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Cooper-pair transport through a Hubbard chain sandwiched between two superconductors:
Density matrix renormalization group calculations
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We present a numerical approach to study the coherent transport of Cooper pairs through a Hubbard chain,
and study the role of the contacts in achieving perfect Andreev reflection. We calculate the pair transport using
the density matrix renormalization group by measuring the response of the system to quantum pair fields with
complex phases on the two ends of an open system. This approach gives an effective superfluid weight which
is in close agreement with the Bethe ansatz results for the superfluid weight for closed Hubbard rings.
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I. INTRODUCTION

Pair transport through interacting one-dimensional sys-
tems sandwiched between two superconductors has been the
focus of much attention recently. These systems not only
exhibit interesting physical phenomena, such as Andreev re-
flection and pair transport, but also may be incorporated into
novel nanoelectronic devices. In particular, there have been
various proposals for the creation and transport of entangled
pairs for quantum communication. Therefore, it is useful to
have well-controlled numerical tools for analyzing phenom-
ena associated with  pair transport through a
superconducting-Hubbard-superconducting (SHS) system.

In this paper we present the results of numerical studies of
a one-dimensional Hubbard chain sandwiched between two
superconducting contacts. We examine the effects of the
boundary contacts on the injection and transport of pairs
through the system. We then introduce the idea of an ex-
tended contact between the superconductors and the inter-
vening Hubbard chain which provides for improved pair
transmission into and out of the Hubbard chain. Using this
we present a numerical method for determining the effective

superfluid weight D of a Hubbard chain.

II. THE CONTACT MODEL

There have been various analytic studies of a one-
dimensional Luttinger liquid sandwiched between two
superconductors.! Here, we make use of a comprehensive
analysis recently reported by Affleck et al.* These authors
integrated out the electron degrees of freedom of the super-
conducting leads, replacing them with effective boundary
conditions for the Luttinger liquid. In this framework, the
effective Hamiltonian for a SHS system can be written as

H=H0+H1 (1)

where H, corresponds to the Hubbard chain
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and H; incorporates the effects of the two superconducting

leads

H,= AL(ei"SLcJ{Tch +H.c.)+ AR(e’A"’Rc}:Tczl +H.c.)
+Vl(n”+nll)+VLP(nLT+nLl). (3)

Here, C;T creates an electron of spin up on the €th site. The
hopping parameter of the Hubbard chain is ¢, U is the on-site
interaction energy, and w is the usual chemical potential. As
discussed in Ref. 4, the effect of the two superconducting
leads can be parametrized in terms of contact pairing
strengths A, gy and their phases ¢, ), along with end point
scattering potentials V| and V;.

In the following we will be interested in the symmetric
case in which A;=Az=A and V,=V,=V. The first term in H,
injects or removes pairs with different phases on both ends.
In addition, there are effective boundary scattering potentials
V(1) which arise and play an important role in achieving
optimal pair transmission across the ends of the Hubbard
chain. Integrating out the superconducting electron degrees
of freedom can be seen as a natural thing to do when the
Fermi level lies well below the superconducting gaps in the
bulk of the superconductors, since the pair fields in the su-
perconductors have well-defined average values and negli-
gible fluctuations. In the Hubbard system, the value of the
pair field has to be replaced by the fluctuating pair operator.
A similar approach was used by Kozub et al.’ to study Jo-
sephson transport through a Hubbard impurity center.

In their paper, Affleck, et al.* calculate the Josephson cur-
rent and the Andreev reflection probability. For the noninter-
acting half-filled tight-binding chain, they find that the maxi-
mum transmission probability is 1 (perfect Andreev
reflection) and it occurs when A=t and V=0. In this case, the
Josephson current versus the phase difference ¢=¢gr— ¢, be-
tween the ends has Ishii’s sawtooth form.® For smaller values
of V, the sawtooth is smoothed out and starts resembling the
Josephson sine shape corresponding to a small Andreev re-
flection probability (see also Ref. 7). Away from half filling,
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Affleck et al. found that, in order to achieve perfect Andreev
reflection, both the contact pairing strength A and the bound-
ary scattering potential V needed to be tuned to particular
values. For the noninteracting case, these values are

1-—. (4)

In order to treat the interacting case, these authors em-
ployed bosonization and renormalization group methods. For
negative values of U, they showed that the contact Hamil-
tonian renormalizes to the perfect Andreev reflection fixed
point. Thus, even when the parameters of the contact were
not fine tuned for perfect Andreev reflection, one recovers
the sawtooth form for the Josephson current versus the phase
difference as the length L of the Luttinger liquid increases.
However, for positive U, they found that the contact Hamil-
tonian flows away from the Andreev fixed point. In this case,
as L increases, the effective coupling of the superconductor
to the Luttinger liquid renormalizes to zero. For a finite value
of L and U >0, the coupling is weak and one finds the usual
Jisin ¢ Josephson relation. As L increases, J; rapidly de-
creases and the transport of pairs through the chain vanishes
in the L — o limit.

