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We study the relaxation dynamics of flux lines in dirty high-temperature superconductors using numerical
simulations of a London-Langevin model of the interacting vortex lines. By analyzing the equilibrium dynam-
ics in the vortex liquid phase we find a dynamic crossover to a glassy nonequilibrium regime. We then focus
on the out-of-equilibrium dynamics of the vortex glass phase using tools that are common in the study of other
glassy systems. By monitoring the two-times roughness and dynamic wandering we identify and characterize
finite-size effects that are similar, though more complex, than the ones found in the stationary roughness of
clean interface dynamics. The two-times density-density correlation and mean-squared-displacement correla-
tion age and their temporal scaling follows a multiplicative law similar to the one found at criticality. The linear
responses also age and the comparison with their associated correlations shows that the equilibrium
fluctuation-dissipation relation is modified in a simple manner that allows for the identification of an effective
temperature characterizing the dynamics of the slow modes. The effective temperature is closely related to the
vortex liquid-vortex glass crossover temperature. Interestingly enough, our study demonstrates that the glassy
dynamics in the vortex glass is basically identical to the one of a single elastic line in a disordered environment
�with the same type of scaling though with different parameters�. Possible extensions and the experimental
relevance of these results are also discussed.
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I. INTRODUCTION

Vortex matter in high-temperature superconductors has
been extensively studied for many years.1–4 In particular, the
nature of the dynamics of interacting vortices in their differ-
ent phases has attracted much attention due to its relevance
in technological applications.

Most studies of vortex systems have focused on the analy-
sis of their static properties. It is well known that at low
temperatures any small amount of disorder destroys the long
range order of the Abrikosov lattice,5 leading to different
glassy phases. For small magnetic field, i.e., small vortex
density, quasi-long-range order is retained in the so-called
“Bragg glass” �BG�.6–9 The key characteristics of the BG are
the logarithmic decay of spatial correlations and the absence
of dislocations, giving rise to a well defined structure factor.
For increasing fields, the appearance of dislocation loops sig-
nals the transformation to a new disordered phase, character-
ized by the rapid destruction of Bragg peaks observed in
neutron scattering.7 This is the so-called “vortex glass.”
�VG�.10,11 Increasing the temperature both glassy phases
transform into a vortex liquid �VL�. Transport and magnetic
measurements showed that at low-fields the BG solid melts
into the VL through a first order transition, while the transi-
tion from the VG solid to the VL at high fields is
continuous.12,13 Whether the latter corresponds to a true
phase transition or a crossover is still under debate.14–24

Beyond the nature of the continuous VG-VL transition,
important efforts were devoted to the interpretation of the
irreversibility line �IRL�.25–27 Experimentally, the IRL marks
both the onset of the irreversibility in zero field cooling and
field cooling magnetization measurements and the separation

of two transport regimes in the field-temperature diagram.
Above the IRL, thermal energy dominates, vortices are un-
able to be pinned, and any amount of current results in a
linear current-voltage characteristics. Below the IRL, the
pinning energy dominates and flux lines are irreversibly
pinned. In this case, the resistivity drops to nearly zero with
a nonlinear current-voltage characteristics. Originally, the
proposition that the IRL signals the continuous VG-VL phase
transition was supported by experiments showing the scaling
of the current-voltage characteristic,28,29 and by simulations
in randomly frustrated three-dimensional �3D� XY models
without screening showing evidence for a finite temperature
critical point.14,20,30 However, contradictions in the experi-
mental scaling of the current-voltage characteristics,29,31,32

on the one hand, and the disappearance of the finite tempera-
ture transition in the randomly frustrated 3D XY model when
screening is restored,15–18 on the other hand, have raised new
questions on how to interpret the IRL.

Based on the reexamination of experimental data and the
results of numerical simulations of the overdamped dynam-
ics of the London-Langevin model, Reichhart et al.21 argued
that the vortex-glass criticality is arrested at a crossover tem-
perature. Below this temperature, the relaxation times as ob-
tained from the study of the resistivity grow very quickly in
a way that is consistent with the Vogel-Fulcher law com-
monly found in relaxation studies of structural glasses.33 This
study suggests that the VL and the VG are then just separated
by a crossover phenomenon in which relaxation times go
beyond the experimental time-window at a glass temperature
Tg�H�. Below this crossover line one expects to find an out-
of-equilibrium system, the VG, with all the properties of
more standard glasses.
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In the last decade there has been important progress in the
understanding of the out-of-equilibrium dynamics of glasses.
A key characteristic of relaxing glassy systems is the loss of
stationarity reflected by their aging properties, meaning that
the system’s dynamics depend on the time elapsed after the
preparation of the sample34 tw. As a consequence, dynamic
correlation functions depend now on two times, the “waiting
time” tw and the time t elapsed during the measurement. Also
the linear response functions of glassy systems show aging
effects, being dependent on tw and t, and they are anomalous
in the sense that they are not related to their associated cor-
relation functions by the equilibrium fluctuation-dissipation
theorem �FDT�. The relation between the two functions, cor-
relation and response, remains, however, rather simple. It has
been characterized in a number of glassy systems, allowing
for a kind of classification of the out-of-equilibrium dynam-
ics of disordered systems.35,36 The comparison between lin-
ear response and correlation has shed light onto the role
played by different degrees of freedom in the relaxation of
the full system. It allowed for the identification of an effec-
tive temperature in these nonequilibrium systems with slow
dynamics.37 For example, the violation of the FDT was stud-
ied numerically in driven vortex lattices with random
pinning.38

Metastability and aging-like phenomena have been ob-
served in the nonlinear transport in the VG state of single
crystal Bi2Sr2CaCu2O8 samples39,40 and analyzed in numeri-
cal simulations.41,42 Also, history dependent effects have
been found in YBa2Cu3O7 near the peak effect.43 Aging phe-
nomena has been reported in the magnetization of granular
Bi2Sr2CaCu2O8 samples at low fields.44,45 However, in this
case, the effect is due to a chiral glass phase that is found in
three-dimensional Josephson junctions networks with �
junctions,46 thought to model granular high-Tc superconduct-
ors. Theoretically, Nicodemi and Jensen studied a simplified
two-dimensional lattice Hamiltonian model for the effective
vortex dynamics to address the issue of equilibrium and out-
of-equilibrium dynamics.47 They focused on the magnetiza-
tion relaxation using both one-time and two-times correlation
functions. They observed that relaxation times dramatically
increase upon decreasing temperature, with a Vogel-Fulcher-
type dependence, and established some analogies with glass
formers and supercooled liquid systems. This two-
dimensional model emphasizes the effect of random
quenched disorder but overlooks the importance of the three
dimensionality of flux lines and their fluctuations along the
axis parallel to the magnetic field. Other studies focused on
the out-of-equilibrium features of vortex creep motion at low
temperatures.48,49

In the present work, we compare the dynamics of vortex
matter in high-temperature superconductors with that of
structural glasses aiming at clarifying the nature of the VG
phase. We extend and complement our previous study of the
out-of-equilibrium dynamics of a London-Langevin model.50

Extensive numerical simulations of the overdamped dynam-
ics were performed to study correlation functions such as the
roughness of the flux lines, their dynamic wandering, the
structure factor and mean-square displacement all general-
ized to include two-times dependencies. Focusing on the
mean-square displacement and its conjugated response func-

tion we show that the scaling of both functions is multipli-
cative and we analyze how this is related to a nontrivial
violation of the FDT.50

The outline of the paper is as follows. In Sec. II a brief
description of the vortex phase diagram and glassy properties
is presented. Section III gives an elaborated description of
the model and details on the numerical simulations. The
quantities of interest for the present study are presented in
Sec. IV. In Sec. V we show how the VG phase is approached
both from the structural and dynamical properties. Finite size
effects are discussed in Sec. VI. The aging behavior of flux
lines in the vortex glass and their temperature dependence is
presented in Sec. VII. The multiplicative scaling of aging
correlations and responses is described in Sec. VIII, the vio-
lation of the FDT, the effective temperature, and its relation-
ship with the dynamical arrest of the VL diffusion are dis-
cussed. Finally, Sec. IX is devoted to the discussion of our
results.

II. BACKGROUND

In this section we present the general background on
which we base our study. Our aim is to give here a brief
review of the vortex matter phases in high-temperature su-
perconductors as well as a description of the main features of
the nonequilibrium relaxation in glassy systems and the vio-
lation of FDT

A. Vortex phases in high-temperature superconductors

High-temperature superconductors reveal new vortex
physics phenomena related to the relevance of thermal fluc-
tuations and disorder in these systems.1–4 In the absence of
disorder and at low temperatures vortices form a triangular
crystal, the so-called Abrikosov lattice,51–53 due to the repul-
sive vortex-vortex interaction. At high temperature thermal
fluctuations melt the Abrikosov lattice into a vortex liquid
phase when the magnetic field HM �Hc2 is reached.54,55

When point disorder, due to impurities, is taken into account,
the long-range order of the Abrikosov lattice is lost and a
more complex phase diagram is found.19,56–58 At high tem-
peratures the VL is observed. At low temperatures two glassy
phases appear: the Bragg glass8,9,59 at low magnetic fields
and the vortex glass10,11 at high magnetic fields. The BG
presents a structure factor with well defined intensity Bragg
peaks at the reciprocal wave vectors of the triangular lattice.
Long-range order, however, is destroyed by disorder leading
to quasi-long-range order with spatial correlations decaying
logarithmically and power-law diverging Bragg peaks.8,9 At
high temperature the BG melts into the VL phase through a
first-order transition analogously to the melting of the Abri-
kosov lattice. Upon increasing magnetic field or disorder, at
low temperatures, the BG transforms into the vortex glass
also through a first order transition.58,60,61 This type of phase
diagram has been observed experimentally in systems such
as YBa2Cu3O7−x �YBCO� �Ref. 56� and Bi2Sr2CaCu2O8+s.

