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The two-magnon problem for the frustrated XXZ spin-1 /2 Heisenberg Hamiltonian and external magnetic
fields exceeding the saturation field Bs is considered. We show that the problem can be exactly mapped onto an
effective tight-binding impurity problem. It allows to obtain explicit exact expressions for the two-magnon
Green’s functions for arbitrary dimension and number of interactions. We apply this theory to a quasi-one-
dimensional helimagnet with ferromagnetic nearest-neighbor J1�0 and antiferromagnetic next-nearest neigh-
bor J2�0 interactions. An outstanding feature of the excitation spectrum is the existence of two-magnon bound
states. This leads to deviations of the saturation field Bs from its classical value Bs

cl which coincides with the
one-magnon instability. For the refined frustration ratio �J2 /J1��0.374 661 the minimum of the two-magnon
spectrum occurs at the boundary of the Brillouin zone. Based on the two-magnon approach, we propose
general analytic expressions for the saturation field Bs, confirming known previous results for one-dimensional
isotropic systems, but explore also the role of interchain and long-ranged intrachain interactions as well as of
the exchange anisotropy.
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I. INTRODUCTION

We study a spin-1 /2 quasi-one-dimensional helimagnet
with ferromagnetic �J1�0� nearest-neighbor and antiferro-
magnetic �J2�0, �J2 /J1��1/4� next-nearest-neighbor in-
chain interactions. In the classical approximation the spins
are vectors. In zero magnetic field, they form a planar spiral
structure �say in the xy plane� with a pitch angle

cos �cl = − J1/4J2

between neighboring spins. When a magnetic field is applied
along the z axis, the spin moments are inclined toward the z
axis by an angle

sin �cl = 8�BJ2/�4J2 + J1�2,

where �=−g�B is the value of the magnetic moment. For
fields greater than

�Bs
cl = �4J2 + J1�2/8J2 �1�

the angle �=� /2 and the system becomes “ferromagnetic”
�fully polarized uniform state�.

In the quantum case, this high-field ferromagnetic state
becomes unstable when the frequency of a certain excitation
mode vanishes. The one-particle instability occurs just at the
classical field Bs

cl given by Eq. �1�. For the collinear antifer-
romagnet and the obtuse-angle helimagnet ���� /2� the
quantum saturation field coincides with the classical one.1 In
contrast, for an acute-angle helimagnet ���� /2� the corre-
sponding saturation field exceeds the classical value Bs

cl2,3

due to the existence of n-magnon bound states below the
n-magnon continuum �see Sec. II B of Ref. 3�.

Below we derive an explicit exact expression for the two-
magnon Green’s function at magnetic fields B�Bs. It exhib-

its isolated poles below the two-particle continuum which
correspond to two-magnon bound states. According to Refs.
2 and 3, for �J2 /J1�� ��c��0.38 the two-magnon spectrum
minimum determines the saturation field Bs�Bs

cl. Our ap-
proach allows to refine the value of �c, to reproduce their
results for Bs for the isotropic J1-J2 Heisenberg model and to
generalize it to more complex situations of exchange aniso-
tropy and interchain interaction as well as of an additional
in-chain interaction J3.

II. THE MODEL AND NOTATIONS

The Hamiltonian of the model reads

Ĥ = − �B�
m

Ŝm
z +

1

2�
m,r
�Jr

zŜm
z Sm+r

z +
Jr

xy

2
�Ŝm

+ Ŝm+r
− + Ŝm

− Ŝm+r
+ �� ,

�2�

where m enumerates the sites in the chain, r determines the
nearest- �r= ±1� and the next-nearest- �r= ±2� neighboring
sites. We have allowed for an uniaxial anisotropy of the ex-
change interactions. We restrict ourselves to the case of s
=1/2. Then the model given by Eq. �2� can be applied to
undoped edge-shared chain cuprates.4 Here the spin opera-

tors Ŝm
� may be expressed via the hard-core boson operators

bm

Ŝ+ � b, Ŝ− � b†, Ŝz �
1

2
− n̂ , �3�

	bm,bm�
† 
 = �1 − 2n̂m��mm�, �4�
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n̂ = bm
† bm = 0,1, �5�

where the square brackets stand for the commutator, and m
denotes the site index. The ferromagnetic state corresponds
to the vacuum state b�FM�=b�0�=0. Then the Hamiltonian
�2� can be rewritten as

