + 
0�T

��0�L + 
0�T�� = �L.

�5.16�

These kinds of situations have not been studied enough in
the context of vortex tangles, but they would arise in a natu-
ral way when trying to understand the behavior of quantum
turbulence in the presence of a temperature gradient.

Expression �5.14� yields a coupling between the heat flux
and an inhomogeneity in L; in other terms, it means that a
heat flux may influence the vortex line density. It follows, in
contrast with the standard assumption that the vortex line
density is longitudinally homogeneous in counterflow ex-
periments, that the vortex tangle would be slightly inhomo-
geneous. In view of Eqs. �5.14� and �5.10�, this longitudinal
inhomogeneity along q would be given by

− �0�L = KLq + 
0�T �
H

�0
L3/2q̂ . �5.17�

In the linear approximation 
0 is related to the second sound
velocity in the absence of vortex lines �see Eq. �6.11�	. We
have seen that �0�0 and that �0 must have the same sign as
�0, according to the comments below Eq. �5.5�. From here, it
follows that there should be a slight inhomogeneity in L in
such a way that �L points in the same direction as KLq
+
0�T� �H /�0�L3/2q̂. Thus an experiment suggested by our
formalism would be to carefully measure the longitudinal
profile of L along the heat flux, to check whether there is a
slight increase in L. Furthermore, Eq. �5.17� would allow one
to measure the coefficient �0, in the linear approximation.

Since below Eq. �5.5� we have mentioned a way to mea-
sure �0, it turns out that the coefficients �0 and �0 could be
measured independently of each other. A further quantitative
check of our formalism would be to check the relation �5.10�
between �0, �0, and the diffusion coefficient D, which could
be measured independently by studying the evolution of an
inhomogeneity in the vortex line density under constant
temperature.

VI. FIELD EQUATIONS. II: WAVE PROPAGATION IN
COUNTERFLOW VORTEX TANGLES

Here, we will study wave propagation in counterflow vor-
tex tangles. Experiments show that in this case the velocity v
is zero, and only the fields T, q, and L are involved. The
equations for these fields, under these hypotheses, expressing
the energy in terms of T and L, are simply

�cV
dT

dt
+ �	L

dL

dt
+ � · q = 0, �6.1a�

dq

dt
+ 
0�T + �0�L = − KLq ± HL3/2q̂ , �6.1b�

dL

dt
+ � · ��0q� = − BL2 + AqL3/2, �6.1c�

where cV=�	 /�T is the specific heat at constant volume,
	L=�	 /�L�	V.

These equations are enough for the discussion of the
physical effects of the coupling of second sound and the
distorsion of the vortex tangle �represented by the inhomo-
geneities in L�, which must be taken into account in an
analysis of the vortex tangle by means of second sound. In
fact, some of the previous hydrodynamical analyses of tur-
bulent superfluids had this problem as one of their main
motivations.32

As we can easily see, a stationary solution of system �6.1�
is

q = q0 = �q10,0,0� ,
�6.2�

L = L0 =
A2

B2 �q10	2, T = T0�x� = T* −
KL0q10 − HL0

3/2


0
x1,

with q10�0. We have chosen here the sign in front of H
opposite to the sign in front of K, because in stationary situ-
ations the quantity I0 introduced in the Appendix has positive
sign.

To study the wave propagation in a neighborhood of this
solution, we substitute �q and �L with

�q � − K�L0q + q0�L − L0�	 + H�L0
3/2q̂0 +

3

2
L0

1/2�L − L0�q̂0

+
L0

3/2

�q0�
�q − q0� , �6.3�

�L � − �2BL0 −
3

2
Aq10L

1/2�L − L0� + AL0
3/2q̂0 · �q − q0� ,

�6.4�

obtaining

�cV�tT + �	L�tL + � · q = 0, �6.5a�

�tq + 
0�T + �0�L = − K�L0q + q0�L − L0�	

+ H�3

2
L0

1/2�L − L0�q̂0 +
L0

3/2

�q0�
q ,

�6.5b�

�tL + �0� · q = − �2BL0 −
3

2
Aq10L0

1/2�L − L0�

+ Aq10L0
3/2�q1 − q10� , �6.5c�
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where �t stands for � /�t.
Consider the propagation of harmonic plane waves,

seeking solutions of Eqs. �6.1� of the form

T = T0�x� + T̃ei�kn·x−�t�, �6.6a�

q = q0 + q̃ei�kn·x−�t�, �6.6b�

L = L0 + L̃ei�kn·x−�t�, �6.6c�

where k=kr+ iks is the complex wave number, � the real
frequency, and n the unit vector in the direction of the wave
propagation. Furthermore, we suppose that the oversigned
quantities denote small amplitudes, whose products can be
neglected. Inserting Eqs. �6.6� in the linearized field equa-
tions �6.1�, and making the positions