III. THE EFFECTIVE SUPERFLUID WEIGHT D

In the following numerical study, we will be interested in

determining an effective superfluid weight D. If the pair
phase varies linearly across a Hubbard chain of length L,
then there will be a uniform Josephson current, and we will

define D(L) by

. =P
=D— 5

j=D7 &)

with ¢, the phase difference across the Hubbard chain. The
effective superfluid weight D is then given by D(L) as L
— 0. Here, we have set e=# =1. The problem of determin-

ing D(L) is to create a linear phase change ¢y/L across the

Hubbard chain and then to measure j. The latter is straight-
forward since

Ji=Jii=—ilH,n] (6)
so that for i# 1 or L,

ji == ltE (CZO'CHIO'_ CiT+10'Cio') . (7)
o

At the boundary, when i=1 (or L) we have to consider the
boundary terms and add an extra current operator

Jji=—i28[exp(idy)c] e} —exp(=id)cyjci]  (8)

with a similar term for the right-hand i=L boundary. The
current density is independent of the position, and any of
these expressions can be used with these end corrections to
calculate j.

The measurement of j is straightforward within the den-
sity matrix renormalization group (DMRG) method.>!
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However, it is also necessary to establish a uniform phase
gradient. As noted in the previous section, for a finite length
L of the Hubbard chain, this can require tuning of the contact
boundary pairing strength and the boundary scattering poten-
tial. Fortunately, for negative values of U, the contact inter-
action renormalizes to the perfect Andreev reflection fixed
point as the length of the chain increases. However, when the
finite system is doped away from half filling, there are two
parameters to tune and achieving a match such that the phase
gradient over the length L is uniform becomes more difficult.
For this reason, we have developed an approach based upon
extended contact interaction which will be discussed at the
end of the next section.

IV. RESULTS

We use the Lanczos method for a system of size L=8 and
DMRG for larger systems. The DMRG method is the stan-
dard finite-size algorithm, except for the use of complex
numbers due to the arbitrary Josephson phases, and a special
treatment of quantum numbers. The non-particle-conserving
boundary conditions mean that the total number of fermions
cannot be used as a conserved quantum number. However,
one can still utilize the number of fermions modulo 2. This
modulo-2 approach was first used in Ref. 11. Within this
approach the local pair field A can take on a definite nonzero
value. We have typically kept m=200 states per block for the
results presented, with a truncation error of about 1078,

A. Point contacts

In Fig. 1 we show Lanczos results for the Josephson cur-
rent versus ¢= ¢p— ¢, through a half-filled Hubbard chain of
L=38 sites. For this half-filled, particle-hole-symmetric case,
with U=0, the required site potential V; ;=0 and the contact
pairing strength A can be adjusted to achieve perfect An-
dreev reflection. For the noninteracting case, this is obtained
for A/t=1 as shown in the top panel of Fig. 1. For negative
values of U, it is necessary to fine-tune A. When perfect
Andreev reflection is achieved, j;(¢) exhibits a sawtooth

form with j(¢)=D(L)$/L for —r= ¢= . In this case, D(L)
can be directly determined from j(¢). For negative values of
U.D rapidly approaches its asymptotic value when
L>>mt/|U|, so that the important requirement for determin-
ing D is to achieve perfect Andreev reflection at the ends.
In Fig. 2, we show Lanczos and DMRG results for the
superfluid weight D(L) of the half-filled chain for different
values of the Coulomb interaction U. Here we have set V

=0 and taken A=1. The renormalization to perfect Andreev
reflection is rapid for U <0 and the resulting effective super-

fluid weight D(L) varies little with L giving a value in close
agreement with the exact Bethe ansatz results for the super-
fluid weight of the infinite system, taken from Ref. 8. For
U> 0, the system renormalizes as L increases to the nonsu-
perconducting fixed point and the Josephson current is rap-
idly suppressed.