Ĥ = Ĥ0 + Ĥint, �6�

Ĥ0 = 	0�
m

n̂m +
1

2�
m,r

Jr
xybm

† bm+r, �7�

	0 � �B −
1

2�
r

Jr
z,

Ĥint =
1

2�
m,r

Jr
zn̂mn̂m+r. �8�

The transverse part of Ĥ �2� defines the one-particle hop-

pings in Ĥ0 �7�, the Ising part contributes the interaction �8�
and on-site energy value 	0.

We shall study the one- and two-particle excitation spec-
tra of the Hamiltonian given by Eq. �6� which will be ob-
tained from the singularities �poles and branch cuts� of the
corresponding retarded Green’s functions �GF�:

G�1��q,	� = ��bq�bq
†�� , �9�

Gl,a�k,	� = ��Ak,l�Ak,a
† �� , �10�

where

��X̂�Ŷ�� � − i
t�




dtei	�t−t���	X̂�t�,Ŷ�t��
� ,

Âk,l �
1

�N
�

q

eiqlbk/2+qbk/2−q =
1

�N
�
m

e−ik�m+l/2�bmbm+l.

�11�

The expectation value �¯� denotes the ground state average,

the time dependence of an operator X̂�t� is given by X̂�t�
=eitĤX̂e−itĤ, and the Fourier transform of bm reads bq
=N−1/2�m exp�−iqm�bm. N denotes the total number of sites.

III. THE ONE-MAGNON SPECTRUM

The equation of motion for the hard-core boson operators
�3� reads

i
d

dt
bm = 	bm,Ĥ
 = 	0bm + �

r
�Jr

xy�1

2
− n̂m�bm+r + Jr

zn̂m+rbm� .

�12�

For the ferromagnetic ground state, the terms proportional to
n̂ do not contribute to the one-magnon GF �9�. This means
that the usually infinite hierarchy of equations of motion in-
cluding higher-order Green’s function is cut exactly and

closed rigorous expressions for all n-magnon Green’s func-
tion can be obtained in principle. In particular, the one-
magnon GF becomes simply

G�1��q,	� = ��bq�bq
†�� = �	 − 	q

SW�−1, �13�

where

	q
SW = 	0 +

1

2�
r

Jr
xy exp�iqr� �14�

is the free spin-wave dispersion.
The dispersion 	q

SW has a minimum at the helical wave
vector q0=�cl /a, where a=1 is the lattice constant.

For the anisotropic Hamiltonian �2� it is convenient to
define

� � J2
xy/J1

xy, �i � Ji
z/Ji

xy . �15�

Then

cos �cl = − 1/4� , �16�

and for magnetic fields values smaller than

�Bs
cl = J1

z + J2
z + J2

xy +
�J1

xy�2

J2
xy

= J2
xy��1 − 1

�
+ �2 − 1 +

�4� + 1�2

8�2 � �17�

	q0

SW becomes negative. Evidently, in the isotropic case �1

=�2=1, Eq. �17� reduces to Eq. �1�.

IV. THE TWO-MAGNON GREEN’S FUNCTION

The operator Âk,l �11� annihilates a pair of particles, sepa-
rated by the distance l and moving with total quasimomen-
tum k. A two-particle bound state manifests itself by an iso-
lated pole of the two-magnon GF �TMGF� �10�. The hard-

core condition �5� demands Âk,0�0. We see also from Eq.

�11� that Âk,l= Âk,−l. The time evolution of Âk,l, l�0 is given
by the relation

i
d

dt
Âk,l = 	Âk,l,Ĥ


= 2	0Âk,l +
1

�N
�
m

e−ik�m+l/2�

���
r
�Jr

xy�1

2
− n̂m�bm+r + Jr

zn̂m+rbm�bm+l + Âm,l� � ,

�18�

Âm,l� � �
r

bm�Jr
xy�1

2
− n̂m+l�bm+l+r + Jr

zn̂m+l+rbm+l� .