N1 = KL0 − H
L0

3/2

q10
, N2 = 2BL0 −

3

2
AL0

1/2q10, �6.7a�

N3 = Kq10 −
3

2
HL0

1/2, N4 = Aq10L0
3/2, �6.7b�

we obtain the following algebraic set of equations for the
amplitudes:

− ��cV	0�T̃ − ��	L	0�L̃ + kq̃ · n = 0, �6.8a�

�− � − iN1�q̃ + k�
0	0T̃n + 
k��0	0n − i
N3

q10
q0�L̃ = 0, �6.8b�

�− � − iN2�L̃ + k��	0q̃ · n + iN4q̃1 = 0, �6.8c�

where subscript 0 denotes quantities referring to the unper-
turbed state; in what follows, this subscript will be neglected
to simplify the notation.

This system possesses nontrivial solutions if and only if
its determinant vanishes. Imposing this condition, in the case
n= �1,0 ,0�, i.e., when the wave is collinear with the heat
flux q, one obtains

�2 = k2�V2
2�1 − �	L�0� + �0�0	 + N1N2 − i��N1 + N2�

+ i
k2

�
V2

2N2 − ik���0 + V2
2�	L�N4 − �0N3	 , �6.9�

while, in the case n= �0,0 ,1�, i.e., when the wave is orthogo-
nal with the heat flux q, one obtains

�2 = k2�V2
2�1 − �	L�0� + �0�0	 + N1N2 − i��N1 + N2�

+ i
k2

�
V2

2
N2 −
N3N4

� + iN1
� . �6.10�

In both Eqs. �6.9� and �6.10�, we have denoted with V2 the
quantity

V2
2 =


0

�cV
, �6.11�

which, in the absence of vortices �
0=
*�, coincides with the
usual velocity of the second sound,8,18 mentioned in Eq. �2.4�

and, in the presence of vortices, includes a positive contribu-
tion proportional to L, according to Eqs. �4.21�, which shows
that the speed of the waves increases when L increases. In
the first term on the right-hand side of Eq. �6.8�—the term
related with the speed of waves—this effect is further en-
hanced when the vortex tangle is deformed by the second
sound.

We compare the result �6.10� with the result obtained in
Ref. 9, where we supposed L a fixed quantity, and the term
�0 was assumed to vanish, eliminating in this way the effects
of the oscillations of q on the vortex line density L of the
tangle. In that work, the dispersion relation for the second
sound was

�2 = V2
2k2 − i�KL0. �6.12�

Comparison of Eqs. �6.9� and �6.10� with Eq. �6.12� shows
that the distortion of the vortex tangle under the action of the
heat wave, and its corresponding back reaction on the latter,
implies remarkable changes in the velocity and the attenua-
tion of the second sound, the latter effect depending on the
relative direction between q0 and n. Thus, if one uses Eq.
�6.12� instead of Eq. �6.8� one obtains erroneous values for
the average vortex line density L0 and the friction coefficient,
leading to an incorrect interpretation of the physical results.
Introduction of nonlinear effects in our equations would
yield further corrections.

VII. COMPARISON WITH TWO-FLUID MODELS

A. Field equations in the variables of the two-fluid model

Equations �5.1a�, �5.1b�, �5.1c�, �5.1d�, and �5.1e� can be
written using the most familiar variables of the two fluid
model, performing in them the change of variables �2.6� and
substituting Eq. �2.5� with


0 = �
�s

�n
Ts0

2. �7.1�

From Eqs. �2.6� and �7.1�, we can easily obtain the fol-
lowing expressions of �n /�, vs and vn as functions of 
0, Vns,
and q:

�n

�
=

�Ts0
2


0 + �Ts0
2 , vs = v −

s0


0
q, vn = v +

1

�Ts0
q . �7.2�

If we perform in the field equations �5.1a�, �5.1b�, �5.1c�,
�5.1d�, and �5.1e� this change of variables, we check imme-
diately that the first three equations are identical to the ones
of the two-fluid model for helium II. We concentrate there-
fore on the field equation �5.1d� for the heat flux. We obtain

dVns

dt
+

�

�n
s0�T +

�

�n

s0


0
�0�L =

�

�n

s0


0
�q −

Vns

�Ts0

d��Ts0�
dt

.

