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We have developed a theory for the determination of the collective spin-wave modes of regular arrays
of magnetic particles, taking into account the dipolar interaction among particles. The frequencies and profiles
of the spin modes of arrays of permalloy cylindrical particles with different interparticle separation have
been calculated with a numerical implementation of this model, using a three-dimensional representation of the
magnetic particles in their actual nonuniform fundamental state. The results show a very good agreement with
recently published experimental data, and allow us to discuss the dispersion curves and some relevant
properties of the Brillouin light-scattering intensity from spin modes in periodic arrays.
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I. INTRODUCTION

In modern miniaturized systems the continuous reduction
in the size of electronic and magnetic devices results in in-
creased packing of their constituting elements. In the case of
small magnetic elements, possibly used for high-density non-
volatile memories, the vicinity of the particles gives rise to
interdot magnetic coupling, that must be understood in order
to be able to control its effects. The coupling, mainly of
dipolar nature, affects both the static and dynamic behavior
of the magnetization. While the static properties of coupled
nanoparticles have been often theoretically investigated both
analytically1,2 and by micromagnetic calculations,3–6 the dy-
namic behavior is seldom considered. However, the picosec-
ond magnetization dynamics of small magnetic elements
supports the operation of future devices and experimental
evidence of dynamic coupling has already been obtained, in
the form of fourfold anisotropy of square arrays of otherwise
circularly symmetric dots.7–10 A theory of collective spin-
wave modes of arrays made of spherical particles has been
recently developed;11,12 the high symmetry of these, also as-
sumed uniformly magnetized, allowed the use of an analyti-
cal approach. A drawback of these assumptions is the limited
range of applicability of this theory; in particular, the experi-
mental data presently available refer to particles with planar
structure and nonuniform magnetization. A numerical ap-
proach to the calculation of collective modes of an array,
based on a time-domain micromagnetic simulation followed
by Fourier transform, was applied to a system made of a
finite number of particles �nine�.13 Despite the relevant cal-
culation effort due to the lack of translational invariance, the
number of particles considered in that simulations was too
small to efficiently mimic the real system. The comparison
with experimental data allowed the authors to reproduce the
general behavior of the mode frequencies as a function of the
interdot separation, but the mode assignment was question-
able and the fine structure of the bands was missing or in-
complete. The case of coupled disks in the vortex state have
been investigated studying the lowest frequency �so-called
gyrotropic� mode14 and also higher modes;15 in both cases
the applied field is zero and the same fundamental state is
assumed for all the dots in the array. The collective behavior
of an array of single domain magnetic particles with uniform

static and dynamic magnetization has been studied by Politi
and Pini16 with no applied field.

In this paper we present a theoretical model for calculat-
ing the collective modes of infinite arrays of arbitrary shaped
particles with an applied field, based on the numerical solu-
tion of the magnetic dynamical matrix17 of the system. The
actual static magnetization of the particles is fully taken into
account, by assuming that it is the same for all the particles
in the array; the dynamic magnetization is written in the
Bloch form, so that the total number of independent vari-
ables is limited also for infinite arrays and the numerical
calculation remains feasible. An application is presented to a
square array of cylindrical particles, a system whose collec-
tive spin mode frequencies measured by Brillouin light scat-
tering �BLS� are available.13 The comparison between the
theoretical results and the experimental data confirms the
validity of the model.

II. THEORY

The spin normal modes of a single magnetic nanoparticle
of arbitrary shape can be calculated by using a dynamical
matrix method.17–19 Within this approach, the particle is di-
vided into N cells within which the magnetization is assumed
constant; therefore the 2N variables of the problem are the
two polar angles � j and � j of the magnetization in each cell
j. The Zeeman, exchange, and demagnetizing interactions
within the particle are taken into account, and a linearized
dynamical matrix whose eigenvalues and eigenvectors corre-
spond to the spin-mode frequencies and profiles, respec-
tively, can be set up. In this section we extend this model by
including the dipolar interdot coupling.