�19�

Using the commutation relations �4�, and the symmetry

J−r=Jr we rewrite the operator Âk,l� in the normal form
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Âm,l� = �
r
�Jr

xy�1

2
− n̂m+l�bmbm+l+r + Jr

zn̂m+l+rbmbm+l�
+ �

r

	− �l,0Jr
xybmbm+l+r + �l,rJr

zbmbm+l
 .

Again we note that for the ferromagnetic ground state, the
terms containing the operators n̂ do not contribute to the GF
and as discussed in the previous section corresponding
higher-order GF vanish exactly. Then, within the subspace of
two-particle excitations above the ferromagnetic ground
state, we may write rigorously

	Âk,l,Ĥ
 = �2	0 + Jl
z�Âk,l + �1 − �l,0��

r

Jr
xy cos

kr

2
Âk,l+r.

�20�

Thus, the problem of calculation of the TMGF �10� is
equivalent to the impurity problem for the one-dimensional
�1D� tight-binding-like Hamiltonian

Ĥtb�k� = T̂ + V̂ ,

T̂ = 2	0�
m

�m��m� + �
m,r

�m + r�tr�m� ,

V̂ = �
m�

�m��m��m�� , �21�

where

tr�k� = Jr
xy cos

kr

2
, m� = 0,r, 0 = 
, r = Jr

z. �22�

Let us note that the infinite value of 0 is the result of the

hard-core constraint given by Eq. �5�. The periodic part T̂

results from Ĥ0 �7�, and Ĥint �8� defines the changes of the
on-site energies on impurity sites.

It is easy to see that

Gl,a�k,	� = ��l��	 − Ĥtb�−1��a� , �23�

where �� j�= ��j�+ �−j�� /�2, j= l ,a.
In a standard way, we will use the identity

�	 − Ĥtb�−1 = �	 − T̂�−1 + �	 − T̂�−1V̂�	 − Ĥtb�−1 �24�

for the solution of the impurity problem in the real space.
After some algebra we obtain

G1,1�k,	� =
1

− J1
z +

1

G1,1
�0� +

G1,2
�0�J2

zG2,1
�0�

1 − G2,2
�0�J2

z

, �25�

where Gl,a
�0� is the GF of noninteracting hard-core bosons

�Ĥ= Ĥ0�:

Gl,a
�0��k,	� = ��Ak,l�Ak,a

† ��0 = gl+a + gl−a −
2glga

g0
, �26�

gl�k,	� �
1

N
�

q

cos ql

	 − �	k/2+q
SW + 	k/2−q

SW �
. �27�

V. THE TWO-MAGNON BOUND STATES AND THE
SATURATION FIELD

In the derivation of the exact expression for the Green’s
function �25�–�27� we have used the mathematical equiva-
lence of the Heisenberg model �2� at high fields with the 1D
impurity problem �21�. But the obtained explicit expressions
have a rather complicated form. Fortunately, the physics of
the same 1D impurity problem helps also considerably in its
further analysis.

The branch cut of G1,1�k ,	� �25� is defined by the con-

tinuous part of the spectrum of Ĥtb�k� given by Eq. �21� that
corresponds to the two-particle continuum of the starting
Hamiltonian �2�. Its boundaries may be found from the spec-

trum of the periodic part T̂:

E�k,q� = 2		0 + t1�k�cos q + t2�k�cos 2q
 = 	k/2+q
SW + 	k/2−q

SW .

Since t1�k��0 for all k, we have

E�k,q1� � E�k,q� � E�k,��, �k� � k1, �28�

E�k,0� � E�k,q� � E�k,��, k1 � �k� � k2, �29�

E�k,0� � E�k,q� � E�k,q1�, k2 � �k� � � , �30�

where

cos q1 = − t1�k�/4t2�k� ,

E�k,q1� � 2	0 − t1
2/4t2 − 2t2,

k1 � 2 arccos
�128�2 + 1 + 1

16���
� �/2, t1�k1�/4t2�k1� = − 1,

k2 � 2 arccos
�128�2 + 1 − 1

16���
� �/2, t1�k2�/4t2�k2� = 1.