�7.3�

The equation for the velocity of the superfluid component
can be obtained multiplying Eq. �7.3� by −�n /� and adding it
to the balance equation for the velocity �5.1b�. Recalling that
one can write vs=v− ��n /��Vns, we find
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dvs

dt
− s0�T +

1

�
�p0 −

s0


0
�0�L = −

s0


0
�q +

Vns

�Ts0

d�
0/s0�
dt

.

�7.4�

Finally, using Eq. �4.14�, which relates the chemical poten-
tials �0

� and �0
L to the equilibrium variables, the field equa-

tion for the superfluid velocity takes the form

dvs

dt
+ ��0

� +
L

�
��0

L −
s0


0
�0�L = −

s0


0
�q +

Vns

�Ts0

d�
0/s0�
dt

.

�7.5�

We conclude that field equations �5.1a�, �5.1b�, �5.1c�,
�5.1d�, and �5.1e�, in the variables of the two-fluid model,
can be written

d�

dt
+ �� · v = 0, �7.6a�

�
dv

dt
+ �p0 = 0, �7.6b�

�
d	

dt
+ � · ��sTs0Vns� = 0, �7.6c�

dvs

dt
+ ��0

� +
L

�
��0

L −
s0


0
�0�L = −

s0


0
�q +

V

�Ts0

d�
0/s0�
dt

,

�7.6d�

dL

dt
+ L� · v + � · ��0�sTs0Vns� = �L. �7.6e�

In the following subsections, we will compare these equa-
tions with those obtained using directly the two-fluid model
by other authors.

B. Comparison with Nemirowskii-Lebedev and Geurst models

Hydrodynamical descriptions of superfluid turbulence in-
corporating the inhomogeneities of the vortex-line density
and an evolution equation for L have been proposed previ-
ously using different methods by Nemirovskii and Lebedev23

�phenomenological�, Yamada et al.24 �stochastic�, and
Geurst25,26 �variational�. We will briefly compare some of the
differences of our work and theirs.

Nemirovskii and Lebedev23 provide a thermodynamical
analysis of the superfluid turbulence in the framework of
Bekarewich-Khalatnikov method.8 They start from evolution
equations for � �density�, S �entropy�, J �momentum�, vs
�superfluid velocity�, energy E of the system �supposing it
dependent on the other variables�, and L �vortex line den-
sity�. The evolution equations for �, J, and E are the usual
conservation equations for mass, momentum, and energy,
whereas the evolution equations for vs and L are found to be

�vs

�t
+ �� + vs · �vs = �VnsL − ����VnsL

3/2 �7.7�

and

�L

�t
+ � · �LvL� = �vVnsL

3/2 − �v�L2, �7.8�

analogous to our Eq. �5.3�. They assume from the start that
the drift velocity is proportional to Vns, namely vL=b�T�Vns,
but do not study the sign of b�T�, which has been proved to
be negative in our analysis. Their Gibbs equation �in the
superfluid reference frame� has the form

dE = � d� + T dS + Vns · dJ + 	VdL . �7.9�

Comparing Eq. �7.7� with our corresponding equation �7.6d�
we note that in the equation deduced from our model the
terms L��0

L and −�s0 /
0��0�L are present, which are not
considered in Ref. 23. Comparing Eq. �7.9� with our Eq.
�4.11�, we see that Nemirovskii and Lebedev identify the
energy 	V per unit length with the chemical potential �0

L of
the vortex tangle. A term of the type �qq ·dq �corresponding
to the term Vns ·dJ� does appear in our model, owing to our
choice �3.4�. A more general theory, in which nonlinear terms
in q will be considered, will be the object of a subsequent
paper.

They arrive at a rich set of equations, which is applied to
study the propagation of linear and nonlinear second sound
through the tangle, incorporating the distortion of the tangle
produced by the second sound and the corresponding back
reaction on the latter. In contrast with the present analysis,
they do not pay attention to vortex diffusion, which at the
time when their paper was written was not receiving special
attention, in contrast with second-sound propagation, which
has always been a powerful experimental tool. In Ref. 24,
Yamada et al. have discussed the model by Nemirowski and
Lebedev by starting from a stochastic theory of vortex tangle
in superfluid turbulence, whose averaged form leads to the
three equations in Ref. 23 plus the possible contribution of
an eddy viscosity.