In Fig. 3 we show the DMRG results for the pair field
amplitude along a chain at half filling. The phase clearly
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FIG. 1. Josephson current though a half-filled Hubbard chain
with L=8 as a function of the phase ¢ and for different values of
the contact pairing A, and Coulomb interaction U, in units where
the hopping t=1.

varies linearly for negative U, while for positive values the
modulus decays in a very short distance, a signature of the
absence of superconductivity. The structure seen in the pair
phase for U=1 and 2 arises from interference effects associ-
ated with imperfect Andreev reflection coming from the ends
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FIG. 2. Effective superfluid weight D(L) of the half-filled Hub-
bard chain as a function of the Coulomb interaction U, for A=1,
V=0, and chains of various lengths. We add for comparison the
exact L — o Bethe ansatz results from Ref. 8 for U<0.
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of the chain. In fact, the same oscillations are observed for
U=0 when the parameters are not fine tuned for perfect An-
dreev reflection, with a spatial variation with a period 7/kp.

For the eight-site chain, we have seen that for the half-
filled, particle-hole-symmetric case it is necessary to tune the
contact pairing strength A in order to achieve perfect An-
dreev reflection. For the non-half-filled case, for finite L,
there are two contact coupling parameters, A and V, that
require tuning.

In Fig. 4 we show DMRG results for the superfluid
weight versus electron density and various values of the
Coulomb interaction. Here, n is the electron density in the
bulk of the chain, i.e., the center of the chain and far from the
contacts. For comparison we show results for the superfluid
weight D, for L—oo obtained from Bethe ansatz
calculations.® For U=0 we have adjusted the values of A and
V for maximum transmitivity, Eq. (4). For finite U we have
set A=1 and V,;=0, i.e., they are not optimized for perfect
reflection.

In Fig. 5 we show plots of D versus n for U=—2 and

chains of different lengths L. As L increases, D approaches
the exact result as the point contact boundary condition
renormalizes to perfect Andreev reflection. However, to con-
trol this convergence it is in principle necessary to extrapo-
late the result to zero DMRG truncation error (large number
of states m) and then take the infinite-length limit.'> Hence,
we would expect these curves to be more accurate if we were
to fine-tune the parameters. However, this task has proven to
be difficult. In order to overcome the difficulties of fine-
tuning the parameters in the Hamiltonian for optimal trans-
mittance, we have studied the effects of using extended
smooth contacts at the boundaries.

B. Extended contacts

In the previous section we have discussed a Hubbard
chain of finite length L connected to superconductors
through point contacts. We have seen that it is necessary to
tune the pairing strength A and the boundary scattering po-
tential V in order to obtain a linear phase change along the
chain. In this section, we explore the effects of extended
contacts as an alternative way to eliminate the normal con-
tact reflection. This technique is inspired by the smooth
boundary conditions approach.'® Here, we have applied the
pair field end terms over a length €. on the end of each chain,
with the coefficient dropping smoothly to zero as the dis-
tance from the end approaches €. This not only minimizes
the reflections but in addition the smooth boundary condi-
tions provide a better overlap with the extended Cooper pair
wave function. We have

[C
Hy=2 A(0)(eic)ic), +Hee))
=1
L
+ X AL~ €)(e"re}c] +Hee.)
ezL_(cH
0, L
+ 2 V(Ong+ X, V(L- € +1)n, (9)
(=1 (=L +1
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FIG. 3. Pair field amplitude and phase along
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where we take'* A(x)=A[1+cos(xm/€.)]/2. In the follow-
ing, we will set V(x)=0 and examine various widths €. of the
contact.

In calculating the superfluid weight with the extended
contacts one must utilize only the local properties in the
center of the system. In particular, one must measure the
current and the gradient of the phase in the center of the
system. The phase varies linearly in the central region of the
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FIG. 4. D as a function of the electron density for different
values of the Coulomb interaction U. For U=0, the boundary fields
have been adjusted using Eq. (4) to achieve perfect Andreev reflec-
tion, while for U<0 we used A=1, and V; ;=0. We add for com-
parison the exact Bethe ansatz results from Ref. 8 (solid lines).