As we will see below, the point k=� has a special mean-
ing. For this value of k the nearest-neighbor hopping t1���
=0, and the Hamiltonian T̂ describes two noninteracting lin-
ear chains �i.e., the sites with odd or even numbers m� with a
hopping t2���=−J2

xy inside each chain. The account of the

hard-core constraint �5�, i.e., the introduction of V̂0

= �0�0�0� with 0=
 entering the Hamiltonian Ĥtb�k� given
by Eq. �21�, does not influence the chain with odd sites, but
the chain with even sites m is broken into two independent
semi-infinite chains. Now, it is easy to account for the rest of

terms in the impurity Hamiltonian V̂, because 1=J1 and 2

=J2 affect different chains. The GF G2,2
�2��� ,	� has a particu-

lar simple form. It can be obtained, e.g., by the recursion
method
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G2,2��,	� = 		 − �2	0 + J2
z� − �J2

xy�2G2,2
�0���,	�
−1

=
1

J2
xy	z − �2 − ��z�


, �31�

where the dimensionless energy

z � �	 − 2	0�/J2
xy �32�

is introduced, and ��z���z−�z2−4� /2=1/ 	z−��z�
 is the lo-
cal Green’s function on the first site of the unperturbed semi-
infinite chain in dimensionless units. A simple analysis of the
expression �31� shows that besides the branch cut in the in-
terval −2�z�2 of the real axis, G2,2�� ,	� may have an
isolated pole. The pole exists for �2�1 above the con-
tinuum, i.e., a bound state exists for the easy-axis anisotropy
of the next-nearest-neighbor exchange. The expression for
G1,1�� ,	� is more complicated than G2,2�� ,	�:

G1,1��,	� = 		 − �2	0 + J1
z − J2

xy� − J2
xy��z�
−1 �33�

=
1

J2
xy	z − �1/� + 1 − ��z�


. �34�

Note that for any acute-angle helimagnet ���0� a bound
state should exist below the continuum. Indeed, the condition
G1,1

−1 �k ,	b�=0 gives

zb��� =
�1

�
− 1 +

1

�1

�
− 1

� − 2. �35�

For k��, a bound state exists, too.2 In Ref. 2, the isotro-
pic version ��1=�2=1� of the Hamiltonian �2� was consid-
ered. There, A. Chubukov has found that the dispersion of
the two-magnon bound state zb�k� exhibits a minimum at k
=� for ���� ��c��0.38. The latter number will be refined
below.

Based on extensive numerical work5,6 for finite chains,
and qualitative discussion in Ref. 3, we strongly believe that
the two-particle bound state defined by �35� is the excitation
with the lowest energy per flipped spin in the system for this
parameter regime. The absolute dominance of two-magnon
states manifests itself by �Sz=2 steps of the calculated mag-
netization curves M�H� at high fields. Only for ��0.4 steps
with �Sz=3 are observed �see Fig. 1 of Ref. 6�. But we admit
that from a formal point of view, the full rigorous solution
should also include the analysis of the problem for the arbi-
trarily n-magnon bound states �n�3� in a similar way as
done here. However, the corresponding calculations are
rather cumbersome and particular examples �n=3,4� are left
for future consideration.

Then the quantum saturation field is determined by the
condition that the two-magnon energy vanishes �i.e., the two-
magnon instability of the field-induced ferromagnetic ground
state�. This way, the central result of the present work yields

	b��,Bs� = 2��B − Bs� = J2
xyzb��� + 2	0 = 0, �36�

or

�Bs =
1

2�
r

Jr
z − J2

xyzb��� , �36��

which gives explicitly

Bs =
2J2

xy�J2
z + J2

xy� − �J1
z�2 − 2J2

zJ1
z

2��J2
xy − J1

z�

=
J2

xy

2�
�2��2 + 1� − ��1/��2 − 2�1/�

1 − �1/�
� . �37�

For the isotropic case, this result was first obtained in Ref. 2
by solving an integral equation which results from a summa-
tion of a sequence of ladder diagrams. From our straightfor-
ward derivation it is clear that the result is exact within the
adopted two-magnon approach, as also pointed out in Ref. 3.