The Geurst proposal25,26 is based on six variables: mass
density �, entropy density S, vortex line density L, mass
velocity v, normal flow velocity vn, and tangle velocity vL,
for which he obtains six corresponding equations, expressing
the balance of the first three quantities, and the equations of
motion of the latter three velocities. Thus he is using one
more variable than those appearing in our analysis of Sec.
III, namely, the vortex velocity vL. In our formalism, we
have been led to the relation �5.5� between vL and v, namely
vL=�0q /L, and therefore a supplementary equation for vL is
not strictly needed in our formalism, but vL could indeed be
taken as an independent variable in more general situations
than those considered here. Geurst derivation is strictly valid
for homogeneous turbulence whereas we have focused our
interest on inhomogeneous effects. Therefore, he is espe-
cially interested in the motion of an homogeneous tangle,
whereas we are especially interested in the interplay between
a heat flux and the inhomogeneities in the vortex tangle,
which is not described in Geurst formalism.

To obtain the evolution equation for these variables,
Geurst applies a generalized form of Hamilton’s least action
principle for the nondissipative part and a nonequilibrium
thermodynamic formalism for the dissipative part. The five
unknown coefficients appearing in the theory are obtained by
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comparing the hydrodynamic equations with similar equa-
tions obtained by Schwarz on vortex microscopic
dynamics.20 The Gibbs equation he uses has the form

dE = � d� + T dS + �LdL − Pn · d�vn − v� − PLd�vL − v� ,

�7.10�

where Pn and PL are the impulse densities of the normal fluid
and the vortex tangle respectively. Instead of our expression
�4.6� for the chemical potential of vortex lines, Geurst takes

�L = 	V −
1

2
�s��L1/2�vL − v� �7.11�

with 	V as given by Eq. �4.7�. The corresponding expression
for the entropy production is

�S = − rL�L − �vL − v�FsL − �vL − vn� · FnL, �7.12�

where rL is the production term in the Vinen’s equation, and
FsL and FnL are the forces exerted by the superfluid and the
normal fluid on the vortex tangle, respectively. The terms rL,
FsL, and FnL are expressed in terms of ml, vL−v, and vL
−vn by using the usual formalism of nonequilibrium thermo-
dynamics. The expressions for FsL and FnL have the form

FnL = �s�L�a�vn − v� − bL1/2ln
c

a0L1/2 sgn�vL − v� �7.13�

and

FsL = �s�L�a��vn − v� − bL1/2ln
c

a0L1/2 sgn�vL − v� ,

�7.14�

where a and b can be written in terms of the phenomenologi-
cal coefficients appearing in the equations for these forces,
and sgn vL−v is +1 or −1 according to vL−v�0 or vL−v
�0, respectively �this version is valid for one-dimensional
situations, and sgn�vL−v� is considered as an independent
parameter in the formalism by Geurst. Since we have one
variable less than those by Geurst, our Gibbs equation for the
entropy �3.8� and our entropy production �4.25� also have
one less term; in fact, in counterflow situations, v=0, vn
=q / ��Ts�, and vL=�0q /L. Thus the contributions from vn

and vL could be written in terms of the heat flux, and could
be related—though not in a straightforward way—to the sec-
ond term on the right-hand side of our first equation in �3.8�.

It is interesting to point out that Geurst has been able to
describe Vinen’s equation in variational terms. He achieves
this purpose, in a one-dimensional setting, by showing that
Eq. �7.8� may be written in the form

�L

�t
+

�

�x
�LvL� = −

1

4��v

L2

�s�

�

�L
�Ul − �vL − v�Pl	 , �7.15�

with Ul the internal energy density associated with the mo-
tion of the superfluid around the core of the quantized vorti-
ces, namely Ul=	VL, and Pl=ml�vl−v� being the impulse
density of the vortex tangle and ml its virtual mass density
�for detailed expressions see Ref. �25�	. In the presence of
high gradients he introduces �L /�x as an additional indepen-
dent variable in the energy Ul �and in ml� and he obtains a

generalization of Vinen’s equation which, written in our no-
tation, has the form

�L

�t
+

�

�x
�LvL − 4��v��l

�L

�x


= �vVnsL
3/2 − �v�L2 −

8��v��l

L

 �L

�x
�2

+ �4��v�2��l

�s

�

�x

 �s

4��v
� �L

�x
, �7.16�

with �l a dimensionless coefficient. This equation describes
diffusion when vL and the last two �nonlinear� terms are
neglected, yielding

�L

�t
= �vVnsL

3/2 − �v�L2 + D
�2L

�x2 , �7.17�

with the diffusion coefficient D identified as D=4��v��l.
Since �v and �l are dimensionless coefficients, it turns out
that, as in our previous analysis, the diffusion coefficient D is
proportional to the quantum of vorticity �. In contrast to our
paper and to Ref. �26	, vL is taken here as an independent
variable, rather than being expressed in terms of q or Vns.