57

In the VG phase scenario, disorder destroys long-range
order leading to a short-range amorphous structure.10,11

While the high-temperature VL can be considered to be
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made of mobile vortices moving unhindered over the pinning
potential, the low temperature VG is thought to be an immo-
bile amorphous solid with the flux lines localized at the pin-
ning centers in order to minimize the pinning energy. The
VG theory predicts that collective effects are able to produce
infinite energy barriers at low temperatures, leading to a
strictly zero flux-flow resistance with no dissipation.10,11 This
leads to interesting scaling theories for the energies involved
in creep motion of flux lines.49,62,63 Experimentally, it is very
difficult to conclude whether infinite barriers, as predicted by
the VG theory, really exist �distinguishing between infinite or
very high barriers becomes unfeasible�. Moreover, as com-
monly observed in other glassy systems, large energy barri-
ers lead to slow relaxations and below a crossover tempera-
ture experiments cannot be done in equilibrium.

B. Aging and violation of FDT

Aging and the modification of the equilibrium FDT are
two important properties observed in experiments and simu-
lations of glassy systems and also captured in analytic solu-
tions to simple mean-field-like models.34,35 We briefly de-
scribe them here.

1. Aging

Consider the two-times global correlation function

C�t,tw� =
1

N
�O�t�O�tw�� , �1�

with O�t� the global observable of interest, and N a normal-
ization factor ensuring C�t , t�=1. In a stationary regime the
correlation function depends only on the time difference �t
� t− tw, i.e., C�t , tw�=C��t�. Out-of-equilibrium stationarity
is not ensured. In relaxing glassy systems it is actually lost.
The correlation then depends on both times, t and tw, in such
a way that the longer the waiting time the slower the decor-
relation of the system, i.e., the system is aging. Generally, in
the long tw limit, the two-times correlation presents a sepa-
ration of time scales, with an initial stationary decay for �t
� tw, depending only on �t, followed by the aging regime for
�t� tw. This behavior is usually described by

C�t,tw� = Cst��t� + Cag�t,tw� , �2�

with Cst�0�=1−qEA and Cag�t , t�=qEA, and

lim
�t→�

Cst��t� = 0, �3�

lim
�t→�

lim
tw→�

C�t,tw� = qEA. �4�

These equations define the Edwards-Anderson order param-
eter qEA. The correlation function first decays from 1 to qEA
in a time-translation invariant manner for �t� tw. At longer
time differences the correlation decays further from qEA to 0
depending on both t and tw. This general behavior of the
correlation C is sketched in Fig. 1�a�.

In many cases the aging part of the correlation can be
described as Cag�t , tw�= f�h�t� /h�tw��, with h�t� a system de-

pendent monotonic function. This form is found analytically
in simple coarsening systems below their ordering tempera-
ture and the p-spin disordered models for fragile glasses.35 It
also describes very accurately numerical data for Lennard-
Jones mixtures64 and light-scattering measurements in colloi-
dal suspensions,65 among other glass forming particle sys-
tems.

In Fig. 1�b� we present the scaling of the aging part of the
correlation shown in Fig. 1�a� using a scaling variable t / tw:

FIG. 1. Sketch of the relaxation of correlations and displace-
ments and their corresponding scaling forms in glassy regimes. �a�,
�b� Correlation with additive aging scaling; �c�, �d� displacement
with additive scaling; �e�, �f� correlation with multiplicative aging
scaling; �g�, �h� displacement with multiplicative scaling. Note that
the stationary decays at short time-differences in the left panels do
not scale in the right panels. In the plots the different curves repre-
sent different choices of the waiting time tw, with tw increasing from
left to right for the nonscaled curves �left panels�.
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Cag�t,tw� = C̃ag� t

tw
	 . �5�

The case h�t�� ts with s any power is usually called “simple
aging.” Note that the short-time stationary regime does not
scale in Fig. 1�b�. The type of behavior described by �5� is
known as additive aging scaling.

Sometimes, simple aging is slightly modified in favor of a
“subaging” or “superaging” scenario in which h�t� is not just
a power law of time. In the more common former case the
ratio h�t� /h�tw� can be approximated by �t / tw

� with ��1 in
the short time-difference limit. These cases are, of course,
still compatible with the additive separation in stationary and
aging regimes described by Eq. �5�.

A different, less common, functional form describing the
decay of correlations is given by the multiplicative aging
scaling

C�t,tw� = tw
−	C̃ag� t

tw
	 , �6�

where 	
0 and we have assumed simple aging of the re-
maining t and tw-dependent function. In this case the scaling
function is multiplied by a tw-dependent correction that even-
tually makes the aging contribution disappear. The scaling

function is such that C̃ag�t / tw�
 f��t�tw
	 for long tw in such a

way that the correlation reaches, asymptotically, a stationary
regime. The functional form �6� is found in the autocorrela-
tion of the massless scalar field in d
2,66 systems at
criticality,67–70 and a lattice model of a directed polymer in a
1+1 dimensional random environment.71–74 In Figs. 1�e� and
1�f� we present a sketch of a correlation function with mul-
tiplicative aging and its corresponding scaling form.

Note that the difference between the additive and multi-
plicative scaling is that in the former the correlation function
in double-logarithmic scale has a well-defined plateau at a
nonvanishing value separating stationary from aging regimes
while in the latter the correlation eventually becomes com-
pletely stationary and the aging regime disappears.

In a diffusive �or anomalous diffusive� problem, another
type of correlation function is preferred, which is simply the
displacement

��t,tw� � ��O�t� − O�tw��2� , �7�

that can be rewritten in terms of the correlation C�t , tw�
��O�t�O�tw�� �note that we are omitting here the normaliza-
tion factor N used in Eq. �1�� as

��t,tw� = C�t,t� + C�tw,tw� − 2C�t,tw� . �8�

This quantity vanishes at equal times and increases with the
time difference. If C�t , t� increases with time and is not
bounded then the growth of � is also unbounded. For this
type of correlation function it is also possible to write down
both the additive and multiplicative aging scaling forms

��t,tw� = �st��t� + �̃ag� t

tw
	 , �9�

��t,tw� = tw
	�̃ag� t

tw
	 , �10�

in the simple aging case �or with a more general function h�t�
appearing in �ag in subaging or superaging cases�. A typical
displacement has initially a ballistic growth, followed by a
subdiffusive regime proportional to �t	 with 	�1, and a
normal diffusion regime �	=0 in the additive aging scaling
scenario�. The displacement of a D-dimensional manifold re-
laxing in an infinite dimensional embedding space after a
quench to low-temperature has an additive separation be-
tween a stationary and an aging regime as in Eq. �9�.75,76 In
the one-dimensional scalar or N-component field66 and Sinai
diffusion77–79 the displacement follows instead a multiplica-
tive scaling of the form �10�. In Figs. 1�c�, 1�d�, 1�g�, and
1�h� we present a sketch of the displacement with additive
and multiplicative scaling and their corresponding scaling
forms.

2. The linear response

In order to measure a linear response the following pro-
tocol is commonly used. At tw one applies a perturbation to
the system by adding the term HO=hO of intensity h to the
total Hamiltonian. This perturbation is conjugated to the ob-
servable O. If the perturbation is instantaneous, the linear
response is defined as

R�t,tw� � ���Oh�t��
�h�tw�

�
h=0

. �11�

If, instead, the perturbation is held applied during the interval
�tw , t� the integrated response associated to the external per-
turbation and the observable O is

��t,tw� =
�Oh�t�� − �O�t��

h
, �12�

where the subindex h indicates that O is measured under the
field. Similarly to what we explained above for the correla-
tion and displacement, the time-dependence of the integrated
linear response can be scaled in an additive or a multiplica-
tive form

��t,tw� = �st��t� + �ag� t

tw
	 , �13�

��t,tw� = tw
	�̃ag� t

tw
	 , �14�

respectively, where we assumed simple aging.