We assume that the nanoparticles form a bidimensional
infinite array with primitive vectors a1 and a2, and base vec-
tors of the reciprocal lattice b1 and b2. As a first step, the
static magnetization is calculated for a single dot using a
standard micromagnetic technique with periodic boundary
conditions, with the same periodicity of the array. Therefore
we assume that the fundamental state is the same for all
particles. This condition must be carefully considered; it is
well known, for example, that an array of free planar mag-
netic dipoles takes ferromagnetic or antiferromagnetic con-
figurations according to the lattice symmetry �triangular or
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square lattice�,16,20,21 with some additional effects due to the
boundary conditions in finite lattices.22,23 In addition, other
effects must be taken into account. For example thin circular
dots are known to undergo several transitions as the external
field increases.24 At zero field, a vortex structure can be
found in each particle; if the interparticle interaction is neg-
ligible, both vortex core polarization and chirality are ori-
ented at random, whereas the interdot coupling induces some
correlation. However, for close and small enough circular
dots, finite-size effects plays an important role; for example a
sort of supervortex of the whole array may form, where each
dot has a quasiuniform magnetization.23 Also other superdo-
main configurations are possible, with domains extended to
the whole array. When a field is gradually applied, the static
magnetization of each dot changes, until the whole system
reach saturation. The last situation assures an identical mag-
netization of all particles, as required by our model. The
occurrence of this condition can be verified, from a theoret-
ical point of view, by comparing the dipolar interdot cou-
pling field with the external field25 or by finding a purely real
spin-wave frequency,16 and, from an experimental point of
view, by either checking the magnetic configuration of the
array by maagnetic force microcoscopy �MFM� or by evalu-
ating by Kerr effect the field required to obtain the full satu-
ration of the sample.

The fluctuation of the magnetization with respect to the
fundamental state can then be written in the Bloch form:

�m�r + R� = eiK·R�m�r� , �1�

where R is a lattice vector and K= �Kx ,Ky� is a Bloch vector
�taken in the first Brillouin zone of the array� which, accord-
ing to the standard periodic boundary conditions, is given by

K =
n1

M1
b1 +

n2

M2
b2, ni � Z, ni = −

Mi

2
, . . . ,

Mi

2
− 1;

here M1 and M2 represent the actual numbers of particles of
the array in the direction of a1 and a2, respectively. In Eq. �1�
r can be restricted to a single particle, so that its magnetiza-
tion determines that of the whole system �for any given
Bloch wave vector�. This means, as for the case of indepen-
dent particles, that also in the periodic array there are 2N
independent variables, corresponding to the orientation of

the magnetization of the N cells of just one particle. Now we
can write the motion equations of the magnetization of the
system, where the independent variables are the small devia-
tions from equilibrium �� j and �� j for every cell j of the
particle at R=0:

�
j=1
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�
R
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��� j + �
j=1
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�
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N �
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E�k�jR
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�� j − ���k = 0,

�2�

k = 1, . . . ,N .

Here �= iMs� /�, Ms is the saturation magnetization, � is
the frequency, � is the gyromagnetic ratio, and the sums run
over all R in the array. The quantities E�k	jR

are the second
derivatives of the energy, with respect to the angle �k of the
particle in R=0 and the angle 	 j of the particle in R. Equa-
tions �2� should be compared with Eqs. �3� of Ref. 17, con-
cerning a single independent particle. The total energy of the
system �divided by the cell volume� E includes Zeeman, ex-
change, and dipolar energies. We assume that the magnetic
particles do not touch, so that there is no interdot exchange
coupling. Therefore the Zeeman and the nearest-neighbor ex-
change energy derivatives �see Appendix B of Ref. 17� do
not contribute to the terms with R�0 in Eq. �2� and the
expressions of the derivatives given in Ref. 17 are still
usable. The dipolar energy of the system now is

Edip =
Ms

2

2 �
k,j=1

N

�
R,R�

mk�R�NJ�R,R�,k, j�m j�R�� ,

where NJ�R ,R� ,k , j� is the demagnetizing tensor,26,27 cou-
pling the cell k of the particle in R with the cell j of the
particle in R�. Using Eq. �1� and exploiting the symmetries
of the demagnetizing tensor, the required dipolar second
derivatives turn out to be

Edip�k	jR
= �Ms

2��
k�=1

N

�
R�

mk� · NJ�R�,0,k�,k�
�2mk

��k�	k
+

�mk

�	k
· NJ�0,0,k,k�

�mk

��k
� R = 0 and j = k

Ms
2�m j

�	 j
· NJ�R,0, j,k�

�mk

��k
otherwise. �

� and 	 can be � or �, the unitary magnetizations appearing
here refer to R=0, and their partial derivatives are easily

obtained from Eq. �2� of Ref. 17 and calculated at equilib-
rium.
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Finally, the analytic expressions of the coefficients of the
linear system �2� can be evaluated numerically for a given
ground state. As is customary in numerical approaches, the
infinite dipolar sums over R and R�, which appear in the
system and the energy derivatives, are calculated by trunca-
tion; in particular we start from the interaction of a cell with
its nearest neighbors, then we sum terms corresponding to
farther and farther cells; when the contributions become neg-
ligible with respect to the machine accuracy, the sums are
terminated. It turns out that, typically, particles within R

3a, with a1=a2= :a contribute to the sums. This is also
consistent with experimental results showing that elements
separated by a distance greater than the dot size do not sig-
nificantly interact.28 Note that, although the number of par-
ticles needed to achieve convergence is rather small, the
number of cells �typically of size 5 nm� is very large, of the
order of 105, as required by the long-range nature of the
dipolar interaction. The system is then reduced to an eigen-
value problem17 that can be solved numerically, allowing us
to obtain the spin-mode frequencies and profiles.