50

chain, and this allows a numerical calculation of its gradient.
It can also be shown that the effective superfluid weight can
be extracted from the quantity'

L
J= f j(x)dx=D(L) . (10)
0

In our calculations we simply replaced the integral by a sum
over all the links. We find that the results obtained using the
two approaches agree to within 1%.
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FIG. 5. Effective superfluid weight D of a Hubbard chain with
U=-2, connected to point contacts, as a function of density n, and
for different lengths L. We add for comparison the Bethe ansatz
results in the thermodynamic limit (solid line).
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FIG. 6. Effective superfluid weight of a Hubbard chain (L
=64) connected to smooth contacts of width €,.=20, as a function of
density n, and for different values of U. We add for comparison the
Bethe ansatz results in the thermodynamic limit (solid lines).

Figure 6 shows the results for the effective superfluid

weight D for a Hubbard chain of length L=64 with contacts
of width €.=20. As in Fig. 4, the solid lines are the Bethe
ansatz results for D, in the thermodynamic limit. As one can
see, the DMRG results are in close agreement with the Bethe
ansatz results, except for n=1. It may be that logarithmic
contributions® affect the convergence of the DMRG for n
=1. The extended contact approach provides a much closer
match between the supeconducting leads and the Hubbard
chain so that we have essentially achieved perfect Andreev
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boundary conditions without any need for tuning of param-
eters.

V. CONCLUSIONS

Here we have reported results of a numerical study of a
one-dimensional Hubbard model coupled to external pair
fields. DMRG calculations typically use open boundary con-
ditions, making it simple to couple the ends of an interacting
system to a classical potential or magnetic fields. Here we
have explored the numerics involved in coupling to a quan-
tum pair field which can inject or remove pairs of electrons.
We have seen how the pair transport varies as a function of
the interaction U, the filling (n), and the length of the Hub-
bard chain. Various current-phase relations associated with
the degree of Andreev reflection were clearly seen. A phe-

nomenological effective superfluid weight D was introduced
and found to be in close agreement with Bethe ansatz results
for the superfluid weight of an infinite ring.

Finally, the idea of an extended pair transfer contact was
introduced. This was found to provide a useful way to effec-
tively match the pair field injection such that the Andreev
reflection approached unity. This is reminiscent of the ex-
tended tapered connections used to match waveguides with
different propagation characteristics and may prove useful in
obtaining optimal matching of bulk leads to nanowires.

ACKNOWLEDGMENTS

S.R.W. acknowledges the support of the NSF under Grant
No. DMRO03-11843, and D.J.S. acknowledges support from
the Center of Nanophase Material Science at Oak Ridge Na-
tional Laboratory (Tennessee). We would like to thank Ian
Affleck for insightful discussions.

*Electronic address: afeiguin@microsoft.com

TElectronic address: srwhite@uci.edu

#Electronic address: djs@vulcan2.physics.ucsb.edu

ID. L. Maslov, M. Stone, P. M. Goldbart, and D. Loss, Phys. Rev.
B 53, 1548 (1996).

2R. Fazio, F. W. I. Hekking, and A. A. Odintsov, Phys. Rev. B 53,
6653 (1996).

3Y. Takane, J. Phys. Soc. Ipn. 66, 537 (1997).

41. Affleck, J-S. Caux, and A. M. Zagoskin, Phys. Rev. B 62, 1433
(2000).

5V. 1. Kozub, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. Lett.
90, 226805 (2003).

6C. Tshii, Prog. Theor. Phys. 44, 1525 (1970).

73. S. Caux, H. Saleur, and E. Siano, Phys. Rev. Lett. 88, 106402

(2002).

8N. Kawakami and S.-K. Yang, Phys. Rev. B 44, 7844 (1991).

?S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

105, R. White, Phys. Rev. B 48, 10345 (1993). See also U. Scholl-
wock, Rev. Mod. Phys. 77, 259 (2005).

1S, R. White and D. J. Scalapino, Phys. Rev. B 57, 3031 (1998).

123, Hager, G. Wellein, E. Jeckelmann, and H. Fehske, Phys. Rev.
B 71, 075108 (2005).

13M. Vekic and S. R. White, Phys. Rev. Lett. 71, 4283 (1993).

14 Asymptotically, as €,— , one would expect a smoothing func-
tion with all derivatives continuous to be superior to this func-
tion which has a discontinuity in the second derivative. How-
ever, for small to moderate €. this function gives excellent
results.

024505-5