3. The fluctuation-dissipation theorem (FDT)

In equilibrium the integrated response is stationary,
��t , tw�=���t�, and the fluctuation-dissipation theorem
�FDT� implies

dC��t�
d�t

= − kBTR��t� , �15�

BUSTINGORRY, CUGLIANDOLO, AND DOMÍNGUEZ PHYSICAL REVIEW B 75, 024506 �2007�

024506-4



C��t� − C�0� = − kBT���t� , �16�

��t
0� relating correlation and instantaneous or integrated
responses only through the temperature of the environment.
In equilibrium the equal-times correlation is constant, and
the displacement is simply related to the correlation: ���t�
=2�1−C��t��. Equations �15� and �16� then imply

d���t�
d�t

= 2kBTR��t� , �17�

���t� = 2kBT���t� . �18�

In an aging out-of-equilibrium regime the integrated re-
sponse also depends on two times, see Eqs. �13� and �14�. A
simple generalization of the FDT �15� reads

��t − tw�
�

�tw
C�t,tw� = kBTeff�t,tw�R�t,tw� , �19�

which gives a definition of a two-times dependent effective
temperature Teff. It has been shown that this definition re-
spects the expected properties of a temperature for systems
with slow dynamics and bounded energy.37 Note that the
integration of the above relation over a time interval �tw , t�
can take a very complicated form if Teff depends on times in
an involved manner. If, as it turns out to be in systems with
additive scaling, it is piecewise constant one finds a linear
relation between the displacement and the integrated linear
response in each interval. Systems with multiplicative scal-
ing also allow for the identification of a simple Teff once the
factors tw

	 are taken into account.
The parametric plots ��C� and ���� have become a useful

tool to analyze the violation of FDT.35,36 For systems in equi-
librium these plots are just straight lines with slope −1/kBT
and 1/2kBT, respectively. For glassy systems evolving out of
equilibrium one has to distinguish those with an additive
from those with a multiplicative scaling. For the former, the
parametric plot ��C� ������ shows a −1/kBT �1/2kBT� slope
in the quasiequilibrium short time-difference regime, while
at long time differences—for correlation values below the
plateau at qEA—the slope changes to −1/kBT* �1/2kBT*�. In
the asymptotic, tw→� limit the breaking point in ��C� oc-
curs at a fixed point �qEA,�EA=1/ �kBT��1−qEA��. This case
is schematically represented in Fig. 2�a�. In the case of a
system with multiplicative scaling one needs to eliminate the
factors tw

−	 in the decaying correlation �tw
	 in the diffusing

displacement� and tw
	 in the integrated response in order to

get a stable parametric plot. In other words, tracing ��C�
������ one gets a similar broken line with slopes −1/kBT and
−1/kBT* �1/2kBT and 1/2kBT*� but with a breaking point
that moves towards �0,1 /kBT� ��� ,��� with increasing tw.
This behavior is schematically represented in Fig. 2�b�. Con-
structing instead tw

−	��tw
	C� or, equivalently, tw

−	��tw
−	�� a

stable breaking point is obtained and a parametric plot simi-
lar to Fig. 2�a� is recovered.

III. MODEL

We model vortices in superconductors as a set of elastic
lines with an interaction potential K0�r /�� screened at the

scale of the London penetration depth �. This model was
introduced in the theory of flux lattice melting by
Nelson,54,55 it was used to develop the theory of the Bose
glass phase,80 and it has been used by several authors in the
past and until present.19,81–84 There is now general consensus
in this model being correct for moderately anisotropic super-
conductors such as YBCO. Numerical simulations find good
quantitative agreement with experimental results for this
system.19,81 We have chosen to work with such a well-known
model to build upon previously acquired knowledge now
addressing questions that have not been considered in the
literature yet.

A. Model Hamiltonian

We consider a model for 3D elastic flux lines in a high-
temperature superconductor.54,55 The model is composed by
L planes labeled with index z and placed a distance dz apart.
The direction of the magnetic field B is perpendicular to the
planes. The magnetic field fixes the vortex density nB
=B /�0, where �0=hc /2e is the flux quantum perpendicular
to the planes. The system contains N flux lines, where the ith
flux line is characterized by coordinates ri�z�, which means
that each flux line is composed by L elements with two-
dimensional in-plane coordinates ri�z�= �xi�z� ,yi�z��. These
elements are sometimes called “vortex pancakes.”81 The su-
perconductor has anisotropy �=�c /�ab=�ab /�c, with �ab and
�c the coherence lengths, and �ab and �c the penetration
depths. The axes are such that c � z and ab �ri.

Assuming that ri�z� varies slowly with z the Hamiltonian
for a London model of elastic flux lines is H=
zHz, with

Hz = 

i

Ul��riz� + Ud�riz� + 

i�j

Uin�r jz − riz� , �20�

where Ul, Ud, and Uin are the elastic line energy between two
pancakes of the same flux line, the interaction of a flux line
with a quenched disorder potential, and the in-plane interac-
tion energy between two different flux lines, respectively. Let
us now describe each term in some detail.

The repulsive interaction energy between line elements
belonging to different flux lines and in the same plane z is
approximated as19,21,81

FIG. 2. Sketch of the fluctuation-dissipation relation between
integrated response and correlation: �a� additive scaling with a
stable breaking point at qEA; �b� multiplicative scaling with a break-
ing point that drifts towards �0,1 /T� in the limit tw→�.
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Uin = 2�0dzK0�r/�ab� , �21�

where K0 is the modified Bessel function, and with

�0 = ��0/4��ab�2. �22�

The elastic line energy of the ith vortex is

Ul =
1

2
cl��zri�2dz , �23�

where cl measures the line tension. A natural choice for dz is
the distance between CuO planes, in which case one can
account for the effect of the Josephson coupling81 using

Ul = cl�J��zri� for ��r� 
 2�J �24�

while keeping the previous expression for ��r��2�J, where
�J=dz /� is the Josephson length and �riz=ri,z+1−ri,z mea-
sures the separation between two adjacent flux line elements.

The quenched disorder potential due to the impurities is1

Ud�r� =� d2r�u�r��p��r − r��� , �25�

where the form factor is

p�r� = 2�ab
2 /�r2 + 2�ab

2 � �26�

and

�u�r,z�u�r�,z��� = ���r − r���zz� �27�

defines the disorder strength1,19 �.
We model the dynamics of the vortex system with the

Langevin equation

�
�riz�t�

�t
= −

�H��riz�t���
�riz

+ fiz
T �t� , �28�

where � is the Bardeen-Stephen friction coefficient. The
thermal force fiz

T �t� satisfies

�f iz,�
T �t�� = 0 �29�

and

�f iz,�
T �t�f i�z�,��

T �t��� = 2�kBT��t − t���zz��ii�����, �30�

where �, ��=x, y, and T is the thermal bath temperature.

B. Numerical details

There is no standard numerical procedure to compute the
in-plane interaction �21� with periodic boundary conditions.
Ryu and Stroud worked with a summation calculation over
image vortices,81 while Zimányi and co-workers19,21,85 and
Nordborg and Blatter82 used instead the periodic extension of
a simplified Fourier representation. Here we describe the nu-
merical procedure we used to compute the terms contributing
to the Hamiltonian �20�.

The z planes have dimensions Lx�Ly and we used peri-
odic boundary conditions to minimize finite size effects in
the planes. To compute the in-plane interaction each direc-
tion in the z planes is discretized in Nx�y� points a distance

ax�y� apart, such that Lx�y�=Nx�y�ax�y� for the x�y� direction.
The K0 dependence of the interaction potential �21� corre-
sponds to the case of vortices in infinite samples. In a finite
sample with periodic boundary conditions, the effective po-
tential that takes into account the effect of the summation

over periodic images Ũin�r� has to be calculated. Instead of

calculating Ũin in real space, we found more convenient to
work in the reciprocal space, using a discrete Fourier trans-
form of the in-plane interaction �21� that accounts for the
periodic boundary condition. This reads

Ũin�k,q� =
2�0dz�0

LxLy

1

�ab
2 hk,q

2 − 1
, �31�

with k and q the indices for the discrete reciprocal space and

hkq
2 =

2

ax
2�cos�2�k

Nx
	 − 1� +

2

ay
2�cos�2�q

Ny
	 − 1� . �32�

The above expressions account explicitly for the periodic

boundary conditions in Lx and Ly. The numerical value of Ũin
is easily computed in a kq discrete mesh. To calculate the

real space value of Ũin, a fast Fourier transform FFTW

routine86 is used. We find that Ũin�r� follows the dependence
of Eq. �21� for distances smaller than Lx ,Ly but when ap-
proaching the edges of the simulation box the correction due
to periodicity becomes relevant. A numerical derivative of

the obtained Ũin gives the force between vortex pancakes.
We find that it goes to zero at the edge of the simulation box
�Lx /2�, which is a necessary condition when working with
periodic boundary conditions. Finally, the obtained in-plane
force is stored in a force table during the computational run.

Since the z direction is discretized in L planes, which
naturally correspond to the CuO planes in a model supercon-
ductor, the elastic interaction is discretized as

Ul��riz� = �
1

2
cl��riz

dz
	2

dz for ��riz� � 2�J,

cl�J

��riz�
dz

for ��riz� 
 2�J.� �33�

In order to compute the disorder potential �25� we use the
same discrete mesh as for the in-plane interaction. The dis-
crete disorder potential at a given mesh point, indexed by
mn, is given by

Ud = 2�24�2�2axay�

dz



m�=1

Nx



n�=1

Ny

um�n�
� pm�n�, �34�

where umn� is a random number uniformly distributed be-
tween 0 and 1 and thus the prefactors enforce Eq. �27� to
hold. The discrete form factor is given by

pmn = 

m�=1

Nx



n�=1

Ny

��m − m��2ax
2 + �n − n��2ay

2 + 2�−1. �35�

The indices m and n run over the discrete mesh, i.e., m
=1,2 , . . . ,Nx and n=1,2 , . . . ,Ny. The force exerted by the
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disorder potential at a given point of the mesh is stored in a
force table. Since the in-plane and disorder potentials are
evaluated in a discrete mesh but the pancake positions are
continuous variables in the Langevin dynamics equations, a
four-point interpolation method is used.