III. RESULTS AND DISCUSSION

The frequencies of the modes of a squared array of per-
malloy discs are shown in Fig. 1 for different interdot sepa-
ration. The particles have a cylindrical shape, with thickness
50 nm and radius 100 nm. The x and y axes of the reference
frame are parallel to a1 and a2, respectively, while z is per-
pendicular to the sample; an external field H=2000 Oe is
applied along the x direction. This field is strong enough to
assure the identical static magnetization of all the dots of the
array, as experimentally verified13 and easily understood by
comparing the interdot dipolar field, of the order of 100 Oe,
with the external field intensity. The calculated static magne-
tization is shown in Fig. 2. The calculation of the theoretical
frequencies has been performed with the model presented in
Sec. II, using the following standard values of the magnetic
constants of permalloy: Ms=860 G, �=1.838�107

rad/ �s Oe�, exchange constant A=1.3�10−6 erg/cm. The

particles are placed at the nodes of a square array with a1
=a2=a=s+200 nm, where s is the interdot separation. Due
to the relatively large thickness of the discs, a bidimensional
model �with cell height equal to the particle height� would be
inadequate; therefore we used a three-dimensional �3D�
model with three layers of cells in each dot. Despite the
modes show some variation of the magnetization profile in
the direction perpendicular to the surface, the classification
introduced for thin particles18 is still applicable; however, the
3D approach is essential for a correct reproduction of the
experimental frequencies. A detailed study of the dependence
of the profile of spin modes on the particle thickness will be
presented elsewhere. The cell size is 5�5�16.7 nm3; we
have found that a reduction of the cell height to 10 nm �i.e.,
by using five layers of cells instead of three� did not give rise
to a significant change of the calculated frequencies. The
total number of active cells is therefore N=3792, for a com-
putation time of about 90 min per run for a PC. In Fig. 1 the
frequencies measured by BLS �Ref. 13� in arrays of permal-
loy particles with the same size as in the calculations are also
plotted �dots�. The comparison of the measurements with the
calculated results allows us to assign the modes. Starting
from the lowest frequency, we recognize a laterally localized
mode, or end mode of zero order, �0-EM�, a backwardlike
mode with oscillations along the direction of the applied field
�2-BA�, the fundamental or quasiuniform mode F and three
Damon-Eshbach like modes with oscillations perpendicular
to the applied field �1-DE, 2-DE, and 3-DE�. The labels are
consistent with those introduced for the modes of indepen-
dent dots18 and are based on the node-number counting. The
BA and DE nomenclature has been adopted for historical
reasons from the film waves,29 although in the case of dots
we deal with standing waves, rather than with traveling
waves.

For large interdot separation, each mode is characterized
by a single frequency: in this limit the coupling is negligible,

FIG. 1. Frequency dependence of the lowest spin modes on the
interdot separation s �lines�. At small s the modes form bands, rep-
resented by gray areas in the figure. Dots are experimental data,
taken from Ref. 13.

FIG. 2. Static magnetization calculated for an insulated permal-
loy dot in a 2-kOe applied field �central layer�. The geometric and
magnetic parameters are given in the text. For the sake of clearness
the magnetization of each block of nine cells has been averaged and
represented by a single arrow. The static magnetization used in the
dynamical simulations depends on the interdot separation, but the
dependence is too weak to be perceivable in a graph.
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and the eigenfrequencies do not depend on K. When s be-
comes comparable to the dot diameter, the interdot coupling
gives rise to the appearance of bands; within each band the
frequency of the collective modes depends on K. The agree-
ment between the calculated curves and the experimental
data is very good. There is a general increase of the mode
frequencies when s becomes smaller; more precisely,
both band center and width change with s, with a trend
which varies from one mode to another. The F mode
feels the strongest interdot coupling, followed by the
0-EM mode; when the separation equals the dot diameter, the
relative band width of the mode F is 5%, that of the 0-EM
mode is 0.7%, while for other modes it is �0.2%.
The corresponding broadening of the experimental peaks is
also visible in the experimental data for s=50 nm, as in
Fig. 2 of Ref. 13, where the F band extends to the
range 11–14 GHz, with a structure given by a few peaks.
The strongest coupling of the F and 0-EM mode can be
traced to their nonvanishing average magnetization:18 in this
case the coupling between adjacent dots is relatively large,
thanks to the dipolar field as demonstrated analytically
for a different system by Galkin et al.15 The interdot
coupling for the other modes, all having a vanishing or small
average magnetization, is weaker and mainly due to the
nonuniformity of the dynamic magnetization.