In order to find the parameter range where the value of
zb��� 	see Eq. �35�
 yields the minimum of the bound-state
dispersion zb�k�, we consider the expressions �25�–�27� in the
vicinity of k=�, z=zb�k�. After straightforward calculations
given in the Appendix we obtain

zb�k� � zb��� +
�k − ��2

2meff
, �38�

where

1

2meff��,�1,�2�
=

1

2
+

�1 − �

4��1
2 + �

� − 2�1

2�� − �1�2

−
�2� − �1��2

4�1�� − �1�	��1 + �2� − �1

.

�39�

The dependence of the right-hand side of Eq. �39� on the
inverse frustration ratio �J1 /J2� is shown in Fig. 1 for differ-
ent values of the nearest-neighbor exchange anisotropy �1.
The dependence on the second-neighbor exchange aniso-
tropy is weak in the vicinity of the isotropic point �2=1. We
see that meff is positive for large values of frustration J2
� �J1� and changes the sign at some critical value �c, where
the dispersion minimum is transformed to a local maximum.
For �2=1 the condition 1/2meff��c ,�1 ,1�=0 reduces to a
cubic equation for �c and we have

FIG. 1. The inverse effective mass �39� as a function of frustra-
tion ratio and anisotropy �1=J1

z /J1
xy for the J1−J2 model.
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�c��1� = �1�2

3
− 2R��1�cos����1� + 2�

3
�� , �40�

where

R��1� � −
1

3
�2

5�1
2 + 1

4�1
2 − 1

, ���1� � arccos�−
7

54R3� .

The critical frustration dependence on anisotropy is shown
on Fig. 2. In the isotropic case, we have R�1�=−2/3, ��1�
=arccos�7/16�, and

�c�1� =
2

3
�2 cos

��1� + 2�

3
+ 1� � − 0.374 661 059 835 27,

�41�

which refines ��c�1���0.38 calculated before.2,3 If �1→0.5,
then �c from Eq. �40� diverges, i.e., the effective mass
meff��1=0.5� becomes negative for all frustration values.

Figure 3 shows the quantum and classical saturation field
dependencies on the parameter values of the 1D isotropic
J1−J2 model. We have chosen J2 as the unit of energy. We
see that the quantum effect is most pronounced for frustra-
tion values �J2 /J1 � �1.

In the region 0.25� ���� ��c� the minimum zb�k� for
the isotropic model shifts into the point2 k=2q0
=2 arccos�−1/4��. The authors of Ref. 3 argue that in this
case the saturation field is determined by bound states of
three and/or more magnons;3 such a situation is out of the
scope of this paper. For the anisotropic J1−J2 model, there is
a third possible scenario. The one- and two-particle instabili-
ties occur at different k points. Then, it is possible to have the
minimum of zb�k� at k=�, which is higher in energy than the
lowest boundary of the continuum �28� zc�2q0�=zc�2q0�. This
happens, e.g., for the easy-plane nearest-neighbor anisotropy
values

�1 � �1,a =
1 + �1 + 16�2

8���
, �2 = 1.

In Fig. 4 the dependence of the saturation fields on the
anisotropy of the J1 exchange is shown. The former is im-
portant for edge-shared cuprates.7 We see that for �1
= �1+�17� /8�0.640 39 the lines Bs��1� and Bs

cl��1� do in-
tersect. At the same time 1/2meff�1,0.640 39,1��0.161 78
�0. The unexpected at first glance result that the classical
curve apparently reaches, then overwhelms the quantum re-
sult can be explained by the reduced attractive ferromagnetic
interaction due to the anisotropy, i.e., a weakening of the
two-magnon “glue.” Below this value of �1 the saturation
field is determined by the one-particle instability, like in the
XY model ��1=�2=0�. Thus, the intersection is not related
to a strange quantum versus classical behavior, but to the
competition between one- and two-particle instabilities.

It is interesting that a strong easy-axis anisotropy can di-
minish the saturation field, and at the point

�1,0 = �− ��	1 + �3 + 2�2


the field Bs vanishes, i.e., the system’s ground state becomes
ferromagnetic.2 Note also the region

FIG. 2. The dependence of the frustration ratio value �c, for
which the effective mass �39� changes the sign, on anisotropy �1

=J1
z /J1

xy for the J1−J2 model.