C. Parameters of the simulation

The above model gives a good quantitative description of
the vortex physics of moderately anisotropic high-
temperature superconductors such as YBCO.1,19,81,87,88 We
therefore choose the values of the parameters to mimic this
system �=1/5, �ab /�ab=100, �J /�ab=16, and cl=�2�02�1
+ln��ab /dz�� /�.81 The strength of disorder is set to �=10−5,
for which case we find that above Bcr
0.002Hc2 the system
is in the VG at low temperatures �see Sec. V�. Time is nor-
malized by t0=�ab

2 � /�0, length by the vortex lattice param-
eter �or Abrikosov length� a0= �2�0 / ��3B��1/2, energy by
�0dz, and temperature by �0dz /kB. We simulate N=56 vorti-
ces in a box of size 7a0�4�3a0 with periodic boundary
conditions for the in-plane coordinates. The z direction is
discretized in L=50 planes with free boundary conditions.
Averages are performed over ten realizations of disorder.

IV. QUANTITIES OF INTEREST

In order to study the out-of-equilibrium dynamics we use
a two-times protocol. First the system is equilibrated at an
initial high temperature well inside the VL �Ti=0.3� evolving
during t=104 steps. Then the system is quenched to a low
temperature T, where the time count is set to zero. Starting
with this far from equilibrium initial condition, the system is
let to evolve during a waiting time tw, after which the quan-
tities of interest are measured.

With the aim of fully characterizing the dynamical prop-
erties of the vortex system we study several t and tw depen-
dent quantities. First we focus on the study of finite size
effects by monitoring the roughness of the lines, a quantity
that is used in the study of interfaces dynamics,89 here gen-
eralized to include the t and tw dependence

�w2�t,tw�� =
1

LN


iz

���xiz�t� − �xiz�tw��2� , �36�

where �xiz�t�=xiz�t�−xi�t� accounts for the displacement of
the iz line segment relative to the center of mass of the ith
elastic line xi�t�=L−1
zxiz�t� along one of the two axis of the
two-dimensional planes on which the pancakes move. An-
other quantity that is useful to analyze finite size effects is
the dynamic wandering90 W�z , t , tw� defined as

W�z,t,tw� =
1

N



i

���riz�t� − �riz�tw��2� , �37�

with �riz�t�=riz�t�−ri0�t�. This quantity measures how the
displacement of the vortex pancakes �or line elements� in the
zth plane correlates with the bottom plane z=0 between t and
tw. Although this was defined for the general vortex model, it
is worth mentioning that when the in-plane interactions and
disorder potential are absent, i.e., for the Edwards-Wilkinson

�EW� equation,91 the dynamic wandering is related to the
height-height correlation function studied in surface growth
phenomena.89,92–94

Aging in these systems is best characterized by monitor-
ing the mean-square-displacement �MSD� of the pancakes in
the planes

B�t,tw� =
1

LN


iz

��xiz�t� − xiz�tw��2� �38�

and the two-times wave-vector dependent density-density
correlation function

Ck�t,tw� =
1

LN


iz

�e−ik�xiz�t�−xiz�tw��� �39�

that has been analyzed in great detail in relaxing glass form-
ing liquids.64 The mean-square displacement B is of the form
of the generic displacements � discussed and the density-
density correlation is of the form of the generic decaying
correlation C discussed in Sec. II B.

In order to complete the characterization of the aging
properties and to study the modifications of the FDT in the
out-of-equilibrium regime, we measure a linear response
function by applying a random force of the form fiz=�sizx̂ at
time tw on a replica of the system, where � is the intensity of
the perturbation, and siz= ±1 with equal probability.38,95 The
integrated response is

��t,tw� =
1

LN�


lz

�siz�xiz
� �t� − xiz�t��� , �40�

where xiz
� and xiz correspond to the position evaluated in two

replicas of the system, with and without the perturbation.
The equilibrium FDT implies

B��t� = 2kBT���t� , �41�

where the �t= t− tw argument represents stationarity. In the
aging regime the FDT is violated and one constructs the
modified relation

B�t,tw� = 2kBTeff�t,tw���t,tw� . �42�

V. VORTEX GLASS

The vortex phase diagram of a model very similar to the
one studied in this work was obtained by van Otterlo et al.19

In order to show that we are in the VG region of the phase
diagram for the present model superconductor, we study the
behavior of the in-plane vortex structure factor and the be-
havior of dynamic correlations and relaxation times in the
VL.

A. Structure factor: Loss of crystalline order

In Fig. 3 the vortex structure factor at k1, the principal
peak of the Abrikosov lattice with parameter a0, is shown
while varying the magnetic field intensity B �proportional to
the vortex density� and at fixed disorder intensity �=10−5.
For this case we find that above Bcr
0.002Hc2 the Bragg
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peaks disappear and the flux lines are frozen in a highly
amorphous structure at low temperatures. Furthermore, Bcr is
dependent on the disorder intensity �. We therefore choose to
study the case with B=0.01Hc2�Bcr, which is deep within
the VG regime at low T for both �=10−4 and 10−5. The
region with higher structure factor S�k1� below Bcr presum-
ably corresponds to a BG phase, but to be sure one should
test the finite size behavior of the spatial correlations and
structure factor. The insets clearly show the structural differ-
ences between two snapshots with different densities. These
snapshots are projections of the two-dimensional pancake
coordinates of the L planes onto the z=0 plane.

B. Diffusion in the VL and dynamical arrest

Once working at fields B
Bcr, upon increasing tempera-
ture the system should go through the VG-VL crossover line.
This could be numerically observed as a sudden increase of
the vortex diffusion. However, since the pancake diffusion is
sublinear81 in the VL the data analysis and the identification
of the crossover line may be subtle. This can be better ana-
lyzed by starting at high temperatures, on the VL side, and
studying the relaxation of dynamical correlation functions

In order to clarify the nature of the dynamic arrest and to
define a crossover glass temperature Tg, we therefore study
the change in diffusion upon decreasing the temperature in
the VL phase by analyzing the MSD defined in Eq. �38�. At
high temperatures, well inside the VL, the system can be
easily equilibrated and the MSD depends on �t= t− tw,
B�t , tw��B��t�. Two regimes of pancake diffusion can be
observed in this case. For times longer than a saturation time
�t
 tx, diffusion is normal, B��t�
�t, corresponding to the
diffusion of the center of mass of each line. At shorter times
�t� tx, the diffusion of the pancakes corresponds to that of
line segments in a line in which the longitudinal correlation

length is still growing. This is the same as considering an
infinite line L→� and it is characterized by subdiffusion81

B��t�
�t1/2.
One aims to extract a characteristic relaxation time from

the diffusion evolution. To this end, Zimányi and
co-workers19 used an exponential fit C�t�=Ae−t/tr to describe
the correlation

C�t� = exp�− ��r�t� − �r�t���2�� , �43�

where r�t� measures the two-dimensional in-plane displace-
ments of the flux line elements. However, this is only con-
sistent with a normal diffusion regime, and should be care-
fully interpreted. In their simulations they used an
equilibration time of 105 and measured C�t� for the following
105 time interval. This is the same as using a waiting time of
105 from the given initial condition. The exponential fit is
valid if tx�105, corresponding to center of mass diffusion.

As mentioned above, Ryu and Stroud81 studied the melt-
ing of the VL using a different model and observed that the
pancake diffusion is sublinear, B��t�
�t	 with the expo-
nent 	=1/2 at high temperatures and 	�1/2 at low tem-
peratures. This is consistent with our results.

Within the same scheme, we calculate the evolution of the
correlation for the largest waiting time used in our simula-
tions tw=105

CB�t� = exp�− �B�t,tw = 105��2� �44�

and fit it to the form CB�t�=Ae−t/tr, that follows after using
the sublinear exponent 	=1/2. In Fig. 4 we show this cor-
relation in a log-linear representation for different tempera-
tures and �=10−5. The fits for �t
0.6�105 are also shown.
From this data we obtain the relaxation time tr presented in
Fig. 5. The inset shows that there is a sudden increase in the
relaxation time upon decreasing temperature. For noninter-
acting flux lines the temperature dependence of the relax-
ation time should be tr�1/T2,1,81 and the same is expected
deep in the VL. The main panel in Fig. 5 shows that at high
temperatures tr grows linearly with 1/T2. Below a tempera-

FIG. 3. Structure factor at k1, the main peak of the Abrikosov
lattice, and for the disorder intensity �=10−5 as a function of the
vortex density parametrized by the field B. Insets: superposed snap-
shots corresponding to projections of the two-dimensional pancake
coordinates of the L planes onto the z=0 plane.

FIG. 4. Correlation CB�t� for different temperatures and �
=10−5. Each curve is labeled by the temperature. The corresponding
exponential fits are shown.
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ture Tg�0.18 the relaxation time tr departs strongly from the
1/T2 dependence and presents a remarkable growth. Further-
more, it is not possible to equilibrate the system at T�Tg and
correlation functions depend on the two times t and tw as we
will analyze in Sec. VII. Therefore, the temperature Tg sig-
nals the crossover from the equilibrium high-temperature re-
gime to the out-of-equilibrium low-temperature regime.

VI. FINITE SIZE EFFECTS

Before analyzing the out-of-equilibrium behavior of dif-
ferent correlation and response functions of the VG, it is
necessary to previously identify finite size effects in the dy-
namics of the system. We here compare finite size effects in
the single elastic line dynamics with those in the much more
complex systems we are dealing with, a set of interacting
lines in the presence of quenched disorder. To this end we
study both the two-times roughness �36� and the dynamic
wandering �37�. We also show how finite size effects appear
in two other quantities of interest, the pancake MSD �38� and
the density-density correlation function �39�.