A comparison of our results with those obtained by Gub-
biotti et al.13 on a finite �nine dots� bidimensional system
with a micromagnetic approach shows that the band opening
or width of the F mode in that calculation starts at 200 nm,
while in our case is already appreciable at s=400 nm; in
addition, Fig. 3 of Ref. 13 shows three curves �instead of a
band� with a width of about 3.5 GHz at s=50 nm instead of
3.0 GHz in our case. However, it should be noted that the
simplified micromagnetic approach reproduces the general
increase of the mode frequencies as s becomes smaller, al-
though the agreement with experimental results is signifi-
cantly worse. We have also corrected the assignment of the
higher frequency modes, since the BLS cross section of the
mixed modes 4-BA�2-DE, 2-BA�2-DE, and of the
4-DE mode mentioned in Ref. 13 is very small and in any
case smaller than that of the 1-DE and 3-DE modes. A dis-
cussion of the BLS cross section is postponed to the end of
this section.

The profiles of the F modes calculated at s=50 nm are
shown in Fig. 3. The mode calculated for K= �0,0� �Fig.
3�c�	 has a positive-definite profile �gray-black�, i.e., the dy-
namic magnetization oscillates in-phase in the whole dot. A
comparison with the mode calculated for K= �0, /a� �Fig.
3�a�	 evidences that the last possess pronounced oscillations
along the y �vertical� direction, with even regions of negative
dynamic magnetization �white�. As expected, comparable os-
cillations along x and y are shown by the mode with
K= � /a , /a� �Fig. 3�d�	. These oscillations are induced by
the coupling with the nearest-neighbor dots oscillating out of
phase. The evolution of the F modes with K= �0,0� and
K= � /a , /a� is plotted in Fig. 4 as a function of the inter-
dot separation s. Starting from the first row, that corresponds
to the modes of an isolated dot, then independent of K, the
difference between the two columns becomes stronger as s
decreases.

The profiles of the 1-DE modes are represented in Fig. 5.
In this case the oscillations due to the interdot coupling are
less pronounced, due to the reduced interaction and the
intrinsic nonuniformity of the mode.

We want now to establish a correlation between K and a
particular frequency within a band. The frequency-wave-
vector dependence can be understood recalling the dispersion
curves of the Damon-Eshbach-like modes, that have positive
slope, and of the dipolar backwardlike modes, with their
negative dispersion.30 In order to make use of these consid-
erations the first thing to do is to recognize the effective
periodicity �eff of the global dynamic magnetization, taking
both the wave vector K and the intrinsic oscillations of the
mode in the particle into account. The easiest case is that of
the F mode since it has no intrinsic oscillations and the ef-
fective wave vector Keff=2 /�eff coincides with K. The col-
lective modes of the array with oscillations perpendicular to
the applied field �i.e., in the y direction� show similarity with
the DE mode of a film, so that the lowest frequency mode
has the smallest effective wave vector, corresponding to
Ky =0 �see Fig. 6�a�, to be compared with Fig. 6�b� which
corresponds to the largest effective wave vector along y	.
Oscillations parallel to the field �x direction, not shown in
Fig. 6 for simplicity� correspond to dipolar BA modes,
whose lowest frequency is reached for the maximum

FIG. 3. Profiles of the F modes at s=50 nm and R=0, calcu-
lated for K= �0, /a� �a� and K= � /a ,0� �b�, corresponding to the
highest and lowest frequency of the F band �13.8 and 10.8 GHz,
respectively�. The profiles calculated for K= �0,0� �c� and
K= � /a , /a� �d� �12.0 and 12.4 GHz, respectively� are also
shown. A H=2000 Oe field is applied along the x axis, i.e.,
horizontally. The contour plots show the amplitude of the dynamic
magnetization �central layer, arbitrary units� with different gray
levels; the contour level corresponding to 0 is marked by a solid
line. We have plotted the real part of the z component; the profiles
of the y component are very similar but purely imaginary. The
profiles of the magnetization of other dots in the array �R�0� can
be obtained using Eq. �1� and remembering that, for the values of K
considered here, the exponential assumes either value 1 or −1,
depending on R.
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effective wave vector along x, which corresponds to
Kx= /a. As a consequence, the curves limiting the F band
have K= � /a ,0� �lower limit� and K= �0, /a� �upper
limit�. We note that the dispersion curves published in Ref.
12 for an array of nanosphere �Figs. 5 and 6 therein� are