FIG. 3. The two-particle ��Bs,2 /J2—solid line� and one-particle
��Bs,2

cl /J2—dashed line� values of the saturation field as a function
of frustration ratio �J1� /J2 for the isotropic J1−J2 model.

FIG. 4. The two-particle ��Bs,2 /J2—solid line� and one-particle
��Bs,2

cl /J2—dashed line� saturation fields for the anisotropic J1−J2

model, J1=J2=�2=1.
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�1,0
cl = �− ���1 + �2 +

1

8�2� � �1 � �1,0,

where Bs
cl=0, Bs�0. Here the classical fully polarized state

is destroyed by quantum fluctuations. A possible ground state
for the system in this parameter regime may be a collinear
state with period 4 described in Ref. 3, or a dimer nematic
state, predicted in Ref. 2 for the isotropic model in a high
field.

VI. ADDITIONAL INTERACTIONS

An advantage of our approach is the possibility to apply it
to more complex situations which occur naturally when real
chain compounds are considered. Indeed, it is easy to realize
that the exact mapping of the two-magnon problem onto the
effective tight-binding Hamiltonian �21� is not restricted to
1D and to the J1−J2 model. We may generalize the Hamil-

tonian Ĥ �6� including into summation over r more distant
neighbors in chain direction. This will introduce additional
impurities and hoppings in the effective Hamiltonian �21�.
Moreover, we may consider also 2D or 3D systems. Then,
the site indices m as well as r in �7� and �8� become vectors
with corresponding changes in the effective Hamiltonian
�21�. It is straightforward to obtain the TMGF �23�, but the
expression becomes cumbersome. Here we will apply our
general approach to answer the question how is the quantum
effect for the saturation field in the J1−J2 model modified by
some additional interactions often present in real com-
pounds.

First, we include a small third-neighbor in-chain interac-
tion J3. Such a term may appear as a result of the spin-
phonon interaction in the antiadiabatic regime, when the ex-
change constants Ji��	ph, the characteristic phonon
frequencies, and the spin-phonon interaction is strong.9 It is
expected to be small J3� �J1� ,J2 and antiferromagnetic.8,9

Below, the subscript 2�3� refers to the J1−J2 and the J1−J2
−J3 model, respectively. In this section, for the sake of sim-
plicity we give only formulas for the isotropic case J=Jz

=Jxy. The minimum of the one-magnon spectrum �14� gives
the value of the helicoidal wave vector and the classical
value of the saturation field

cos q0,3 =
− J2 + �J2

2 − 3J3�J1 − 3J3�
6J3

, �42�

�cos q0,2�1 −
3J3

J1
� , �43�

Bs,3
cl � Bs,2

cl +
J3

�
�1 −

3

4�
+

1

16�3�; �44�

we recall that ��0.
The two-magnon Green’s function �33� has the form

G1,1��,	� = �	 − �2	0 + J1 − J2�

−
J2

2

	 − �2	0 + J3� − J2��	 − 2	0

J2
��

−1

.

�45�

For small J3 values, the bound-state energy and the satura-
tion field varies linearly with J3

	b,3 � 	b,2 − J3���2 − ��
�1 − ��4 + 1� ,

Bs,3 � Bs,2 +
J3

2�
�1 +

��2 − ��
�1 − ��4 � , �46�

where the values 	b,2, and Bs,2 are given by Eq. �37�. The
slope of Bs,3

cl dependence on J3 is larger than for Bs,3. It
means, that positive J3 suppress the quantum effect. The dif-
ference of saturation fields in quantum and classical cases
becomes smaller.

As the simplest example for a two-dimensional system we
consider a 2D set of chains parallel to the x axis coupled in
perpendicular direction with the strength J�. Then the one-
magnon dispersion becomes two dimensional:

	q,2D
SW = 	qx,1D

SW + J��cos qya − 1� . �47�

From this expression one readily obtains

�B2D
cl = �B1D

cl + J� + �J�� , �48�

i.e., in this approximation the ferromagnetic interchain inter-
action does not affect the saturation field, whereas in the
antiferromagnetic case it is enhanced by 2J�. In general,
such a correction is especially important near the quantum
critical point for ferromagnet-helimagnet transition ���4
+9J3 /J2�−1, where the 1D saturation field by definition van-
ishes. Equation �48� should be understood as a lower bound
for the saturation field near the critical point. The account of
quantum fluctuations will lead to slightly higher values of Bs
according to Ref. 3.