A. Single lines: The Edwards-Wilkinson equation

When the in-plane interactions and disorder potential are
absent from the Hamiltonian �20�, Eq. �28� reduces to N
decoupled Edwards-Wilkinson �EW� equations91

�
�riz�t�

�t
= cl

�2riz�t�
�z2 + fiz

T �t� . �45�

The EW equation was studied in great detail in the context of
growing interface dynamics.89 After a transient the roughness
�w2�, defined in Eq. �36�, becomes stationary and it follows
the Family-Vicsek scaling96

�w2��t�� = L2�f��t

tx
	 , �46�

where tx
L� is the saturation time, L is the system size, and
f�x� is a scaling function with f�x�
x2� for x�1 and f�x�

const for x�1. The growth and roughness exponents, �
and �, respectively, are related to the dynamic exponent �
through the scaling relation �=� /�. The exponents take val-
ues �=1/2, �=1/4, and �=2. This scaling form clearly
states how the system size is involved in the line dynamics.
Other quantities, such as the global correlation function, can,
however, be nonstationary and show aging.66

In order to check how the size and time dependence of
our elastic lines compare to the EW ones, we set disorder and
in-plane interactions to zero and we analyze the full �t de-
pendence of the roughness and dynamic wandering once the
stationary regime has been reached. In Fig. 6�a� we show the
time-evolution of the roughness. Three regimes are clear in
the figure. For �t� t1 the roughness grows as �w2�
�t
which corresponds to a regime without elastic interactions

FIG. 5. Relaxation times tr obtained from the exponential fit
CB�t�=Ae−t/tr. The crossover temperature Tg, where the VL relax-
ation time departs from the single line behavior tr�1/T2 is quoted.
The inset shows the sudden increase in tr with decreasing
temperature.

FIG. 6. �a� Roughness and �b� dynamic wandering of noninter-
acting elastic lines without quenched disorder �EW elastic lines� at
T=0.06. Three dynamic regimes are highlighted, corresponding to
single pancake, single line, and center of mass dynamics. Note that
different curves with tw=104, 105, and 106 �open squares, open
diamonds, and open triangles, respectively� overlap, showing that
these quantities are in a stationary regime.
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between the line segments. For �t
 tL the roughness satu-
rates to an L-dependent value, while for t1��t� tL the
roughness grows as �w2�
�t1/2. The last two regimes are the
ones in the scaling function of the Family-Vicsek scaling
�46�, where tx� tL.

To better understand the meaning of a characteristic
distance-dependent time tz let us analyze the behavior of the
dynamic wandering W�z ,�t�, defined in Eq. �37�. This is
shown in Fig. 6�b�. For �t� t1 the dynamic wandering is
independent of z and grows as 
�t. This is the regime in
which the line segment in one plane evolves independently
of the line segment in any other plane, i.e., there is no truly
elastic interaction yet. For �t
 t1 the line segments belong-
ing to two adjacent planes are elastically interacting and their
relative position saturates to a given value. However, at this
time, line segments separated by more than a single plane are
still uncorrelated. This corresponds to the growth of a longi-
tudinal correlation length �� along the z direction. This cor-
relation grows as ����t�
�t1/� for �t� tx and saturates at
the system size89 ����t�
L for �t� tx. The time tz signals
the moment when the correlation length is of the order of z,
i.e., ���tz�
z. In Fig. 6�b� the behavior of W�z , t , tw� is pre-
sented for z=1,3 ,10 and z=L=50, where it is shown that the
dynamic wandering is essentially a measure of the longitu-
dinal correlation length �the short time �t1/2 regime is not
completely developed since the system size is not big
enough�.

In Fig. 7 we show the z dependence of the dynamic wan-
dering. Since there is no tw dependence, we show here dif-
ferent curves labeled by the corresponding �t value for a
single waiting time tw=106. For �t� t1, the dynamic wan-
dering does not depend on z since line segments are indepen-
dent of each other. For t1��t� tx two regimes are observed.
For z�����t� one has W
z, while for z
����t� the dy-
namic wandering saturates at a �t-dependent value. The final
growth near z=L is due to the free boundary conditions of
the line. Finally, for �t
 tx all the line is correlated and W

z for all z.

The growth of the longitudinal correlation length is also
clear in other quantities. For instance, in Fig. 8�a� we show
the pancake MSD, B�t , tw�, defined in Eq. �38�, where the
three dynamic regimes are also observed. For �t� t1 inde-
pendent pancake diffusion is observed and diffusion is nor-
mal, B��t�
�t. For t1��t� tx diffusion is characterized by
a sublinear law B��t�
�t1/2, corresponding to the single
line regime where every pancake elastically feels the
others.1,81 Finally, for �t
 tx, when the correlation length is
of the order of the system size, a trend to normal diffusion
corresponding to the center of mass diffusion is observed.

Last, in Fig. 8�b� the density-density correlation function
Ck0

�t , tw�, defined in Eq. �39�, is shown, where k0 is the po-
sition of the first maximum of the static structure factor. This
correlation shows how the position of the pancakes decorre-
late in time. Note that around �t
104 the pancakes have lost
all information about the position at tw��t=0� and Ck0

has
effectively decayed to zero. There is no signature of the three
dynamic regimes in the decay of the correlation function.

In this subsection we demonstrated how the system size is
involved in different dynamical quantities. We also identified
three main dynamic regimes. In the following subsections we

FIG. 7. Dynamic wandering as a function of the plane index z.
T=0.06, L=50, each curve is labeled by �t and the waiting time is
tw=106 for all. Since W�z ,�t� saturates at a value proportional to
the longitudinal correlation length ��, the growth of �� is observed
for increasing �t at fixed z.

FIG. 8. �a� Pancake MSD B and �b� correlation Ck0
for the same

parameters as in Figs. 6 and 7. k0 is the wave vector at the first peak
of the structure factor. The three dynamic regimes are clear in B, but
the correlation Ck0

does not present any signature of them. The
symbols are as in Fig. 6.
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study how these features are reflected in the VL and VG.

B. The vortex liquid

Here we return to the case with in-plane interactions and
disorder, and present results at high temperature T=0.2 and
with disorder intensity �=10−4, well inside the VL. The
analysis of finite size effects in the roughness and dynamic
wandering �Fig. 9� shows that these are similar to the ones in
the EW line. The values of tz are of the same order. At this
high temperature and for this disorder intensity one can ar-
gue that thermal fluctuations are greater than disorder in-
duced fluctuations, and the disorder potential in Eq. �20� can
be basically neglected. Moreover, although in-plane interac-
tions are present, at the working vortex density they do not
much affect the dynamics leading to essentially the same
finite size effects as for the EW line. At higher densities
in-plane interactions should become the most relevant inter-
action of the problem. �As an example, a change in the scal-
ing exponent was found with hardcore line interactions.97�

C. The vortex glass

Here we analyze how finite size effects reflect in the low-
temperature phase. We show data for T=0.05 and �=10−4.

We anticipate that aging effects appear at low temperature,
but we postpone their discussion to Sec. VII. In Fig. 10 the
roughness and dynamic wandering evolution are shown. The
characteristic aging tw dependence is evident. The values of
t1 and tL used in this figure are the same as in the EW case,
Fig. 6. The first stationary single pancake regime is still
present. Aging develops in the single line regime but satura-
tion seems to take place at the same value tL, suggesting that
the saturation time tx does not strongly depend on tempera-
ture and disorder intensity for the studied parameter values.
The dynamic wandering also presents aging and the same
saturation time is apparent. In Fig. 11 the z dependence of
the dynamic wandering for tw=104 is shown. Note that for
this value of tw and the maximum �t=106 reached, the lon-
gitudinal correlation length does not reach the system size L,
and then the �t=106 curve shows a saturation regime for
high z. Although the same trend as in the EW case is present,
a difference is observed in the ����t��z regime. For in-
stance, the curves with �t=11 4305 and �t=106 show a
change in the slope. This is related to the fact that the rough-
ness exponent � of the Family-Vicsek scaling �46� changes
with disorder.89,98 In the presence of disorder, at a given tem-
perature there exists a characteristic length zc�T� separating
two values of �. For z�zc�T� one has �=�T, while for z

FIG. 9. �a� Roughness and �b� dynamic wandering in the VL at
T=0.2 with disorder intensity �=10−4 �cf. Fig. 6 where the same
measurements for the EW line are shown�.

FIG. 10. �a� Roughness and �b� dynamic wandering in the VG at
T=0.05 with disorder intensity �=10−4 �cf. Figs. 6 and 9, where the
same measurements in the EW line and the VL, respectively, are
shown�. In �b� the dynamic wandering is shown only for tw=104.
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zc�T� one has �=�D, with �T��D, where �T and �D are the
thermal �EW� and disorder scaling exponents, respectively.

From the above considerations we choose to work in the
time regime corresponding to both �t and tw being shorter
than tx. This ensures that aging features do not overlap satu-
ration effects and finite size effects should be irrelevant. For
L=50 this corresponds to times �t , tw�104.

VII. AGING IN THE VORTEX GLASS

In this section we describe aging features observed in the
present simulations. As shown in Sec. V B, when entering
the VG phase, for T�Tg, is not possible to equilibrate the
system, and correlation and response functions depend on the
two times t and tw showing aging. We start by describing the
tw and k-dependence of the correlation Ck�t , tw�. Then we
discuss the aging characteristics of the pancake MSD B�t , tw�
and its associated integrated linear response ��t , tw�.