In summary, in this brief comparison we have pretended
to show that the hydrodynamics of superfluid turbulence is
still an open topic, especially in the nonlinear regime.

VIII. CONCLUSIONS

The study of quantum turbulence in superfluids often as-
sumes homogeneity of the vortex tangle line density L. In
several situations this homogeneity will not hold, and the
vortex lines will diffuse from the most concentrated to the
less concentrated zones. For instance, vortex lines could be
produced near the walls and migrate by diffusion to the bulk
of the container until a homogeneous situation is reached.
Furthermore, if vortex lines are flexible, they will be bent
and their density will be compressed and rarefied by second-
sound waves and this will produce an inhomogeneity in L,
which, in its turn, will influence the propagation of second
sound. This may be relevant in the interpretation of the ex-
perimental results on the speed and the attenuation of the
second sound in terms of the average vortex line density of
the system.

To incorporate these effects has been the main motivation
of this paper. We have not limited ourselves to adding a more
general evolution equation for L, namely Eq. �5.3�, but we
have tried to insure thermodynamical consistency of the mu-
tual coupling of this equation and the equations considered
previously for the other fields. We have worked in a macro-
scopic thermodynamic framework, which yields several con-
sequences of incorporating the additional terms to the evolu-
tion equations for the heat flux and the vortex line density
through the term with the coefficient �0 in Eqs. �5.1� and
�6.1�. The thermodynamic consequences are shown as re-
strictions on the coefficients of the new terms, as for in-
stance, Eqs. �4.18�–�4.22�. We have also commented how the
choice for the chemical potential of vortex lines �4.6� influ-
ences such restrictions. We have obtained, in this way, field
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equations for the relevant quantities, and we have studied
two simple but directly significant situations, as an illustra-
tion of their usefulness. In particular, we have compared the
dispersion relation �6.10�, where the mentioned coupling is
included, with the dispersion relation �6.12�, where the
tangle was taken as rigid, presenting only a frictional resis-
tance to the second sound. Furthermore, we have paid special
attention to Eq. �5.16� describing vortex diffusion.

We have presented a brief comparison of our formalism
and the previous hydrodynamic formalisms by Nemirovskii
and Lebedev and by Geurst—and we have also mentioned
the stochastic approach by Yamada et al. Each of the men-
tioned formalisms uses a different set of basic variables;
mass density, energy, and vortex length are common to all,
but the choices for the velocities are different. Nemirovskii
and Lebedev take the momentum density J and the super-
fluid velocity vs; Geurst uses three velocities: Mass velocity
v, normal velocity vn, and vortex tangle velocity vL; we take
mass velocity v and the heat flux q �related to vn−vs�. The
different choices are due the different aims in several works.
The characteristic aim of our work is to describe the cou-
pling between the heat flux and the inhomogeneities in the
vortex line density. It is seen that, in contrast with laminar
superfluid hydrodynamics, turbulent superfluid hydrodynam-
ics is an open topic where several different approaches
should be compared in deeper detail, as they seem to yield
results which are not entirely equivalent to each other be-
cause of the different hypotheses, the different methods used,
and the different situations considered.
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APPENDIX: Microscopic determination of the production
terms �q and �L

In the vortex filaments model, a quantized vortex line is
thought of as a classical vortex line in the superfluid with a
hollow core of radius a0 of about 1 Å, and quantized circu-
lation �. The vortex line is described by a vectorial function
s�� , t�, � being the arc length measured along the curve of the
vortex filament. The first two derivatives of s with respect to
�, which we will denote with a prime, play an essential role
in this description: s� is the unit vector tangent along the
vortex line at a given point and s� is the curvature vector.
Another relevant vector is the binormal, defined by s��s�.
All these three vectors and their relative orientations with

respect to the counterflow velocity Vns are important in the
microscopic vortex dynamics.