consistent with these considerations, which are independent
of the particle shape. When applied to modes other than F,
these conclusions must be substantially modified because the
effective wave vector no longer coincides with K. Let us take
the 1-DE mode as an example to illustrate the corresponding
argument. In this case, if we consider a linear array of dots
placed along the y direction with the 1-DE modes oscillating
in-phase �Ky =0�, the magnetization pattern has a period
�eff=a �Fig. 6�c�	. If, instead, we consider the opposite case
�Ky = /a�, the periodicity is now �eff=2a. The last case,
corresponding to the smallest effective wave vector, gives
rise to the lowest frequency collective DE-like mode. Along
the x direction the discussion made for the F mode still ap-
plies. As a result, the lowest curve in the 1-DE band corre-
sponds to K= � /a , /a�, and the highest one to K= �0,0�.
Clearly, the difference between the behavior of the collective
F mode and that of the 1-DE mode is due to the oscillation of
the magnetization within the particle in the second case,
which yields a different �eff for the same K �compare Figs.
6�a� and 6�c�	. The nature of the boundaries of other bands
can be explained along the same line.

The interplay between interdot coupling and cross-section
in BLS experiments requires a few comments. The Stokes
scattering amplitude is proportional to the following
integral:31–33

FIG. 4. Evolution of the F mode for K= �0,0� �left column�,
and K= � /a , /a� �right column� as a function of the interdot
separation s.

FIG. 5. Profiles of the 1-DE modes at s=50 nm and R=0, cal-
culated for K= �0, /a� �a�, K= � /a ,0� �b�, K= �0,0� �c�, and
K= � /a , /a� �d�. Other data as for Fig. 3.

FIG. 6. Sketch of the F �a, b� and 1-DE �c, d� collective modes
of a linear array and the corresponding effective periodicity of the
entire dynamic magnetization. Two different cases are presented,
Ky =0 �a, c� and Ky = /a �b, d�.
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area

eiq·r�m�r�dr = � �
R�area

ei�q+K�·R�

part

eiq·r�m�r�dr ,

�3�

where q is the parallel wave vector exchanged by light and
the first integral is extended to the scattering zone �illumi-
nated area�. The second term of this equation has been ob-
tained recalling Eq. �1�, and the integral is restricted to a
single particle; the sum extends to the particles within the
illuminated area. In a typical BLS experiment the diameter
of the illuminated area can be estimated to be about
20 �m2,18 and therefore includes a few hundred of particles,
i. e., a number large enough to allow the term in square
parentheses of Eq. �3� to approach a Dirac delta. This leads,
in principle, to the conservation rule q= �K for Stokes or
anti-Stokes scattering. It is worth while to note that in the
backscattering experiment of Ref. 13, K ranges from 0 to the
first Brillouin zone border � /a=1.257�105 cm−1 maxi-
mum, for s=50 nm�, while q=4.102�105 cm−1: this means
that the wave-vector conservation rule is never satisfied. This
situation is common to many BLS experiments.34 The vis-
ibility of the collective modes in the measured spectra can be
explained realizing that the order introduced by the weak
interdot dipolar coupling extends over short distances only,
being broken by thermal fluctuations on a larger scale. Yet
the short-range order plays an important role in determining
the frequency of the modes, affected by the dipolar coupling
among a few nearest neighbors, as described at the end of
Sec. II. In the present application the experiments permit us
to estimate the range of the ordering between three and ten
particles.

IV. CONCLUSIONS

We have presented a method for studying the dynamic
interaction between magnetic particles. This model is suit-
able for particles of arbitrary shape and periodic arrays
of any geometry. The application to a square array of cylin-
drical particles shows that the calculated frequencies
compare well with experimental results, concerning both
band formation and frequency changes, as a function of dot
separation.

The approach presented in this paper may suggest a
method for including the interparticle interactions in micro-
magnetic standard codes working in time domain. Such pro-
grams could be extended by adopting the Bloch conditions of
Eq. �1�, for calculating both equilibrium states and dynamic
fluctuations. In the former case K=0 should be used, which
is equivalent to the inclusion of periodic boundary condi-
tions, as already implemented in a few codes. In the latter
case, the spin modes can be obtained by allowing the wave
vector K to span the whole surface Brillouin zone. In this
way it would be possible to study the collective modes of
large arrays with a restricted number of independent
variables.
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