A. Ck„t , tw…

Let us first present the k dependence of the normalized
static structure factor Ck�t , tw� for fixed �t and tw. In Fig. 12
we present data for �t= tw=104 and different T and � given
in the key. At low temperature, in the VG phase, the curves
present a well defined first maximum, followed by an ob-
servable second peak, but clearly not showing the presence
of an ordered structure. At high temperature, well in the VL
phase, the first peak is not as sharp as in the VG case, but it
is clearly observed. For reference, the first peak corresponds
to k0=0.27. This is the value that we used in Fig. 8. In the
inset of Fig. 12, the evolution of Ck�t , tw� for fixed �t with
waiting time is shown. Data correspond to �=10−4 and T
=0.03. The structure factor is not strongly modified while the
system is aging, i.e., while the relaxation time increases for
increasing tw �see Fig. 13 below�. This feature is also ob-

served in simulations of structural glass formers using
Lennard-Jones potentials.64

Figure 13 shows the evolution of the correlation Ck0
�t , tw�

at two temperatures T=0.2
Tg and T=0.03�Tg and for dif-
ferent waiting times. The disorder intensity is �=10−4. At
high temperature the system decorrelates rapidly and the
curves become stationary, i.e., they do not depend on tw. At
low temperature a short time-difference quasiequilibrium re-
gime is present, but a clear tw dependence is developed at
longer time differences. The system decorrelates slower at
longer waiting times, i.e., the system ages. For the longer tw
value the curve does not clearly present a plateau as it usu-
ally does in other glassy systems.36 An additive scaling sce-

FIG. 11. Dynamic wandering as a function of the plane index z.
At this low temperature and for this disorder strength the system is
aging. We show data for tw=104 and each curve is labeled by �t. A
change in the slope of W at short z is apparent. For this value of tw

the longitudinal correlation length ����t=106� does not reach the
system size L.

FIG. 12. Normalized static structure factor Ck�t , tw� for �t= tw

=104 and different T and � given in the key. The value k0=0.27
corresponds to the first peak. The inset shows Ck�t , tw� for �t=104

and different waiting times tw=10, 102, 103, and 104, with �
=10−4 and T=0.03. The structure factor does not vary significantly
with waiting time while the system is aging.

FIG. 13. Correlation Ck0
�t , tw� for �=10−4 and two temperatures

T=0.2 and 0.03. Different waiting times are shown: circles, squares,
diamonds and triangles correspond to tw=10,102 ,103, and 104,
respectively.
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nario would require that the plateau develops at a longer tw.
To exclude this possibility we should reach a longer tw while
still being in the tw� tx regime. This demands to use larger
system sizes L. We believe, however, that this is not neces-
sary since the correlation actually decays according to a mul-
tiplicative scaling. We give further support to this proposal
below.

The temperature dependence of Ck0
�t , tw� for tw=104 is

shown in Fig. 14. At the highest temperature the system is in
equilibrium but for the remaining values it evolves out of
equilibrium. The relaxation time decreases for decreasing
temperature �at fixed tw�.

Figure 15 shows the k dependence of Ck�t , tw� for tw

=104 and two temperatures T=0.2 and 0.03. At both tem-
peratures the system decorrelates faster with decreasing
wave vector k, meaning that the relaxation is much faster on
small than on large length scales. This is exactly the same

behavior observed in the Lennard-Jones glass-forming liquid
out of equilibrium by Kob and Barrat.64

B. B„t , tw…

In Fig. 16 the time and temperature evolution of the pan-
cake MSD50 B�t , tw� is shown for different waiting times and
fixed disorder intensity �=10−5. B�t , tw� is stationary for the
high temperature value T=0.2. For temperatures lower than
Tg�0.18 the aging behavior develops. As temperature is de-
creased the separation between curves with different waiting
times increases, indicating that the system is deeper in the
aging regime. Figure 17 shows the temperature dependence
of B�t , tw� for two waiting times tw=102 in Fig. 17�a� and
tw=104 in Fig. 17�b�. After the initial single pancake regime
B
�t the subdiffusive elastic line regime develops and B

�t	. In the VL 	=1/2, while below the glass crossover
temperature, 	�T��1/2. The scaling properties of B�t , tw�
will be analyzed in Sec. VIII. The same behavior is observed
using �=10−4.

C. �„t , tw…

In Fig. 18 the dependence of the response function ��t , tw�
with t and tw is shown for �=10−5 and T=0.02�Tg. There is

FIG. 14. Correlation Ck0
�t , tw� for fixed tw=104 and �=10−4.

Different curves correspond to different temperatures given in the
figure.

FIG. 15. Correlation Ck�t , tw� for fixed tw=104 and two tempera-
tures T=0.2 and 0.03 with �=10−4. Curves for different wave-
vector values k are shown.

FIG. 16. Pancake MSD B�t , tw� at different temperatures.
Circles, squares, diamonds, and triangles correspond to tw=10, 102,
103, and 104, respectively.
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also an aging behavior, but not as severe as that of B�t , tw�
for the same parameters �Fig. 16, lower panel�. This fact is
related to the type of scaling associated to the aging regime,
which will be analyzed in Sec. VIII.

D. Comparison with aging of the single elastic line

We present here results for the out-of-equilibrium dynam-
ics of single elastic lines with disorder, i.e., without the in-
plane vortex-vortex interaction. In Figs. 19 and 20 we
present the evolution with time of B�t , tw� and C�t , tw� for the
high and low temperature regimes T=0.2 and T=0.05, re-
spectively. At high temperature the dynamics is stationary,
not showing any tw dependence. At low temperature the sys-
tem ages, as observed in the tw dependence of both correla-
tions in Fig. 20. These features were also observed in the
related model of the directed polymer in random media,73,90

and are qualitatively the same as those presented in Sec. VII
for the full interacting VG. This suggests that the out-of-
equilibrium dynamics of the interacting vortex problem is
dominated by the relaxation of the elastic line. We return to
this important issue when analyzing the FDT violation in the
next section.

VIII. AGING SCALING AND FDT VIOLATION

A. Multiplicative aging

In this section we study the two-times scaling of B�t , tw�
and ��t , tw� in the aging regime as well as the violation of the

FIG. 17. B�t , tw� for different temperatures and for two waiting
times �a� tw=102 and �b� tw=104.

FIG. 18. Integrated response T��t , tw�, where we include the
temperature prefactor �kB=1�. The data correspond to �=10−5 and
T=0.02.

FIG. 19. Stationary dynamics in the high-T regime �T=0.2� of
the single line, i.e., without in-plane interactions. �a� B�t , tw� and �b�
Ck0

�t , tw� for �=10−5 and different waiting times. The data for tw

=103, 104, 105, and 106 collapse on a master curve.
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FDT and the definition of the effective temperature. In Fig.
21 we show different scaling scenario for B�t , tw� at T
=0.02. On one hand, in Fig. 21�a� an additive subaging scal-
ing is put to the test by plotting B�t , tw� vs �t− tw� / tw

�, while
the unscaled B�t , tw� data is shown in the inset. On the other
hand, in Fig. 21�b� the multiplicative scaling of Eq. �6� is
used by plotting B̃= tw

−	B�t , tw� vs �t− tw� / tw. Although the
subaging scaling with a low � exponent seems appropriate
for long time differences we prefer the multiplicative scaling
for at least two important reasons. First, the bare data shown
in the inset to panel �a� do not show a plateau at a constant B
nor any clear trend to develop it at longer tw’s. This tends to
disqualify the additive scaling for which a plateau is ex-
pected. Second, the multiplicative scaling allows for a better
data collapse that includes the short time-difference subdif-
fusive regime, only leaving apart the very short time-
difference regime with normal diffusion. Thus, we find that
our data is very satisfactorily described within a multiplica-
tive aging scaling scenario. This scaling is similar to the one
proposed for the low temperature behavior of the directed
polymer in random media73 and Sinai’s diffusion.77–79 Fol-
lowing Yoshino73 we tried the scaling form

B�t,tw� = tw
	B̃�t̃� , �47a�

2kBT��t,tw� = tw
	�̃�t̃� , �47b�

with t̃= t / tw and the scaled variables B̃ and �̃ given by

B̃�t̃� = �c1�T��t̃ − 1�	�T�, t̃ � 1,

c2�T��t̃ − 1�	�T�, t̃ � 1,
� �48a�

�̃�t̃� = �c1�T��t̃ − 1�	�T�, t̃ � 1,

y�T�c2�T��t̃ − 1�	�T�, t̃ � 1,
� �48b�

where c1, c2, and y are temperature-dependent coefficients
�see the discussion in Sec. VIII B�. We assumed a linear

dependence of �̃ with B̃, but a nontrivial function �̃�B̃�, as
found in the scalar field or Edwards-Wilkinson equation in
D=2 and the spin-wave approximation to the 2D XY
model,66,67 cannot be discarded.

FIG. 20. Aging in the low-T regime �T=0.05� of the single line
case, i.e., without in-plane interactions. �a� B�t , tw� and �b� Ck0

�t , tw�
for �=10−5 and different waiting times: tw=103, 104, 105, and 106

from left to right.