For an arbitrary k point, the GF �23� is found from the
solution of a system of three linear equations, but along the
line k= �� /a ,ky� the system reduces to a single equation
which gives

G1,1�k,	� = �	G1,1
�0��k,	�
−1 − J1�−1, �49�

where the two-dimensional spectrum �47� should be used in
the expression for the noninteracting GF �26�. The dispersion
of the isolated pole and the two-particle continuum boundary
are shown in Figs. 5 and 6. For small J� �Fig. 5� one ob-
serves a well-separated bound state. Here, the absolute mini-
mum of the continuum occurs at k= �2q0 ,0� and at k
= �0,0� its energy zc=−2.45J2 exceeds the minimum of the
bound-state dispersion given by zb�0,��=−2.615 76J2. For
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strongly coupled chains such as J�= �J1�=J2, the pole posi-
tion becomes very shallow �Fig. 6� and it becomes clear that
such a local minimum exceeds the minimum given by two
independent �one-magnon� excitations �zc=−4.25J2 for the
parameter set shown in the caption of Fig. 6�. In the general
3D problem, one may expect that even the bound state itself
may disappear.

At variance with the classical case given by Eq. �48�, the
solution of Eq. �49� yields for �J���J2

�Bs = �Bs,1D + J� + O�J�
2 /J2� , �50�

i.e., in this case the saturation field is sensitive to both signs
of the interchain interaction. With the increase of J� one
finally reaches a critical value, where zb=zc and beyond the
“one-magnon” derived Eq. �48� should be used instead of a
“two-magnon” one like Eq. �50�. Thus, the quantum effects
are maximally pronounced in the 1D case, just as the local-
ization for the equivalent impurity problem. More complex
interchain interactions derived from band structure calcula-
tions and inelastic neutron scattering data10 and an applica-
tion to chain cuprates will be given elsewhere.

VII. CONCLUSION

We have shown that the internal motion of a two-magnon
pair on a ferromagnetic background is equivalent to the mo-
tion of a single particle described by an effective tight-
binding Hamiltonian. This Hamiltonian is not translationally
invariant. It models the hard-core boson constraint �5� by an
infinite on-site energy at the site with zero coordinates, and
each exchange Jr introduces the on-site energy r and the
hopping term tr=Jr cos kr /2. Remarkably, this mapping pro-
cedure can be applied to problems at arbitrary dimension.

The two-magnon Green’s function is found exactly by
analogy with the impurity problem. The two-magnon excita-
tion spectrum is found from poles and branch cuts of the
Green’s function. For the quasi-one-dimensional helimagnet
with ferromagnetic nearest-neighbor and antiferromagnetic
next-nearest-neighbor interactions a bound state of magnons
exists. This leads to deviation of the quantum saturation field
Bs from the classical value.

The derived expression for the saturation field Bs �exact
within the two-magnon approach� provides a constraint for
competing exchange interactions. Such a constraint may be
useful in fitting thermodynamic properties such as the mag-
netic susceptibility ��T� and the magnetic specific heat cp�T�.
In general, high-field magnetization measurements M�H ,T�
yield important information concerning the exchange inte-
grals in novel materials. Combined with the analysis of other
experimental data, this knowledge may be very helpful to
elucidate the relevant microscopic model of an acute-angle
helimagnetic system �i.e., having a pitch angle �� /2 at zero
magnetic field�.

In this work we studied the lowest energy of excited
states, i.e., the position of the isolated TMGF poles. The
obtained Green’s function �10� contains the information
about the whole spectrum that is necessary for the calcula-
tions of physical properties for concrete materials. Various
application to edge-shared compounds will be considered
elsewhere.
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APPENDIX: CALCULATIONAL DETAILS FOR THE
“EFFECTIVE MASS” OF A MAGNON PAIR

Here we give details of the derivation of the Eqs. �38� and
�39�. The energy of an isolated pole of GF �25� is the root of
the equation

− J1
z +

1

G1,1
�0� +

G1,2
�0�J2

zG2,1
�0�

1 − G2,2
�0�J2

z

= 0. �A1�

It depends on k value via the dependence of hopping param-

eters tr in T̂ �21�. We denote ���−k, and expand the left-
hand side of Eq. �A1� up to the terms ��2. Then

FIG. 6. The same as in Fig. 5 for �J1�=J2=J�. The absolute
minimum of the continuum is zc�2q0 ,kya�=−4.25J2�zb.