The driving force which pushes the vortices is the Mag-
nus force fM, generated by the relative flow of superfluid
with respect to the vortex:1–3

fM = ��ss� � �vL − vsl� , �A1�

where vL=ds /dt is the velocity of the line element and vsl
=vs+vi is the “local superfluid velocity,” sum of the super-
fluid velocity at a large distance from any vortex line and of
the “self-induced velocity,” a flow due to all the other vorti-
ces including other parts of the same vortex, induced by the
curvature of all these lines. In the “local induction approxi-
mation,” the self-induced velocity vi is approximated by1–3

vi
�loc� = �̃�s� � s�	s=s0

, with �̃ =
�

4�
ln
 c

a0L1/2� , �A2�

with c a constant of the order of unity and a0 the dimension

of the vortex core. The intensity of vi is �vi � = �̃ /R, with R the
curvature radius of the vortex line. The self-induced velocity

is zero if the vortices are straight lines. The coefficient �̃ is
linked to the internal energy per unit length of the vortex line

�the tension of the vortex line� by the relation 	V=�s��̃.1–3

The normal component reacts to a moving vortex by pro-
ducing a frictional force, the “mutual friction force,” which
can be written as1–3

fMF = − ��s�s� � �s� � �vn − vsl�	 − ���s�s� � �vn − vsl� ,

�A3�

�where � and �� are linked to the Hall-Vinen coefficients
BHV and BHV� by the relations �= ��n /2��BHV and ��
= ��n /2��BHV� 	, i.e., observing that vn−vsl=Vns−vi:

fMF = − ��s�s� � �s� � �Vns − vi�	 − ���s�s� � �Vns − vi� .

�A4�

The force fMF is the force on a vortex line element exerted by
the superfluid; the force −fMF is the force on the superfluid
exerted by the vortex element. The force per unit volume
exerted by the counterflow on the tangle will be denoted by

F = �fMF� =
1

�L
� fMFd� , �A5�

where � denotes the tangle’s volume, and it is the force −F
which appears in the evolution equation for the superfluid
velocity vs. It is easy to see that

F = ��s���U − s�s�� · �Vns − vi�� + ���s��W · s� · �Vns − vi�� .

�A6�

Using the local induction approximation, and setting symme-
try �s��=0, Eq. �A6� can be written as

F = ��s���U − s�s��� · Vns + ���s��W · s�� · Vns

− ��s��̃�s� � s�� . �A7�
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Using now the tensor � studied in Ref. �19	 �linked to the
tensor P� by the relation P�= �1/3��LBHV�	 and the quan-
tities introduced by Schwarz,1,20

c1 =
1

�L3/2 � �s��d�, c2 =
1

�L2 � �s��2d� , �A8�

Il =
1

�L3/2 � s� � s�d�, I =
Il

c1
=
� s� � s�d�

� �s��d�

, �A9�

the expression of the force which the tangle exerts on the
fluid is obtained and can be written as

F = ��s��2

3
L� · Vns − �̃c1L3/2I

=
�s�n

�
�P� · Vns −

1

2
BHV��̃c1L3/2I . �A10�

Observe that the last term does not appear when vi=0, and is
usually neglected in the expression of the force which the
tangle exerts on the normal fluid.

This leads us to the following expression for the produc-
tion term:

�q = − P� · q −
BHV

2
�sTs0	Vc1L3/2I . �A11�

Supposing that the vector I is collinear with the counter-
flow velocity Vns �and it is true in steady situations�, putting

I= I0V̂ns, we can write

FMF = −
�s�n

2�
�BHV�2

3
L� · Vns − �̃c1L3/2I0V̂ns

�A12�

and

�q = − P� · q +
BHV

2
�sTs0	Vc1L3/2I0q̂ . �A13�

Observe that in a stationary situation the coefficient I0 has
positive sign, but, in some particular situations, its sign may
become negative.

If we suppose isotropy in the distribution of s�, results
�=U, and we are lead to equation

�q = − KLq ± HL3/2q̂ , �A14�

with K= �1/3��BHV and H=BHV/2�sTs0	Vc1L3/2I0.
For the production term in the equation for the line den-

sity L, we have chosen expression �3.5�; �v and �v are linked
to the microscopic quantities by the relations �v=�c1I0 and

�v=��̃c2 and coefficients A and B are related to the micro-
scopic quantities �A8� and �A9� by the relations

A =
�c1

�sTs0
I0, B = ��̃c2. �A15�
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