FIG. 21. �a� Test of a subaging additive scaling for the pancake
MSD for �=10−5 and T=0.02. The bare data are included in the
inset. �b� Multiplicative scaling for the same data as in �a�. The
values of the scaling exponents � and 	 are quoted. A better data
collapse is observed in the last case, including the short time re-
gime. In the inset of �b�, the scaled MSD and the integrated re-
sponse function are shown. Different waiting times collapse on the
same master curve. The violation of the FDT at long scaled times
t̃�1 is clear.
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In the inset to Fig. 21�b� the scaled B̃ and �̃ at T=0.02 are

shown. The data for different tw fall on two master curves. B̃
and �̃ coincide for t̃�1, which means that FDT holds, while
for longer times t̃�1, the value y�T��1 signals a violation
of FDT, which we will analyze in Sec. VIII C.

In Fig. 22 the multiplicative scaling for the single line
without in-plane interactions is shown. The curves corre-
spond to �=10−5, T=0.05 and different waiting times. In
addition to showing that this type of scaling is appropriate,
this figure emphasizes that the only regime not satisfying the
scaling is the very short stationary diffusion regime, as sug-
gested from the general picture in Fig. 1.

B. Growing length

Scaling arguments suggest that the averaged dynamics of
an elastic line in a random environment should be deter-
mined by a single growing length scale, that separates equili-
bration at short length scales from nonequilibrium at long
length scales. This is also, essentially, the picture that dic-
tates dynamic scaling in coarsening systems.

The multiplicative scaling of Eqs. �47a� and �47b� im-
plictly assume a growing length with a power-law depen-
dence in time. However, the analytic determination of such a
time-dependent length is very hard; it is known in a small
number of problems such as ferromagnetic domain growth in
clean systems with conserved and nonconserved order
parameter.99 However, even these presumably simple cases
can be plagued with preasymptotic regimes, as shown, for
instance, by Krzakała for the 2D Ising model with Kawasaki
dynamics.100

In the case of an elastic string in a random environment a
phenomenological creep argument complemented with the
assumption that typical barriers scale as L� leads to

L�t� 
 Lc� T

Uc
ln� t

t0
	�1/�

�49�

asymptotically, i.e., in the limit of very long times and very
large scales. Lc is the Larkin length, Uc its corresponding
energy scale, and t0 a microscopic time scale. The exponent
� is usually further assumed to take the same value as for the
free-energy fluctuations �=1/3. Alternatively, a similar argu-
ment with logarithmically growing barriers imply a power
law growth of the typical length scale L�t�.

Yoshino72,90 and Kolton et al.101 studied the growing
length-scale numerically in a lattice and a continuous model
of a single line in a random environment, respectively. Both
studies show that L�t� crosses over from a power-law to a
logarithmic growth at a typical time scale t* associated to a
typical length scale L*. For instance, Kolton et al. found t*


104 and L*
80 using lines with total lengths L=256 and
L=512. Similar values were found by Yoshino.

In our study of vortices in interaction we were forced to
use rather short total lengths L=50. Hence, we may suppose
our dynamics falls in the first regime in which L�t� grows as
a power law. Indeed, all our data can be satisfactorily scaled
in a manner that is consistent with such a power law. We may
expect, clearly, that the crossover in the growing length will
induce a change in the scaling forms �47a� and �47b� possi-
bly to a more general form

B�t,tw� 
 L��tw�B̃ag� L�t�
L�tw�

	 , �50�

��t,tw� 
 L�̄�tw��̃ag� L�t�
L�tw�

	 . �51�

For times t� t*, with a behavior L�t�
 t	/� and �̄=� one re-
covers Eqs. �47a� and �47b�. For longer times a growing L�t�
as in Eq. �49� is also possible. Testing the latest time-regime,
however, goes beyond the scope of this study. The value of

the exponent �̄ is not completely clear yet. Our numerical

data support �̄=� but at longer times one might notice a
deviation.

C. Violation of FDT and effective temperature

In order to test the violation of FDT, we use our results of
Sec. VIII A scaled with Eqs. �47a� and �47b�. The parameter
y�T� in Eqs. �47a� and �47b� measures the modification of the

FDT, 2kBT��t , tw�=y�T�B�t , tw� �or �̃=y�T�B̃�, and an effec-
tive temperature37 can then defined by Teff=T /y �see Eq.
�42��.

In Fig. 23 we show a parametric plot of the scaled vari-

ables �̃�t̃� vs B̃�t̃� for a temperature T�Tg. If FDT is violated
then the slope of the parametric plot should be different from
unity. The parameters in Fig. 23 are �=10−5 and T=0.02, and
different waiting times are shown. At very short rescaled
times t̃ all curves fall onto the FDT line, while for longer
times the curves asymptotically change to a different slope
y�T�. In the inset, we show the short time regime for differ-
ent tw values. Since the data with lower waiting time, tw

FIG. 22. A single elastic line in a disordered environment: mul-
tiplicative scaling of B�t , tw� for the data shown in Fig. 20�a�. �
=10−5 and T=0.05. The value of the scaling exponent 	 is given in
the key. Data for different waiting times collapse, except for the
stationary normal diffusion regime at very short time differences.
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=10, is deeper in the out-of-equilibrium regime, we used the

slope of �̃�B̃� with tw=10 to compute the y�T� parameter

signaling the FDT violation. In Fig. 24 we show �̃�B̃� with
tw=10 at different temperatures; it is clear in the figure that
the y�T� parameter decreases with decreasing temperature.
These and similar curves are used to compute the y�T� values
showed in Fig. 25�b�. Exactly the same behavior is obtained
for the single elastic line �not shown�.

In order to investigate the temperature dependence of dif-
ferent quantities in the low temperature regime, we show the
temperature variation of the scaling exponent 	�T� and the
y�T� parameter in Fig. 25. We use two values of the disorder
intensity, �=10−5 and �=10−4. Also shown are data for �
=10−5 but for the case without in-plane interactions, quoted
as single line. The values of the exponent and FDT violation
factor at high temperature are 	=1/2, corresponding to the

single elastic line without disorder limit �or VL phase�, and
y=1, corresponding to the equilibrium FDT. In Fig. 25�a� we
see that 	�T� depends weakly on T and that it decreases with
increasing disorder strength within the glassy regime. It is
also observed that the in-plane interactions tend to decrease
the value of 	. The parameter y�T� measuring the violation
of FDT rapidly increases with increasing temperature. In Fig.
25�b� we show that y�T�=T /Teff is well described by a linear
form, implying an effective temperature Teff that is
temperature-independent. However, a more complicated
temperature-dependent effective temperature cannot be ruled
out. We do not show the linear fit corresponding to �=10−5

without in-plane interactions. From the linear fit of y�T� one
obtains the effective temperature values quoted in the figure,
Teff=0.175 and Teff=0.203 for �=10−5 and �=10−4, respec-
tively.

Another feature of the scaling form �48� is the tempera-
ture dependence of the c1�T� and c2�T� coefficients. These
coefficients measure the separation between the quasiequilib-
rium regime and the aging regime, and hence they should
converge to the same value in the equilibrium high-
temperature regime. In Fig. 26 these functions are shown for
the same parameters used in Fig. 25. The Teff values are also

FIG. 23. Parametric plot �̃�B̃� in the VG �same data as in Fig.
21�. FDT holds at short rescaled-times while a violation of FDT
with y�1 appears at longer rescaled-times. The inset shows the
short rescaled-time FDT regime for different tw values.

FIG. 24. Parametric plot �̃�B̃� in the VG at different tempera-
tures given in the figure.

FIG. 25. �a� The scaling exponent 	�T� and �b� the y�T� param-
eter measuring the FDT violation in the VG with two disorder in-
tensities �=10−5 and �=10−4. Data for a single elastic line in a
random environment with �=10−5 are also shown. The effective
temperature Teff obtained from linear fits y�T�=T /Teff is given for
the cases �=10−5 and �=10−4.
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given in the figure. For each set of parameters c1�T� and
c2�T� are closer to each other when approaching Teff and the
high-temperature regime. This is another confirmation of the
scaling form �48�.

Noticeably, the obtained value of Teff=0.175 is very close
to the crossover temperature Tg�0.18 below which a dy-
namic arrest is observed and the system can not be equili-
brated, as found in Sec. V B. A similar result is observed in
structural glasses: Teff�Tg �as in a random energy model
scenario95�.

IX. DISCUSSION

In this paper we studied numerically the dynamics of a
high-temperature superconductor model. We analyzed briefly
the stationary dynamics in the VL and we focused on the
out-of-equilibrium dynamics of the VG. Our aim was to
learn about the nature of the VG and its dynamical properties
from the relaxation of different two-times correlation func-
tions. During this study a systematic comparison with the
dynamics of other glassy systems was performed.

A key feature in problems involving elastic lines, as the
one we treated here, that should be highlighted is the rel-
evance of finite size effects. By comparing the evolution of
the roughness and dynamic wandering in the vortex system
to the ones in the EW equation for growing interfaces89 we
identified three dynamic regimes present at all interesting
temperatures: �i� a very short time-difference normal diffu-
sion regime without effective elastic interactions; �ii� a sub-
diffusion intermediate time-difference regime characterized
by a growing longitudinal correlation length; �iii� a long
time-difference regime where the correlation length has
reached the system size and normal diffusion simply reflects
the center of mass diffusion. In order to separate aging ef-
fects from finite size effects we constrained the remaining
study to regimes �i� and �ii�, i.e., before roughness saturation.