FIG. 5. The two-magnon bound-state energy zb�� ,kya�
= 		b�� ,kya�−2	0
 /J2 �solid line� and the boundary of the two-
magnon continuum zc�� ,kya� �dashed line� as a function of the
quasimomentum value in the y direction for �J1�=J2; the interchain
interaction is chosen as J�=0.1J2, J2 being the unit of energy. For
these parameters, the absolute minimum of continuum is
zc�2q0 ,kya�=−2.45J2�zb.
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t1 = J1
xy sin

�

2
� J1

xy �

2
, t2 = − J2

xy cos � � − J2
xy�1 −

�2

2
� .

Let us mention that the GF �27�

gl�k,	� = g−l�k,	� = �R��	 − T̂�−1�R + l�

obeys the equation of motion

�	 − 2	0�gl = �l,0 + t1�gl−1 + gl+1� + t2�gl−2 + gl+2� .

�A2�

We will calculate g0�k ,	� ,g1�k ,	� directly from Eq. �27�
and use �A2� for the calculation of other gl involved in Eq.
�A1�. We begin with

g0�k,	� =
1

2�


−�

� dQ

	 − 2�	0 + t1 cos Q + t2 cos 2Q�
.

�A3�

The denominator of the integrand is nonzero for the 	 out-

side the spectrum of T̂. After the substitution �=tan�Q /2� the
straightforward calculations give

g0 = −
1

8J2
xy cos ���4q + p2��q + p − 1�

�� p − 2 + �4q + p2

�q + 1 − �4q + p2
−

p − 2 − �4q + p2

�q + 1 + �4q + p2� ,

where

p � −
2 sin��/2�
4� cos �

, q � −
z − 2 cos �

4 cos �
, z �

	 − 2	0

J2
xy .

Expanding this expression around the point 	k=�, z=zb���
,
we obtain

g0 � −
1

J2
xy�z2 − 4

��1 − �2�1 −
�1

�
�24�1

2�2 − 3�2 + 3�1� − �1
2

2�1
3�2� − �1� � .

�A4�

In analogous way we obtain

g1�k,	� =
1

2�


−�

� cos QdQ

	 − 2�	0 + t1 cos Q + t2 cos 2Q�

= −
1

2J2
xy��4q + p2��q + p − 1�

�� 2q + p − �4q + p2

�q + 1 − �4q + p2
−

2q + p + �4q + p2

�q + 1 + �4q + p2�
�

��

2J2
xy

�� − �1�2

�1
3�2� − �1�

. �A5�

Now, using Eq. �A2�, we have

g2 + g0 �
1 −�z − 2

z + 2

2J2
xy

��1 − �22��1
2�2�2 − 4�1� + �1

2� − 3�� − �1�3

4�1
4�2� − �1� � .

�A6�

Substituting the above expressions �A4�–�A6�, into Eq. �26�,
we obtain

	G1,1
�0�
−1 �

2J2
xy

1 −�z − 2

z + 2

��1 + �2���2�2 − 4�1� + �1
2�

2�1
2�2� − �1�

−
�� − �1�3

4�1
4�2� − �1��� , �A7�

and

G1,2
�0� = G2,1

�0� �
�

2J2
xy

�

�1
2 , �A8�

G2,2
�0���,zb���� �

�

J2
xy��1 − ��

. �A9�

In the neighborhood of the point k=�, z=zb��� Eq. �A1�
may be rewritten as

− J1
z + 	G1,1

�0�
−1 −
	G1,2

�0�
2J2
z�J1

z�2

1 − J2
zG2,2

�0�
„�,zb���…

= 0.

The substitution of Eqs. �A7�–�A9�, into this equation allows
to solve it with respect to z and to obtain finally Eq. �38�.
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