Strikingly, the behavior of the density-density correlation
function Ck�t , tw� resembles in many aspects the one ob-
served in simulations of Lennard-Jones glass formers.64 In
particular, the wave-vector dependence of the correlation fol-
lows the same general trend. The main difference is that the
density-density correlation does not develop a well defined
plateau for long waiting times in the VG, while it seems to
do in glass-forming liquids. This is not due to the use of
extremely short waiting times as could be expected in an
additive aging scaling, but it is in the core of the multiplica-
tive aging scaling we found in the present simulations.

We showed that the two-times evolution of the pancake
mean-squared-displacement B�t , tw� is very well described by
the multiplicative scaling diffusive-aging scenario earlier
proposed in the numerical study of the out-of-equilibrium
dynamics of the directed polymer in random media model,73

found analytically in the massless scalar field in D=1 �re-
lated to the Edwards-Wilkinson surface�, and obtained nu-
merically and analytically in Sinai diffusion.77–79 It is inter-
esting to stress that the model of a D-dimensional manifold
embedded in an N-dimensional space under the effect of a
combined disordered and harmonically confining
potential—a toy model that is usually used to model vortex
systems—fails to capture the multiplicative scaling in the
large N limit.75,76 This model has, instead, a well defined
transition at a finite temperature below which correlations
and responses scale in an additive way with a stable plateau.

We studied the violations of the FDT out of equilibrium.
We constructed the parametric plot of linear integrated re-
sponse against displacement after having eliminated the
power of the waiting time tw

	 that appears multiplying these
quantities. The resulting plot is linear, at least within the
accuracy of out data, and it allowed us to identify an effec-
tive temperature as the slope of the linear plot. The same
behavior was found in the lattice model of the directed poly-
mer in a random environment.71,72 The relation between in-
tegrated response and displacement, once the factors tw

	 have
been taken into account, might involve though a nontrivial
function of the displacement itself, not visible within the
accuracy of our data, as has been found, for instance, in the
2D scalar field and XY model.66,67 The FDT violation in the
“mean-field” model of a relaxing D-dimensional manifold in
an infinite-dimensional embedding space75,76 with a short-
ranged disorder potential has this type of violation of FDT
though it is not necessary in this case to eliminate additional
tw
±	 factors.

We performed the analysis of displacement, correlations
and responses at several low temperatures and we analyzed
the temperature dependence of the exponent 	�T� as well as
the coefficients c1�T� and c2�T� that characterize the scaling
function. We also followed the evolution with temperature of
the parameter signaling the FDT violation y�T�. We consid-
ered two intensities of the pinning disorder and we compared
the data to the a priori simpler case of a single line without
in-plane interactions. All the parameters y�T�, 	�T�, c1�T�,
and c2�T� show a clear trend to reach the high-temperature
behavior y�T�=1, 	�T�=1/2, and c1�T�=c2�T� when ap-
proaching the VL from the glassy regime. From these out-
of-equilibrium measurements the crossover temperature was

FIG. 26. Evolution of the coefficients c1�T� and c2�T� with tem-
perature for the same parameters as in Fig. 25. They tend to the
same value with increasing temperature, as suggested by the scaling
form �48�.
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found to be very similar to the value of the effective tem-
perature Teff obtained from the fit of the FDT violation at
very long time differences to a linear form with y�T�
=T /Teff. This result is similar to what happens in the
random-energy model in which the effective temperature
takes the transition value in the full low-temperature phase.

To further test the meaning of the crossover temperature
and the effective temperature Teff, we studied the dynamic
arrest approaching the VG from the VL. By fitting a mean-
squared-displacement correlation, taking into account sublin-
ear diffusion, we determined a relaxation time tr. The
so-obtained relaxation time increases with decreasing tem-
perature as tr
T−2, at rather high temperatures, as expected
in disordered free dynamics. However, below a characteristic
temperature a sudden further increase of the relaxation time
tr was found. We identified the crossover temperature be-
tween normal relaxation and rapidly growing relaxation with
a glass temperature Tg. When comparing with the effective
temperature we found that both temperatures are of the same
order, a fact already observed in other glassy systems. This
suggest a freezing of the slow degrees of freedom of the
system around the crossover temperature.

Most of the results shown here are for some specific val-
ues of the magnetic field and disorder strength. We have
checked also other cases of these parameters, and we find
that the same kind of aging scaling and violation of FDT
holds whenever we are within the vortex glass regime, i.e.,
for fields such that B
Bcr. The only difference is that the
exponent 	 depends on magnetic field intensity and disorder
strength. Moreover, as we showed here, single lines in the
presence of disorder have a similar behavior in their out-of-
equilibrium dynamics. Indeed, one outstanding result of our
simulations is that all the out-of-equilibrium properties of the
VG are mainly dictated by the elastic line energy, i.e., they
are all observable in the single line without in-plane interac-
tions. This means that for the parameters used in our simu-
lations the two relevant competing energies are the elastic
line and pinning energies. This fact points out that the rel-
evant dynamic properties are also observed in simplified
models of elastic lines in disordered media as directed
polymers73,74,90 or continuous models similar to that studied
here.49,101 It is worth mentioning that this cannot be the case
at very high magnetic fields, i.e., very high vortex density,
since at some point the in-plane interaction should become
the relevant energy scale. In this condition strong excluded
volume effects, such as the “cage effect” in supercooled liq-
uids, should be appreciable. A simplified model in this direc-
tion was considered by Petäjä et al., who considered elastic
lines with hard-core interactions in random environments.97

The Hamiltonian model used here �Eq. �20�� neglects the
possibility of closed isolated vortex loop fluctuations and
overhangs.102–104 It has been found in clean systems that the
effect of closed vortex loops and overhangs is relevant at
high temperatures, deep within the VL phase, or at low mag-
netic fields.102–104 Recently, it has been argued that the same
is true in the presence of disorder.23 The aging effects below
the VL-VG crossover line discussed here occur at low tem-
peratures and at moderate and high magnetic fields, a region
in the phase diagram where the probability of having closed
vortex loops and overhangs excitations is much less

important.23,102–104 Even though this type of excitation has a
low probability in this case, it would be interesting to study
their effect in the out-of-equilibrium dynamics at very long
times. Moreover, the Hamiltonian model in Eq. �20�, based
on 3D elastic lines, is valid for moderately anisotropic super-
conductors. In the case of highly anisotropic layered super-
condutors such as BiSrCaCuO, due to the possibility of de-
coupling of superconducting planes, models based on weakly
coupled two-dimensional pancakes are expected to be more
adequate.87,88 In this case, we also expect aging behavior at
low temperatures in the presence of disorder, but possibly a
behavior of the kind observed in the two-dimensional model
of Ref. 48 would be more likely to occur.

Another approximation made in this work is in the dy-
namics, where we assume that the vortex lines are unbreak-
able; i.e., cut and reconnection processes are neglected.55,105

The importance of this type of processes has been under
debate for several years.55,105–112 In clean samples, Monte
Carlo simulations81 and recent Langevin simulations112 show
that line cutting and reconnection becomes a frequent phe-
nomenon in the VL phase well above the melting tempera-
ture, but does not seem to affect the melting transition nor
the location of the melting curve. We are not aware of simu-
lations that evaluate the effect of these processes in the dy-
namics in the case with disorder. It could be possible that
assuming unbreakable lines may tend to favor a “polymer
glass” scenario.55,106,107,109 Generally speaking, one can de-
fine a length Lcut�T�, which is the spacing between cutting
events in a line.108 The study of aging performed here would
be valid for waiting times tw such that the growing length
L�tw� is much smaller than Lcut�T�. It has been proposed that
in the VL phase the cutting length behaves as Lcut
eUx/T,
with Ux a typical flux cutting energy.108 Estimates of Ux vary
widely,55,105–109 but for the low temperature VG phase we are
analyzing we expect in all cases to obtain Lcut�L. This im-
plies that cutting and reconnection would occur at a very
negligible rate at these temperatures, which is in agreement,
for example, with the numerical evidence of Ref. 81 in clean
systems. Therefore, to properly consider the effect of cutting
and reconnection processes would require extremely large
systems sizes and times, that are beyond our present study.

From our findings several extensions could be envisaged.
Concerning the possible experimental observation of the out-
of-equilibrium dynamics of the VG phase, new experiments
monitoring magnetic relaxation44,45 would be most welcome.
To measure aging, one possibility is to perform transport
experiments following a protocol similar to the one used by
Ovadyahu and co-workers to study the electron glass regime
in Anderson insulators.113,114 Tests of FDT would require si-
multaneous measurements of noise �magnetic and/or voltage
noise� and time dependent response �relaxation of magneti-
zation and/or resistivity�; similar tests have been performed
in other systems.115–117 Another possibility would be to test
the aging dynamics and the FDT violation in vortex shear
experiments.118,119 It is well known that in shear-thinning
systems the time scale introduced by the shear rate basically
replaces the waiting time; at lower shear rates the relaxation
is longer, i.e., the system “ages” with decreasing shear
rate.120–123 Still another possibility is to measure effective
temperatures using a tracer embedded in the vortex systems.

LANGEVIN SIMULATIONS OF THE OUT-OF-… PHYSICAL REVIEW B 75, 024506 �2007�

024506-19



Finally, the out-of-equilibrium dynamics of the center of
mass diffusion could be experimentally tested. It would also
be interesting to study the out-of-equilibrium relaxation of
the BG and compare the outcome to the results obtained in
this work for the VG.
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